Full text loading...
Cardiovascular diseases (CVDs) are the leading cause of death globally, often complicated by thromboembolic events. Plasmin, a key enzyme in fibrinolysis, is crucial for managing these conditions. Elevated or reduced plasmin levels can indicate thrombotic risks, making it a valuable diagnostic marker. Recent biotechnological advances have developed diagnostic kits to measure plasmin activity, aiding early detection and intervention. Fungal proteases, particularly from micromycetes, are emerging as promising agents in anticoagulant therapy. This study investigates three Aspergillus species — A. caespitosus, A. jensenii and A. neotritici for their potential to produce novel biomedical components.
The fungi were cultured, and their proteolytic profiles were analyzed. Key findings include the identification of specific proteases with plasmin-like and protein C-activating activities. These enzymes were purified using isoelectric focusing and characterized through SDS-PAGE and zymography.
The study confirmed that A. jensenii, and A. neotritici produce proteases with plasmin-like activity, with A. neotritici showing a single 35 kDa non-specific protease, and A. jensenii exhibiting two proteases (33 kDa and 100 kDa) in the acidic zone and one (110 kDa) in the neutral zone, the latter exhibiting specific chymotrypsin and plasmin-like activity.
Among the studied strains, A. neotritici exhibited the fastest secretion of proteases with plasmin-like activity, making it a promising source of enzymes with potential clinical applications. In contrast, A. caespitosus and A. jensenii displayed more complex protease compositions, featuring multiple active enzymes. Notably, one of the A. jensenii proteases showed pronounced specificity toward chymotrypsin and fibrinolytic substrates, indicating its suitability for the development of targeted therapeutic agents.
These findings suggest the potential of these fungal proteases for developing novel anticoagulant therapies and diagnostic tools.
Article metrics loading...
Full text loading...
References
Data & Media loading...