Skip to content
2000
image of A Novel Weight Loss Mechanism of Hydroxysafflor Yellow A in Obese Mice: Involvement of Immune Inflammation via Prkcd, Btk, and Vav1 Genes in Adipose Tissue

Abstract

Introduction

Hydroxysafflor Yellow A (HSYA), known for its anti-inflammatory effects in cardiovascular diseases, has also been shown to reduce adiposity and improve metabolic disorders in diet-induced obese (DIO) mice. However, the molecular mechanisms underlying its anti-obesity effects, particularly whether they are mediated through immune-inflammatory pathways, remain unclear. This study aims to identify the key molecular mechanisms involved in HSYA's anti-obesity action.

Methods

Male C57BL/6J mice were divided into three groups: Standard Feed (SF), High-Fat Diet (HFD), and HFD with HSYA treatment (250 mg/kg/day for 9 weeks). Whole transcriptome sequencing of White Adipose Tissue (WAT) identified Differentially Expressed Genes (DEGs), which were integrated with network pharmacology predictions to identify key molecular targets of HSYA. RT-qPCR in WAT, 3T3-L1 adipocytes, and RAW264.7 macrophages validated the core genes, and molecular docking assessed HSYA’s binding affinity with these targets.

Results

HSYA treatment significantly reduced body weight (35.27 ± 1.27g . 45.46 ± 1.68g, < 0.05) and WAT mass (3.38±0.21g . 1.86±0.27g, < 0.05) in DIO mice and ameliorated glucose and lipid metabolism abnormalities. Transcriptome analysis revealed 739 DEGs, with 21 overlapping genes identified between sequencing and network pharmacology analyses. Experimental validation highlighted Prkcd, Btk, and Vav1 as core genes within immune-inflammatory pathways, including chemokine and B cell receptor signaling, which are implicated in obesity-related inflammation. RT-qPCR confirmed the downregulation of Prkcd, Btk, and Vav1 after HSYA treatment, consistent with transcriptomic findings. Molecular docking analysis demonstrated strong binding affinities between HSYA and VAV1 (-8.5 kcal/mol), BTK (-6.9 kcal/mol), and PRKCD (-6.6 kcal/mol).

Conclusion

HSYA demonstrates the therapeutic potential for obesity by modulating immune-inflammatory pathways in WAT, specifically targeting Prkcd, Btk, and Vav1 in mice. Given its clinical use in cardiovascular disease, these findings suggest that HSYA may offer broader therapeutic benefits, including obesity management, though further studies are needed to clarify the mechanisms and assess its applicability to humans.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010375949250519062337
2025-05-22
2025-09-19
Loading full text...

Full text loading...

References

  1. Valenzuela P.L. Carrera-Bastos P. Castillo-García A. Lieberman D.E. Santos-Lozano A. Lucia A. Obesity and the risk of cardiometabolic diseases. Nat. Rev. Cardiol. 2023 20 7 475 494 10.1038/s41569‑023‑00847‑5 36927772
    [Google Scholar]
  2. Suárez R. Chapela S.P. Álvarez-Córdova L. Bautista-Valarezo E. Sarmiento-Andrade Y. Verde L. Frias-Toral E. Sarno G. Epigenetics in obesity and diabetes mellitus: New insights. Nutrients 2023 15 4 811 10.3390/nu15040811 36839169
    [Google Scholar]
  3. Rubino F. Cummings D.E. Eckel R.H. Cohen R.V. Wilding J.P.H. Brown W.A. Stanford F.C. Batterham R.L. Farooqi I.S. Farpour-Lambert N.J. le Roux C.W. Sattar N. Baur L.A. Morrison K.M. Misra A. Kadowaki T. Tham K.W. Sumithran P. Garvey W.T. Kirwan J.P. Fernández-Real J.M. Corkey B.E. Toplak H. Kokkinos A. Kushner R.F. Branca F. Valabhji J. Blüher M. Bornstein S.R. Grill H.J. Ravussin E. Gregg E. Al Busaidi N.B. Alfaris N.F. Al Ozairi E. Carlsson L.M.S. Clément K. Després J.P. Dixon J.B. Galea G. Kaplan L.M. Laferrère B. Laville M. Lim S. Luna Fuentes J.R. Mooney V.M. Nadglowski J. Urudinachi A. Olszanecka-Glinianowicz M. Pan A. Pattou F. Schauer P.R. Tschöp M.H. van der Merwe M.T. Vettor R. Mingrone G. Definition and diagnostic criteria of clinical obesity. Lancet Diabetes Endocrinol. 2025 13 3 221 262 10.1016/S2213‑8587(24)00316‑4 39824205
    [Google Scholar]
  4. Perdomo C.M. Cohen R.V. Sumithran P. Clément K. Frühbeck G. Contemporary medical, device, and surgical therapies for obesity in adults. Lancet 2023 401 10382 1116 1130 10.1016/S0140‑6736(22)02403‑5 36774932
    [Google Scholar]
  5. Kloock S. Ziegler C.G. Dischinger U. Obesity and its comorbidities, current treatment options and future perspectives: Challenging bariatric surgery? Pharmacol. Ther. 2023 251 108549 10.1016/j.pharmthera.2023.108549 37879540
    [Google Scholar]
  6. Asgarpanah J. Kazemivash N. Phytochemistry, pharmacology and medicinal properties of Carthamus tinctorius L.. Chin. J. Integr. Med. 2013 19 2 153 159 10.1007/s11655‑013‑1354‑5 23371463
    [Google Scholar]
  7. Zhao F. Wang P. Jiao Y. Zhang X. Chen D. Xu H. Hydroxysafflor Yellow A. Hydroxysafflor yellow A: A systematical review on botanical resources, physicochemical properties, drug delivery system, pharmacokinetics, and pharmacological effects. Front. Pharmacol. 2020 11 579332 10.3389/fphar.2020.579332 33536906
    [Google Scholar]
  8. Yang R. Lin F. Wang W. Dai G. Ke X. Wu G. Investigating the therapeutic effects and mechanisms of Carthamus tinctorius L. -derived nanovesicles in atherosclerosis treatment. Cell Commun. Signal. 2024 22 1 178 10.1186/s12964‑024‑01561‑6 38475787
    [Google Scholar]
  9. Liu Y. Piao J. He J. Su Z. Luo Z. Luo D. Hydroxysafflor yellow A, a natural food pigment, ameliorates atherosclerosis in ApoE −/− mice by inhibiting the SphK1 / S1P / S1PR3 pathway. Food Sci. Nutr. 2024 12 11 8939 8955 10.1002/fsn3.4466 39620014
    [Google Scholar]
  10. Huang W. Yao W. Weng Y. Xie X. Jiang J. Zhang S. Shi Z. Fan Q. Hydroxysafflor yellow A inhibits the hyperactivation of rat platelets by regulating the miR-9a-5p/SRC axis. Arch. Biochem. Biophys. 2023 747 109767 10.1016/j.abb.2023.109767 37748625
    [Google Scholar]
  11. Wang N. He D. Zhou Y. Wen J. Liu X. Li P. Yang Y. Cheng J. Hydroxysafflor yellow A actives BKCa channels and inhibits L-type Ca channels to induce vascular relaxation. Eur. J. Pharmacol. 2020 870 172873 10.1016/j.ejphar.2019.172873 31866408
    [Google Scholar]
  12. Ge C. Peng Y. Li J. Wang L. Zhu X. Wang N. Yang D. Zhou X. Chang D. Hydroxysafflor yellow A alleviates acute myocardial ischemia/reperfusion injury in mice by inhibiting ferroptosis via the activation of the HIF-1α/SLC7A11/GPX4 signaling pathway. Nutrients 2023 15 15 3411 10.3390/nu15153411 37571350
    [Google Scholar]
  13. Lee M. Li H. Zhao H. Suo M. Liu D. Effects of Hydroxysafflor yellow A on the PI3K/AKT pathway and apoptosis of pancreatic β-Cells in type 2 diabetes mellitus rats. Diabetes Metab. Syndr. Obes. 2020 13 1097 1107 10.2147/DMSO.S246381 32308459
    [Google Scholar]
  14. Ren M. Zhang M. Zhang X. Wang C. Zheng Y. Hu Y. Hydroxysafflor yellow A inhibits Aβ1–42-induced neuroinflammation by modulating the phenotypic transformation of microglia via TREM2/TLR4/NF-κB pathway in BV-2 cells. Neurochem. Res. 2022 47 3 748 761 10.1007/s11064‑021‑03484‑x 34783973
    [Google Scholar]
  15. Du C. Hou J. Wang C. Zhang M. Zheng Y. Yang G. Hu Y. Effects of safflower yellow on cholesterol levels in serum and brain tissue of APP/PS1 mice. Metab. Brain Dis. 2021 36 4 557 569 10.1007/s11011‑021‑00680‑0 33550459
    [Google Scholar]
  16. Feng X. Du M. Li S. Zhang Y. Ding J. Wang J. Wang Y. Liu P. Hydroxysafflor yellow A regulates lymphangiogenesis and inflammation via the inhibition of PI3K on regulating AKT/mTOR and NF-κB pathway in macrophages to reduce atherosclerosis in ApoE-/- mice. Phytomedicine 2023 112 154684 10.1016/j.phymed.2023.154684 36738477
    [Google Scholar]
  17. Guo F. Han X. You Y. Xu S. Zhang Y. Chen Y. Xin G. Liu Z. Ren J. Cao C. Li L. Fu J. Hydroxysafflor yellow A inhibits pyroptosis and protecting HUVECs from OGD/R via NLRP3/Caspase-1/GSDMD pathway. Chin. J. Integr. Med. 2024 30 11 1027 1034 10.1007/s11655‑023‑3716‑y
    [Google Scholar]
  18. Lai Z. Li C. Ma H. Hua S. Liu Z. Huang S. Liu K. Li J. Feng Z. Cai Y. Zou Y. Tang Y. Jiang X. Hydroxysafflor yellow a confers neuroprotection against acute traumatic brain injury by modulating neuronal autophagy to inhibit NLRP3 inflammasomes. J. Ethnopharmacol. 2023 308 116268 10.1016/j.jep.2023.116268 36842723
    [Google Scholar]
  19. Chen G. Li C. Zhang L. Yang J. Meng H. Wan H. He Y. Hydroxysafflor yellow A and anhydrosafflor yellow B alleviate ferroptosis and parthanatos in PC12 cells injured by OGD/R. Free Radic. Biol. Med. 2022 179 1 10 10.1016/j.freeradbiomed.2021.12.262 34923102
    [Google Scholar]
  20. Lyu X. Yan K. Hu W. Xu H. Guo X. Zhou Z. afflower yellow and its main component hydroxysafflor yellow A alleviate hyperleptinemia in diet-induced obesity mice through a dual inhibition of the GIP-GIPR signaling axis. Phytother. Res. 2023 38 10 4940 4956 10.1002/ptr.7788.
    [Google Scholar]
  21. Lyu X. Yan K. Xu H. Zhu H. Pan H. Wang L. Yang H. Gong F. Intragastric safflower yellow and its main component HSYA improve leptin sensitivity before body weight change in diet-induced obese mice. Naunyn Schmiedebergs Arch. Pharmacol. 2022 395 5 579 591 10.1007/s00210‑022‑02220‑8 35201390
    [Google Scholar]
  22. Yan K. Wang X. Pan H. Wang L. Yang H. Liu M. Zhu H. Gong F. Safflower yellow and its main component hsya alleviate diet-induced obesity in mice: Possible involvement of the increased antioxidant enzymes in liver and adipose tissue. Front. Pharmacol. 2020 11 482 10.3389/fphar.2020.00482 32372961
    [Google Scholar]
  23. Hu W. Lyu X. Xu H. Guo X. Zhu H. Pan H. Wang L. Yang H. Gong F. Intragastric safflower yellow alleviates HFD induced metabolic dysfunction-associated fatty liver disease in mice through regulating gut microbiota and liver endoplasmic reticulum stress. Nutrients 2023 15 13 2954 10.3390/nu15132954 37447278
    [Google Scholar]
  24. Nogales C. Mamdouh Z.M. List M. Kiel C. Casas A.I. Schmidt H.H.H.W. Network pharmacology: curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022 43 2 136 150 10.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  25. Zhao L. Zhang H. Li N. Chen J. Xu H. Wang Y. Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol. 2023 309 116306 10.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  26. Cai Y. Yu Z. Yang X. Luo W. Hu E. Li T. Zhu W. Wang Y. Tang T. Luo J. Integrative transcriptomic and network pharmacology analysis reveals the neuroprotective role of BYHWD through enhancing autophagy by inhibiting Ctsb in intracerebral hemorrhage mice. Chin. Med. 2023 18 1 150 10.1186/s13020‑023‑00852‑3 37957754
    [Google Scholar]
  27. Sharma B. Yadav D.K. Metabolomics and network pharmacology in the exploration of the multi-targeted therapeutic approach of traditional medicinal plants. Plants 2022 11 23
    [Google Scholar]
  28. Ji X.Y. Lei C.J. Kong S. Li H.F. Pan S.Y. Chen Y.J. Zhao F.R. Zhu T.T. Hydroxy-Safflower yellow A mitigates vascular remodeling in rat pulmonary arterial hypertension. Drug Des. Devel. Ther. 2024 18 475 491 10.2147/DDDT.S439686 38405578
    [Google Scholar]
  29. Kong J. Sun S. Min F. Hu X. Zhang Y. Cheng Y. Li H. Wang X. Liu X. Integrating network pharmacology and transcriptomic strategies to explore the pharmacological mechanism of hydroxysafflor yellow A in delaying liver aging. Int. J. Mol. Sci. 2022 23 22 14281 10.3390/ijms232214281 36430769
    [Google Scholar]
  30. Cui Q. Ma Y. Yu H. Zhang Y. Qin X. Ge S. Zhang G. Systematic analysis of the mechanism of hydroxysafflor yellow A for treating ischemic stroke based on network pharmacology technology. Eur. J. Pharmacol. 2021 908 174360 10.1016/j.ejphar.2021.174360 34302817
    [Google Scholar]
  31. Hu E. Li T. Li Z. Su H. Yan Q. Wang L. Li H. Zhang W. Tang T. Wang Y. Metabolomics reveals the effects of hydroxysafflor yellow A on neurogenesis and axon regeneration after experimental traumatic brain injury. Pharm. Biol. 2023 61 1 1054 1064 10.1080/13880209.2023.2229379 37416997
    [Google Scholar]
  32. Li T. Zhang W. Hu E. Sun Z. Li P. Yu Z. Zhu X. Zheng F. Xing Z. Xia Z. He F. Luo J. Tang T. Wang Y. Integrated metabolomics and network pharmacology to reveal the mechanisms of hydroxysafflor yellow A against acute traumatic brain injury. Comput. Struct. Biotechnol. J. 2021 19 1002 1013 10.1016/j.csbj.2021.01.033 33613866
    [Google Scholar]
  33. Wei R. Song L. Miao Z. Liu K. Han G. Zhang H. Ma D. Huang J. Tian H. Xiao B. Ma C. Hydroxysafflor yellow A exerts neuroprotective effects via HIF-1α/BNIP3 pathway to activate neuronal autophagy after OGD/R. Cells 2022 11 23 3726 10.3390/cells11233726 36496986
    [Google Scholar]
  34. Jiao W. Mi S. Sang Y. Jin Q. Chitrakar B. Wang X. Wang S. Integrated network pharmacology and cellular assay for the investigation of an anti-obesity effect of 6-shogaol. Food Chem. 2022 374 131755 10.1016/j.foodchem.2021.131755 34883426
    [Google Scholar]
  35. Liu T. Wang J. Tong Y. Wu L. Xie Y. He P. Lin S. Hu X. Integrating network pharmacology and animal experimental validation to investigate the action mechanism of oleanolic acid in obesity. J. Transl. Med. 2024 22 1 86 10.1186/s12967‑023‑04840‑x 38246999
    [Google Scholar]
  36. Yin P. Huang J. Yang K. Deng C. Yang L. Myricitrin versus EGCG in the treatment of obesity: Target mining and molecular mechanism exploring based on network pharmacology. Curr. Pharm. Des. 2023 29 24 1939 1957 10.2174/1381612829666230817145742 37592794
    [Google Scholar]
  37. Festing M.F.W. On determining sample size in experiments involving laboratory animals. Lab. Anim. 2018 52 4 341 350 10.1177/0023677217738268 29310487
    [Google Scholar]
  38. Serdar C.C. Cihan M. Yücel D. Serdar M.A. Sample size, power and effect size revisited: Simplified and practical approaches in pre-clinical, clinical and laboratory studies. Biochem. Med. (Zagreb) 2021 31 1 27 53 10.11613/BM.2021.010502 33380887
    [Google Scholar]
  39. Yan K. Zhu H. Xu J. Pan H. Li N. Wang L. Yang H. Liu M. Gong F. Lotus leaf aqueous extract reduces visceral fat mass and ameliorates insulin resistance in HFD-induced obese rats by regulating PPARγ2 expression. Front. Pharmacol. 2017 8 409 10.3389/fphar.2017.00409 28690544
    [Google Scholar]
  40. Ayala J.E. Samuel V.T. Morton G.J. Obici S. Croniger C.M. Shulman G.I. Wasserman D.H. McGuinness O.P. NIH Mouse Metabolic Phenotyping Center Consortium Standard operating procedures for describing and performing metabolic tests of glucose homeostasis in mice. Dis. Model. Mech. 2010 3 9-10 525 534 10.1242/dmm.006239 20713647
    [Google Scholar]
  41. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001 25 4 402 408 11846609
    [Google Scholar]
  42. Hsin K.Y. Ghosh S. Kitano H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One 2013 8 12 e83922 24391846
    [Google Scholar]
  43. Lazarescu O. Ziv-Agam M. Haim Y. Hekselman I. Jubran J. Shneyour A. Muallem H. Zemer A. Rosengarten-Levin M. Kitsberg D. Levin L. Liberty I.F. Yoel U. Dukhno O. Adam M. Braune J. Müller C. Raulien N. Gericke M. Körner A. Murphy R. Blüher M. Habib N. Rudich A. Yeger-Lotem E. Human subcutaneous and visceral adipocyte atlases uncover classical and nonclassical adipocytes and depot-specific patterns. Nat. Genet. 2025 57 2 413 426 39856219
    [Google Scholar]
  44. Randall T.D. Meza-Perez S. Immunity in adipose tissues: Cutting through the fat. Immunol. Rev. 2024 324 1 4 10 38733141
    [Google Scholar]
  45. Jiang Y. Gong F. Immune cells in adipose tissue microenvironment under physiological and obese conditions. Endocrine 2024 83 1 10 25 37768512
    [Google Scholar]
  46. Kane H. Lynch L. Innate immune control of adipose tissue homeostasis. Trends Immunol. 2019 40 9 857 872 10.1016/j.it.2019.07.006 31399336
    [Google Scholar]
  47. Ye J. Gao C. Liang Y. Hou Z. Shi Y. Wang Y. Characteristic and fate determination of adipose precursors during adipose tissue remodeling. Cell Regen. (Lond.) 2023 12 1 13 37138165
    [Google Scholar]
  48. Khanna D. Khanna S. Khanna P. Kahar P. Patel B.M. Obesity: A chronic low-grade inflammation and its markers. Cureus 2022 14 2 e22711 10.7759/cureus.22711 35386146
    [Google Scholar]
  49. Zlotnik A. Yoshie O. The chemokine superfamily revisited. Immunity 2012 36 5 705 716 10.1016/j.immuni.2012.05.008 22633458
    [Google Scholar]
  50. Sokol C.L. Luster A.D. The chemokine system in innate immunity. Cold Spring Harb. Perspect. Biol. 2015 7 5 a016303 10.1101/cshperspect.a016303 25635046
    [Google Scholar]
  51. Falkenburger B.H. Dickson E.J. Hille B. Quantitative properties and receptor reserve of the DAG and PKC branch of Gq-coupled receptor signaling. J. Gen. Physiol. 2013 141 5 537 555 10.1085/jgp.201210887 23630338
    [Google Scholar]
  52. Yang Y.R. Follo M.Y. Cocco L. Suh P.G. The physiological roles of primary phospholipase C. Adv. Biol. Regul. 2013 53 3 232 241 10.1016/j.jbior.2013.08.003 24041464
    [Google Scholar]
  53. Muralidharan K. Van Camp M.M. Lyon A.M. Structure and regulation of phospholipase Cβ and ε at the membrane. Chem. Phys. Lipids 2021 235 105050 10.1016/j.chemphyslip.2021.105050 33422547
    [Google Scholar]
  54. Black J.D. Affandi T. Black A.R. Reyland M.E. PKCα and PKCδ: Friends and Rivals. J. Biol. Chem. 2022 298 8 102194 10.1016/j.jbc.2022.102194 35760100
    [Google Scholar]
  55. Ottonello L. Montecucco F. Bertolotto M. Arduino N. Mancini M. Corcione A. Pistoia V. Dallegri F. CCL3 (MIP-1α) induces in vitro migration of GM-CSF-primed human neutrophils via CCR5-dependent activation of ERK 1/2. Cell. Signal. 2005 17 3 355 363 10.1016/j.cellsig.2004.08.002 15567066
    [Google Scholar]
  56. Nara N. Nakayama Y. Okamoto S. Tamura H. Kiyono M. Muraoka M. Tanaka K. Taya C. Shitara H. Ishii R. Yonekawa H. Minokoshi Y. Hara T. Disruption of CXC motif chemokine ligand-14 in mice ameliorates obesity-induced insulin resistance. J. Biol. Chem. 2007 282 42 30794 30803 10.1074/jbc.M700412200 17724031
    [Google Scholar]
  57. Wallerstedt E. Smith U. Andersson C.X. Protein kinase C-δ is involved in the inflammatory effect of IL-6 in mouse adipose cells. Diabetologia 2010 53 5 946 954 10.1007/s00125‑010‑1668‑1 20151299
    [Google Scholar]
  58. Mehra S. Nicholls M. Taylor J. The evolving role of Bruton’s tyrosine kinase inhibitors in B cell lymphomas. Int. J. Mol. Sci. 2024 25 14 7516 10.3390/ijms25147516 39062757
    [Google Scholar]
  59. Tanaka S. Baba Y. B cell receptor signaling. Adv. Exp. Med. Biol. 2020 1254 23 36 10.1007/978‑981‑15‑3532‑1_2 32323266
    [Google Scholar]
  60. Winer D.A. Winer S. Shen L. Wadia P.P. Yantha J. Paltser G. Tsui H. Wu P. Davidson M.G. Alonso M.N. Leong H.X. Glassford A. Caimol M. Kenkel J.A. Tedder T.F. McLaughlin T. Miklos D.B. Dosch H.M. Engleman E.G. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 2011 17 5 610 617 21499269
    [Google Scholar]
  61. Hägglöf T. Vanz C. Kumagai A. Dudley E. Ortega V. Siller M. Parthasarathy R. Keegan J. Koenigs A. Shute T. Leadbetter E.A. T-bet+ B cells accumulate in adipose tissue and exacerbate metabolic disorder during obesity. Cell Metab. 2022 34 8 1121 1136.e6 35868310
    [Google Scholar]
  62. Guo B. Su T.T. Rawlings D.J. Protein kinase C family functions in B-cell activation. Curr. Opin. Immunol. 2004 16 3 367 373 10.1016/j.coi.2004.03.012 15134787
    [Google Scholar]
  63. Betzler A.C. Kieser S. Fiedler K. Laban S. Theodoraki M.N. Schuler P.J. Wirth T. Tedford K. Fischer K.D. Hoffmann T.K. Brunner C. Differential requirement of Vav proteins for Btk-dependent and –independent signaling during B cell development. Front. Cell Dev. Biol. 2022 10 654181 10.3389/fcell.2022.654181 35281114
    [Google Scholar]
  64. Neurath M.F. Berg L.J. VAV1 as a putative therapeutic target in autoimmune and chronic inflammatory diseases. Trends Immunol. 2024 45 8 580 596 39060140
    [Google Scholar]
  65. Malhotra S. Kovats S. Zhang W. Coggeshall K.M. B cell antigen receptor endocytosis and antigen presentation to T cells require Vav and dynamin. J. Biol. Chem. 2009 284 36 24088 24097 10.1074/jbc.M109.014209 19586920
    [Google Scholar]
  66. Purvis G.S.D. Collino M. van Dam A.D. Einaudi G. Ng Y. Shanmuganathan M. OxPhos in adipose tissue macrophages regulated by BTK enhances their M2-like phenotype and confers a systemic immunometabolic benefit in obesity. Diabetes 2024 Epub ahead of print
    [Google Scholar]
  67. Purvis G.S.D. Collino M. Aranda-Tavio H. Chiazza F. O’Riordan C.E. Zeboudj L. Mohammad S. Collotta D. Verta R. Guisot N.E.S. Bunyard P. Yaqoob M.M. Greaves D.R. Thiemermann C. Inhibition of Bruton’s TK regulates macrophage NF‐κB and NLRP3 inflammasome activation in metabolic inflammation. Br. J. Pharmacol. 2020 177 19 4416 4432 10.1111/bph.15182 32608058
    [Google Scholar]
  68. Khan W.N. Regulation of B lymphocyte development and activation by Bruton’s tyrosine kinase. Immunol. Res. 2001 23 2-3 147 156 10.1385/IR:23:2‑3:147 11444380
    [Google Scholar]
  69. Su B. Dispinseri S. Iannone V. Zhang T. Wu H. Carapito R. Bahram S. Scarlatti G. Moog C. Update on Fc-mediated antibody functions against HIV-1 beyond neutralization. Front. Immunol. 2019 10 2968 10.3389/fimmu.2019.02968 31921207
    [Google Scholar]
  70. Nimmerjahn F. Ravetch J.V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 2008 8 1 34 47 10.1038/nri2206 18064051
    [Google Scholar]
  71. Aleman O.R. Blanco-Camarillo C. Naranjo-Pinto N. Mora N. Rosales C. Fc gamma receptors activate different protein kinase C isoforms in human neutrophils. J Leukoc Biol. 2025 Epub ahead of print. 10.1093/jleuko/qiaf019
    [Google Scholar]
  72. Strissel K.J. Stancheva Z. Miyoshi H. Perfield J.W. DeFuria J. Jick Z. Greenberg A.S. Obin M.S. Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007 56 12 2910 2918 10.2337/db07‑0767 17848624
    [Google Scholar]
  73. Yao J. Wu D. Qiu Y. Adipose tissue macrophage in obesity-associated metabolic diseases. Front. Immunol. 2022 13 977485 10.3389/fimmu.2022.977485 36119080
    [Google Scholar]
  74. van Beek L. Vroegrijk I.O.C.M. Katiraei S. Heemskerk M.M. van Dam A.D. Kooijman S. Rensen P.C.N. Koning F. Verbeek J.S. Willems van Dijk K. van Harmelen V. F c R γ‐chain deficiency reduces the development of diet‐induced obesity. Obesity (Silver Spring) 2015 23 12 2435 2444 10.1002/oby.21309 26523352
    [Google Scholar]
  75. Yu L. Yang Y.X. Gong Z. Wan Q. Du Y. Zhou Q. FcRn-dependent IgG accumulation in adipose tissue unmasks obesity pathophysiology. Cell Metab 2024 37 656 672 10.1016/j.cmet.2024.11.001
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010375949250519062337
Loading
/content/journals/cpb/10.2174/0113892010375949250519062337
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Research Article
Keywords: VAV1 ; Hydroxysafflor yellow A ; white adipose tissue ; BTK ; PRKCD ; anti-obesity ; immune inflammation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test