Skip to content
2000
image of Proteolytic Profiles of Aspergillus caespitosus, A. jensenii and A. neotritici, and a Novel Peptidase with Plasmin-like Activity for Biomedicine and Pharmacology

Abstract

Introduction

Cardiovascular diseases (CVDs) are the leading cause of death globally, often complicated by thromboembolic events. Plasmin, a key enzyme in fibrinolysis, is crucial for managing these conditions. Elevated or reduced plasmin levels can indicate thrombotic risks, making it a valuable diagnostic marker. Recent biotechnological advances have developed diagnostic kits to measure plasmin activity, aiding early detection and intervention. Fungal proteases, particularly from micromycetes, are emerging as promising agents in anticoagulant therapy. This study investigates three species — , for their potential to produce novel biomedical components.

Methods

The fungi were cultured, and their proteolytic profiles were analyzed. Key findings include the identification of specific proteases with plasmin-like and protein C-activating activities. These enzymes were purified using isoelectric focusing and characterized through SDS-PAGE and zymography.

Results

The study confirmed that and produce proteases with plasmin-like activity, with showing a single 35 kDa non-specific protease, and exhibiting two proteases (33 kDa and 100 kDa) in the acidic zone and one (110 kDa) in the neutral zone, the latter exhibiting specific chymotrypsin and plasmin-like activity.

Discussion

Among the studied strains, exhibited the fastest secretion of proteases with plasmin-like activity, making it a promising source of enzymes with potential clinical applications. In contrast, and displayed more complex protease compositions, featuring multiple active enzymes. Notably, one of the proteases showed pronounced specificity toward chymotrypsin and fibrinolytic substrates, indicating its suitability for the development of targeted therapeutic agents.

Conclusion

These findings suggest the potential of these fungal proteases for developing novel anticoagulant therapies and diagnostic tools.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010367042250728212046
2025-08-04
2025-10-29
Loading full text...

Full text loading...

References

  1. Al-Qazzaz N. Ali S. Ahmad S.A. Islam S. Mohamad K. Cognitive impairment and memory dysfunction after a stroke diagnosis: A post-stroke memory assessment. Neuropsychiatr. Dis. Treat. 2014 10 1677 1691 10.2147/NDT.S67184 25228808
    [Google Scholar]
  2. Chapin J.C. Hajjar K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015 29 1 17 24 10.1016/j.blre.2014.09.003 25294122
    [Google Scholar]
  3. Cobos-Siles M. Cubero-Morais P. Arroyo-Jiménez I. Rey-Hernández M. Hernández-Gómez L. Vargas-Parra D.J. González-Fernández M. Cazorla-González M. Gabella-Martín M. Ruíz-Albi T. Berezo-García J.A. García-Cruces-Méndez J.F. Miramontes-González J.P. Corral-Gudino L. Cause-specific death in hospitalized individuals infected with SARS-CoV-2: More than just acute respiratory failure or thromboembolic events. Intern. Emerg. Med. 2020 15 8 1533 1544 10.1007/s11739‑020‑02485‑y 32910363
    [Google Scholar]
  4. Sharathkumar A. Wendt L. Ortman C. Srinivasan R. Chute C.G. Chrischilles E. Takemoto C.M. Wilcox A.B. Lee A.M. Graves A. Anzalone A.J. Manna A. Saha A. Olex A. Zhou A. Williams A.E. Southerland A. Girvin A.T. Walden A. Sharathkumar A.A. Amor B. Bates B. Hendricks B. Patel B. Alexander C. Bramante C. Ward-Caviness C. Madlock-Brown C. Suver C. Chute C. Dillon C. Wu C. Schmitt C. Takemoto C. Housman D. Gabriel D. Eichmann D.A. Mazzotti D. Brown D. Boudreau E. Hill E. Zampino E. Marti E.C. Pfaff E.R. French E. Koraishy F.M. Mariona F. Prior F. Sokos G. Martin G. Lehmann H. Spratt H. Mehta H. Liu H. Sidky H. Hayanga J.W.A. Pincavitch J. Clark J. Harper J.R. Islam J. Ge J. Gagnier J. Saltz J.H. Saltz J. Loomba J. Buse J. Mathew J. Rutter J.L. McMurry J.A. Guinney J. Starren J. Crowley K. Bradwell K.R. Walters K.M. Wilkins K. Gersing K.R. Cato K.D. Murray K. Kostka K. Northington L. Pyles L.A. Misquitta L. Cottrell L. Portilla L. Deacy M. Bissell M.M. Clark M. Emmett M. Saltz M.M. Palchuk M.B. Haendel M.A. Adams M. Temple-O’Connor M. Kurilla M.G. Morris M. Qureshi N. Safdar N. Garbarini N. Sharafeldin N. Sadan O. Francis P.A. Burgoon P.W. Robinson P. Payne P.R.O. Fuentes R. Jawa R. Erwin-Cohen R. Patel R. Moffitt R.A. Zhu R.L. Kamaleswaran R. Hurley R. Miller R.T. Pyarajan S. Michael S.G. Bozzette S. Mallipattu S. Vedula S. Chapman S. O’Neil S.T. Setoguchi S. Hong S.S. Johnson S. Bennett T.D. Callahan T. Topaloglu U. Sheikh U. Gordon V. Subbian V. Kibbe W.A. Hernandez W. Beasley W. Cooper W. Hillegass W. Zhang X.T. COVID-19 outcomes in persons with hemophilia: Results from a US-based national COVID-19 surveillance registry. J. Thromb. Haemost. 2024 22 1 61 75 10.1016/j.jtha.2023.04.040 37182697
    [Google Scholar]
  5. Fan B.E. Mucheli S.S. Tang Y.L. Yong E. Dalan R. Cheung C. Young B.E. Lye D.C.B. Wang L. Tan C.W. Lim K.H.T. Sum C.L.L. Gallardo C.A. Christopher D. Leung B.P. Lim X.R. Wong S.W. Chia Y.W. Chong V.C.L. Post COVID-19 large vessel vasculopathy in a previously healthy young male. Semin. Thromb. Hemost. 2024 50 4 660 663 10.1055/s‑0043‑1774793 37748516
    [Google Scholar]
  6. Risman R.A. Kirby N.C. Bannish B.E. Hudson N.E. Tutwiler V. Fibrinolysis: An illustrated review. Res. Pract. Thromb. Haemost. 2023 7 2 100081 10.1016/j.rpth.2023.100081 36942151
    [Google Scholar]
  7. Choi J.H. Kim S. Biochemical properties and antithrombotic effect of a Serine protease isolated from the medicinal mushroom Pycnoporus coccineus (Agaricomycetes). Int. J. Med. Mushrooms 2024 26 6 53 68 10.1615/IntJMedMushrooms.2024053631 38801087
    [Google Scholar]
  8. Saes J.L. Schols S.E.M. Molitor K.F. van Geffen M. Verbeek-Knobbe K. Gupta S. Hardesty B.M. Shapiro A.D. van Heerde W.L. Thrombin and plasmin generation in patients with plasminogen or plasminogen activator inhibitor type 1 deficiency. Haemophilia 2019 25 6 1073 1082 10.1111/hae.13842 31469483
    [Google Scholar]
  9. Petraglia T. Latronico T. Liuzzi G.M. Fanigliulo A. Crescenzi A. Rossano R. Edible mushrooms as source of fibrin(ogen)olytic enzymes: Comparison between four cultivated species. Molecules 2022 27 23 8145 10.3390/molecules27238145 36500238
    [Google Scholar]
  10. Li G. Liu X. Cong S. Deng Y. Zheng X. A novel serine protease with anticoagulant and fibrinolytic activities from the fruiting bodies of mushroom Agrocybe aegerita. Int. J. Biol. Macromol. 2021 168 631 639 10.1016/j.ijbiomac.2020.11.118 33227332
    [Google Scholar]
  11. Vago J.P. Zaidan I. Perucci L.O. Brito L.F. Teixeira L.C.R. Silva C.M.S. Miranda T.C. Melo E.M. Bruno A.S. Queiroz-Junior C.M. Sugimoto M.A. Tavares L.P. Grossi L.C. Borges I.N. Schneider A.H. Baik N. Schneider A.H. Talvani A. Ferreira R.G. Alves-Filho J.C. Nobre V. Teixeira M.M. Parmer R.J. Miles L.A. Sousa L.P. Plasmin and plasminogen prevent sepsis severity by reducing neutrophil extracellular traps and systemic inflammation. JCI Insight 2023 8 8 e166044 10.1172/jci.insight.166044 36917195
    [Google Scholar]
  12. Cederholm-Williams S.A. Concentration of plasminogen and antiplasmin in plasma and serum. J. Clin. Pathol. 1981 34 9 979 981 10.1136/jcp.34.9.979 7276224
    [Google Scholar]
  13. Pendurthi U.R. Tran T.T. Post M. Rao L.V.M. Proteolysis of CCN1 by plasmin: Functional implications. Cancer Res. 2005 65 21 9705 9711 10.1158/0008‑5472.CAN‑05‑0982 16266990
    [Google Scholar]
  14. De Pablo-Moreno J.A. Miguel-Batuecas A. de Sancha M. Liras A. The magic of proteases: From a procoagulant and anticoagulant factor V to an equitable treatment of its inherited deficiency. Int. J. Mol. Sci. 2023 24 7 6243 10.3390/ijms24076243 37047215
    [Google Scholar]
  15. Choi J.H. Kim S. Fibrinolytic and thrombolytic effects of an enzyme purified from the fruiting bodies of Boletus pseudocalopus (Agaricomycetes) from Korea. Int. J. Med. Mushrooms 2021 23 4 47 57 10.1615/IntJMedMushrooms.2021037957 33822507
    [Google Scholar]
  16. Katrolia P. Liu X. Zhao Y. Kopparapu N.K. Zheng X. Gene cloning, expression and homology modeling of first fibrinolytic enzyme from mushroom (Cordyceps militaris). Int. J. Biol. Macromol. 2020 146 897 906 10.1016/j.ijbiomac.2019.09.212 31726136
    [Google Scholar]
  17. Badalyan S.M. Barkhudaryan A. Rapior S. The cardioprotective properties of Agaricomycetes mushrooms growing in the territory of Armenia. Int. J. Med. Mushrooms 2021 23 5 21 31 10.1615/IntJMedMushrooms.2021038280 34347992
    [Google Scholar]
  18. Hahn B.S. Cho S.Y. Ahn M.Y. Kim Y.S. Purification and characterization of a plasmin-like protease from Tenodera sinensis (Chinese mantis). Insect Biochem. Mol. Biol. 2001 31 6-7 573 581 10.1016/S0965‑1748(00)00162‑4 11267896
    [Google Scholar]
  19. Landau N.S. Kurakov A.V. Gulikova O.M. Proteolytic enzymes of mycelial fungi with plasmin-like and plasminogen activator activity. Microbiology 1998 67 2 215 220 10.31857/S0042132421050069 9662698
    [Google Scholar]
  20. Kotb E. Helal G.E.D.A. Edries F.M. Screening for fibrinolytic filamentous fungi and enzymatic properties of the most potent producer, Aspergillus brasiliensis AUMC 9735. Biologia 2015 70 12 1565 1574 10.1515/biolog‑2015‑0192
    [Google Scholar]
  21. Liu X. Kopparapu N. Zheng H. Katrolia P. Deng Y. Zheng X. Purification and characterization of a fibrinolytic enzyme from the food-grade fungus, Neurospora sitophila. J. Mol. Catal., B Enzym. 2016 134 98 104 10.1016/j.molcatb.2016.10.006
    [Google Scholar]
  22. Abu-Tahon M.A. Abdel-Majeed A.M. Ghareib M. Housseiny M.M. Abdallah W.E. Thrombolytic and anticoagulant efficiencies of purified fibrinolytic enzyme produced from Cochliobolus hawaiiensis under solid‐state fermentation. Biotechnol. Appl. Biochem. 2023 70 6 1954 1971 10.1002/bab.2502 37463837
    [Google Scholar]
  23. Alipkina S. Kornienko E. Nalobin D. Osmolovskiy A. Acute toxicity, immunotoxicity and allergenicity of protease complex obtained from micromycete Sarocladium strictum. Pharmaceutics 2021 13 10 1660 10.3390/pharmaceutics13101660 34683953
    [Google Scholar]
  24. Diwan D. Usmani Z. Sharma M. Nelson J.W. Thakur V.K. Christie G. Molina G. Gupta V.K. Thrombolytic enzymes of microbial origin: A review. Int. J. Mol. Sci. 2021 22 19 10468 10.3390/ijms221910468 34638809
    [Google Scholar]
  25. Rengaswamy D. Abdul Rahim P. Fibrinolytic enzyme - An overview. Curr. Pharm. Biotechnol. 2022 23 11 1336 1345 10.2174/1389201023666220104143113 34983344
    [Google Scholar]
  26. Kruger N.J. The Bradford Method For Protein Quantitation. In: The Protein Protocols Handbook. Walker J.M. Totowa, NJ Humana Press 2009 17 24 10.1007/978‑1‑59745‑198‑7_4
    [Google Scholar]
  27. Susca A. Villani A. Moretti A. Stea G. Logrieco A. Identification of toxigenic fungal species associated with maize ear rot: Calmodulin as single informative gene. Int. J. Food Microbiol. 2020 319 108491 108491 10.1016/j.ijfoodmicro.2019.108491 31935649
    [Google Scholar]
  28. Bai L. He L. Yu P. Luo J. Yang M. Molecular characterization of mycobiota and aspergillus species from eupolyphaga sinensis walker based on high-throughput sequencing of ITS1 and CaM. J. Food Qual. 2020 1 7
    [Google Scholar]
  29. Hong S.B. Cho H.S. Shin H.D. Frisvad J.C. Samson R.A. Novel Neosartorya species isolated from soil in Korea. Int. J. Syst. Evol. Microbiol. 2006 56 2 477 486 10.1099/ijs.0.63980‑0 16449461
    [Google Scholar]
  30. Zhou Y.B. Rezaei-Matehkolaei A. Meijer M. Kraak B. Gerrits van den Ende B. Hagen F. Afzalzadeh S. Kiasat N. Takesh A. Hoseinnejad A. Houbraken J. Aspergillus hubkae, a novel species isolated from a patient with probable invasive pulmonary Aspergillosis. Mycopathologia 2024 189 3 44 10.1007/s11046‑024‑00848‑z 38734862
    [Google Scholar]
  31. Osmolovskiy A.A. Zvonareva E.S. Kreyer V.G. Baranova N.A. Egorov N.S. Secretion of proteinases with fibrinolytic activity by micromycetes of the Genus Aspergillus. Moscow Univ. Biol. Sci. Bull. 2018 73 1 39 42 10.3103/S0096392518010066
    [Google Scholar]
  32. Osmolovskiy A.A. Kreyer V.G. Hemostatically active proteinase produced by Aspergillus ochraceus: Key specific properties and effect on target proteins. Int. J. Mol. Sci. 2023 24 18 13870 10.3390/ijms241813870 37762173
    [Google Scholar]
  33. Hu Y. Yu D. Wang Z. Hou J. Tyagi R. Liang Y. Hu Y. Purification and characterization of a novel, highly potent fibrinolytic enzyme from Bacillus subtilis DC27 screened from Douchi, a traditional Chinese fermented soybean food. Sci. Rep. 2019 9 1 9235 10.1038/s41598‑019‑45686‑y 31239529
    [Google Scholar]
  34. Glässnerová K. Sklenář F. Jurjević Ž. Houbraken J. Yaguchi T. Visagie C.M. Gené J. Siqueira J.P.Z. Kubátová A. Kolařík M. Hubka V. A monograph of Aspergillus section Candidi. Stud. Mycol. 2022 102 1 1 51 10.3114/sim.2022.102.01 36760463
    [Google Scholar]
  35. Boer C.G. Peralta R.M. Production of extracellular protease by Aspergillus tamarii. J. Basic Microbiol. 2000 40 2 75 81 10.1002/(SICI)1521‑4028(200005)40:2<75:AID‑JOBM75>3.0.CO;2‑X
    [Google Scholar]
  36. Hajji M. Kanoun S. Nasri M. Gharsallah N. Purification and characterization of an alkaline serine-protease produced by a new isolated Aspergillus clavatus ES1. Process Biochem. 2007 42 5 791 797 10.1016/j.procbio.2007.01.011
    [Google Scholar]
  37. Tremacoldi C.R. Monti R. Selistre-De-Araújo H.S. Carmona E.C. Purification and properties of an alkaline protease of Aspergillus clavatus. World J. Microbiol. Biotechnol. 2007 23 2 295 299 10.1007/s11274‑006‑9211‑8
    [Google Scholar]
  38. Ploplis V.A. Castellino F.J. Structure and function of the plasminogen/plasmin system. Thromb. Haemost. 2005 93 4 647 654 10.1160/TH04‑12‑0842 15841308
    [Google Scholar]
  39. MEROPS - The Peptidase Database 2024 Available from: https://www.ebi.ac.uk/merops/cgi-bin/famsum?family=S1
    [Google Scholar]
  40. Ajjan R.A. Gamlen T. Standeven K.F. Mughal S. Hess K. Smith K.A. Dunn E.J. Anwar M.M. Rabbani N. Thornalley P.J. Philippou H. Grant P.J. Diabetes is associated with posttranslational modifications in plasminogen resulting in reduced plasmin generation and enzyme-specific activity. Blood 2013 122 1 134 142 10.1182/blood‑2013‑04‑494641 23699598
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010367042250728212046
Loading
/content/journals/cpb/10.2174/0113892010367042250728212046
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: proteases ; plasmin ; Thrombolytics ; biomedicine ; fungal enzymes ; proteolytic enzyme ; Aspergillus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test