Skip to content
2000
image of A Review on the Detection Methods of the Resistant Gene in Acinetobacter baumannii

Abstract

The rising prevalence of Multidrug-Resistant (MDR) , particularly in hospital environments, has become a global health concern due to its capacity to cause severe infections and its resistance to conventional antibiotics. This article reviews the detection methods for the resistant genes, focusing on carbapenem-resistant (CRAB), where various phenotypic, molecular, and advanced diagnostic technologies, with particular attention to Fluorescence Resonance Energy Transfer (FRET) assays based on Quantum Dots (QDs) and Graphene Oxide (GO), are reviewed. These nanoparticle-based FRET assays show promising potential for rapid, sensitive, and multiplex detection of antibiotic resistance genes, offering significant improvements over traditional methods. In particular, integrating QDs and GO as donor-acceptor pairs in FRET allows real-time detection and high specificity of a key determinant of carbapenem resistance in . Adopting these advanced diagnostic tools could revolutionise infection control and management, providing timely and accurate diagnostics that are crucial in clinical settings.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010407651250929043955
2025-10-17
2025-12-17
Loading full text...

Full text loading...

References

  1. Spellberg B. Blaser M. Guidos R.J. Boucher H.W. Bradley J.S. Eisenstein B.I. Combating antimicrobial resistance: policy recommendations to save lives. Clin. Infect. Dis. 2011 52 Suppl. 5 S397 S428 10.1093/cid/cir153 21474585
    [Google Scholar]
  2. Mancuso G. Midiri A. Gerace E. Biondo C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021 10 10 1310 10.3390/pathogens10101310 34684258
    [Google Scholar]
  3. Wang M. Wei H. Zhao Y. Shang L. Di L. Lyu C. Liu J. Analysis of multidrug-resistant bacteria in 3223 patients with hospital-acquired infections (HAI) from a tertiary general hospital in China. Bosn. J. Basic Med. Sci. 2019 19 1 86 93 10.17305/bjbms.2018.3826 30579325
    [Google Scholar]
  4. Jassim Y.A. A review on antibiotic resistance in microorganisms. Biomed. Chem. Sci. 2022 3 1 160 163 10.48112/bcs.v1i3.178
    [Google Scholar]
  5. Harris A.D. Johnson J.K. Pineles L. O’Hara L.M. Bonomo R.A. Thom K.A. Patient-to-patient transmission of Acinetobacter baumannii gastrointestinal colonization in the intensive care unit. Antimicrob. Agents Chemother. 2019 63 8 00392 19 10.1128/AAC.00392‑19 31085518
    [Google Scholar]
  6. Chauhan N.S. Punia A. Antibiotic pollution and antibiotic-resistant bacteria in water bodies. Degradation of Antibiotics and Antibiotic-Resistant Bacteria from Various Sources. Elsevier 2023 179 201 10.1016/B978‑0‑323‑99866‑6.00014‑3
    [Google Scholar]
  7. Stanis Kennedy D.S. Investigating solutions to combat antimicrobial resistant microbes. J. Immuno Allerg 2022 3 1 1 3 10.37191/Mapsci‑2582‑6549‑3(1)‑027
    [Google Scholar]
  8. Pandey R. Mishra S.K. Shrestha A. Characterisation of ESKAPE pathogens with special reference to multidrug resistance and biofilm production in a Nepalese Hospital. Infect. Drug Resist. 2021 14 2201 2212 10.2147/IDR.S306688 34163185
    [Google Scholar]
  9. Reale M. Strazzulla A. Quirino A. Rizzo C. Marano V. Postorino M.C. Mazzitelli M. Greco G. Pisani V. Costa C. Cesana B.M. Liberto M.C. Torti C. Focà A. Patterns of multi-drug resistant bacteria at first culture from patients admitted to a third level University hospital in Calabria from 2011 to 2014: implications for empirical therapy and infection control. Infez. Med. 2017 25 2 98 107 28603227
    [Google Scholar]
  10. Howard A. O’Donoghue M. Feeney A. Sleator R.D. Acinetobacter baumannii. Virulence 2012 3 3 243 250 10.4161/viru.19700 22546906
    [Google Scholar]
  11. da Fonseca A.S. Mencalha A.L. de Paoli F. Antimicrobial photodynamic therapy against Acinetobacter baumannii. Photodiagn. Photodyn. Ther. 2021 35 102430 10.1016/j.pdpdt.2021.102430 34233224
    [Google Scholar]
  12. Wisplinghoff H. Edmond M.B. Pfaller M.A. Jones R.N. Wenzel R.P. Seifert H. Nosocomial bloodstream infections caused by Acinetobacter species in United States hospitals: Clinical features, molecular epidemiology, and antimicrobial susceptibility. Clin. Infect. Dis. 2000 31 3 690 697 10.1086/314040 11017817
    [Google Scholar]
  13. Wang J. Zhang J. Wu Z. Liu L. Ma Z. Lai C. Luo Y. Clinical characteristics and prognosis analysis of Acinetobacter baumannii bloodstream infection based on propensity matching. Infect. Drug Resist. 2022 15 6963 6974 10.2147/IDR.S387898 36474906
    [Google Scholar]
  14. Tuon F.F. Penteado-Filho S.R. Amarante D. Andrade M.A. Borba L.A. Mortality rate in patients with nosocomial Acinetobacter meningitis from a Brazilian hospital. Braz. J. Infect. Dis. 2010 14 5 437 440 10.1016/S1413‑8670(10)70090‑8 21221470
    [Google Scholar]
  15. Alrahmany D. Omar A.F. Alreesi A. Harb G. Ghazi I.M. Acinetobacter baumannii infection-related mortality in hospitalized patients: Risk factors and potential targets for clinical and antimicrobial stewardship interventions. Antibiotics 2022 11 8 1086 10.3390/antibiotics11081086 36009955
    [Google Scholar]
  16. Itani R. Khojah H.M.J. Karout S. Rahme D. Hammoud L. Awad R. Abu-Farha R. Mukattash T.L. Raychouni H. El-Lakany A. Acinetobacter baumannii: Assessing susceptibility patterns, management practices, and mortality predictors in a tertiary teaching hospital in Lebanon. Antimicrob. Resist. Infect. Control 2023 12 1 136 10.1186/s13756‑023‑01343‑8 38031181
    [Google Scholar]
  17. Kyriakidis I. Vasileiou E. Pana Z.D. Tragiannidis A. Acinetobacter baumannii antibiotic resistance mechanisms. Pathogens 2021 10 3 373 10.3390/pathogens10030373 33808905
    [Google Scholar]
  18. Abdi S.N. Ghotaslou R. Ganbarov K. Mobed A. Tanomand A. Yousefi M. Asgharzadeh M. Kafil H.S. Acinetobacter baumannii efflux pumps and antibiotic resistance. Infect. Drug Resist. 2020 13 423 434 10.2147/IDR.S228089 32104014
    [Google Scholar]
  19. Lee C.R. Lee J.H. Park M. Park K.S. Bae I.K. Kim Y.B. Cha C.J. Jeong B.C. Lee S.H. Biology of Acinetobacter baumannii: Pathogenesis, Antibiotic resistance mechanisms, and prospective treatment options. Front. Cell. Infect. Microbiol. 2017 7 55 10.3389/fcimb.2017.00055 28348979
    [Google Scholar]
  20. Marino A. Augello E. Stracquadanio S. Bellanca C.M. Cosentino F. Spampinato S. Cantarella G. Bernardini R. Stefani S. Cacopardo B. Nunnari G. Unveiling the secrets of Acinetobacter baumannii: Resistance, current treatments, and future innovations. Int. J. Mol. Sci. 2024 25 13 6814 10.3390/ijms25136814 38999924
    [Google Scholar]
  21. Lee Y.L. Ko W.C. Hsueh P.R. Geographic patterns of Acinetobacter baumannii and carbapenem resistance in the Asia-Pacific Region: Results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) program, 2012-2019. Int. J. Infect. Dis. 2023 127 48 55 10.1016/j.ijid.2022.12.010 36516915
    [Google Scholar]
  22. Mohd Rani F. A Rahman NI. IsmailS. AlattraqchiAG. ClearyDW. ClarkeSC. YeoCC. Acinetobacter spp. infections in Malaysia: A review of antimicrobial resistance trends, mechanisms and epidemiology. Front. Microbiol. 2017 8 2479 10.3389/fmicb.2017.02479 29312188
    [Google Scholar]
  23. Hsu L.Y. Apisarnthanarak A. Khan E. Suwantarat N. Ghafur A. Tambyah P.A. Carbapenem-resistant Acinetobacter baumannii and Enterobacteriaceae in South and Southeast Asia. Clin. Microbiol. Rev. 2017 30 1 1 22 10.1128/CMR.00042‑16 27795305
    [Google Scholar]
  24. Nor F.M. Shahari A.S. Palaniasamy N.K. Rustam F.R.M. M-ZainZ. LeeB.P.K. SohT.S.T. Multidrug resistant (MDR) Acinetobacter baumannii: rate of occurrence from a tertiary hospital, Malaysia. Int. J. Infect. Dis. 2019 79 46 47 10.1016/j.ijid.2018.11.126
    [Google Scholar]
  25. Mohd Rani F. A Rahman N.I. IsmailS. AbdullahF.H. OthmanN. AlattraqchiA.G. ClearyD.W. ClarkeS.C. YeoC.C. Prevalence and antimicrobial susceptibilities of Acinetobacter baumannii and non-baumannii Acinetobacters from Terengganu, Malaysia and their carriage of carbapenemase genes. J. Med. Microbiol. 2018 67 11 1538 1543 10.1099/jmm.0.000844 30251951
    [Google Scholar]
  26. Li J. Li Y. Cao X. Zheng J. Zhang Y. Xie H. Li C. Liu C. Shen H. Genome-wide identification and oxacillinase OXA distribution characteristics of Acinetobacter spp. based on a global database. Front. Microbiol. 2023 14 1174200 10.3389/fmicb.2023.1174200 37323896
    [Google Scholar]
  27. Shi X. Wang H. Wang X. Jing H. Duan R. Qin S. Lv D. Fan Y. Huang Z. Stirling K. Zhang L. Wang J. Molecular characterization and antibiotic resistance of Acinetobacter baumannii in cerebrospinal fluid and blood. PLoS One 2021 16 2 e0247418 10.1371/journal.pone.0247418 33617547
    [Google Scholar]
  28. Gautam D. Dolma K.G. Khandelwal B. Goyal R.K. Mitsuwan W. Pereira M.L.G. Klangbud W.K. Gupta M. Wilairatana P. Siyadatpanah A. Wiart C. Nissapatorn V. Acinetobacter baumannii in suspected bacterial infections: Association between multidrug resistance, virulence genes, & biofilm production. Indian J. Med. Res. 2023 158 4 439 446 10.4103/ijmr.ijmr_3470_21 38006347
    [Google Scholar]
  29. Mohd Rani F. Lean S.S. A Rahman N.I. IsmailS. AlattraqchiA.G. AmonovM. ClearyD.W. ClarkeS.C. YeoC.C. Comparative genomic analysis of clinical Acinetobacter nosocomialis isolates from Terengganu, Malaysia led to the discovery of a novel tetracycline-resistant plasmid. J. Glob. Antimicrob. Resist. 2022 31 104 109 10.1016/j.jgar.2022.08.019 36049733
    [Google Scholar]
  30. Biglari S. Alfizah H. Ramliza R. Rahman M.M. Molecular characterization of carbapenemase and cephalosporinase genes among clinical isolates of Acinetobacter baumannii in a tertiary medical centre in Malaysia. J. Med. Microbiol. 2015 64 1 53 58 10.1099/jmm.0.082263‑0 25381148
    [Google Scholar]
  31. Cheng X. Yang J. Wang M. Wu P. Du Q. He J. Tang Y. Visual and rapid detection of Acinetobacter baumannii by a multiple cross displacement amplification combined with nanoparticles-based biosensor assay. AMB Express 2019 9 1 30 10.1186/s13568‑019‑0754‑0 30806854
    [Google Scholar]
  32. Bora A. Sanjana R. Jha B.K. Narayan Mahaseth S. Pokharel K. Incidence of metallo-beta-lactamase producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in central Nepal. BMC Res. Notes 2014 7 1 557 10.1186/1756‑0500‑7‑557 25146590
    [Google Scholar]
  33. Oviaño M. Sparbier K. Barba M.J. Kostrzewa M. Bou G. Universal protocol for the rapid automated detection of carbapenem-resistant Gram-negative bacilli directly from blood cultures by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF/MS). Int. J. Antimicrob. Agents 2016 48 6 655 660 10.1016/j.ijantimicag.2016.08.024 27836381
    [Google Scholar]
  34. Marí-Almirall M. Cosgaya C. Higgins P.G. Van Assche A. Telli M. Huys G. Lievens B. Seifert H. Dijkshoorn L. Roca I. Vila J. MALDI-TOF/MS identification of species from the Acinetobacter baumannii (Ab) group revisited: Inclusion of the novel A. seifertii and A. dijkshoorniae species. Clin. Microbiol. Infect. 2017 23 3 210.e1 210.e9 10.1016/j.cmi.2016.11.020 27919649
    [Google Scholar]
  35. Khuntayaporn P. Thirapanmethee K. Kanathum P. Chitsombat K. Chomnawang M.T. Comparative study of phenotypic-based detection assays for carbapenemase-producing Acinetobacter baumannii with a proposed algorithm in resource-limited settings. PLoS One 2021 16 11 e0259686 10.1371/journal.pone.0259686 34735533
    [Google Scholar]
  36. Lavigne J.P. Espinal P. Dunyach-Remy C. Messad N. Pantel A. Sotto A. Mass spectrometry: A revolution in clinical microbiology? Clinic Chem. Laborator Med. (CCLM) 2013 51 2 257 270 10.1515/cclm‑2012‑0291 23072853
    [Google Scholar]
  37. Rolain J.M. Mallet M.N. Fournier P.E. Raoult D. Real-time PCR for universal antibiotic susceptibility testing. J. Antimicrob. Chemother. 2004 54 2 538 541 10.1093/jac/dkh324 15231761
    [Google Scholar]
  38. Abhari S.S. Azizi O. Modiri L. Aslani M.M. Assmar M. Fereshteh S. Badmasti F. Two new rapid PCR-based methods for identification of Acinetobacter baumannii isolated from clinical samples. Mol. Cell. Probes 2021 58 101732 10.1016/j.mcp.2021.101732 33878387
    [Google Scholar]
  39. McConnell M.J. Pérez-Ordóñez A. Pérez-Romero P. Valencia R. Lepe J.A. Vázquez-Barba I. Pachón J. Quantitative real-time PCR for detection of Acinetobacter baumannii colonization in the hospital environment. J. Clin. Microbiol. 2012 50 4 1412 1414 10.1128/JCM.06566‑11 22301021
    [Google Scholar]
  40. Vijayakumar S. Biswas I. Veeraraghavan B. Accurate identification of clinically important Acinetobacter spp.: An update. Future Sci. OA 2019 5 6 FSO395 10.2144/fsoa‑2018‑0127 31285840
    [Google Scholar]
  41. Dey P. Polymerase chain reaction: Principle, technique and applications in pathology. Basic and Advanced Laboratory Techniques in Histopathology and Cytology. Singapore Springer Singapore 2018 201 211 10.1007/978‑981‑10‑8252‑8_20
    [Google Scholar]
  42. Notomi T. Okayama H. Masubuchi H. Yonekawa T. Watanabe K. Amino N. Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000 28 12 63e 63 10.1093/nar/28.12.e63 10871386
    [Google Scholar]
  43. Khirala S.K. Elthoqapy A.A. Awad R.A. Badr G.A. Direct detection of Acinetobacter baumannii by loop-mediated isothermal amplification in patients with respiratory tract infection. Sci. J. Al-Azhar Med. Fac. Girls 2020 4 3 345 351 10.4103/sjamf.sjamf_28_20
    [Google Scholar]
  44. Soo P.C. Tseng C.C. Ling S.R. Liou M.L. Liu C.C. Chao H.J. Lin T.Y. Chang K.C. Rapid and sensitive detection of Acinetobacter baumannii using loop-mediated isothermal amplification. J. Microbiol. Methods 2013 92 2 197 200 10.1016/j.mimet.2012.11.020 23220188
    [Google Scholar]
  45. Zhang X. Zhao Y. Zeng Y. Zhang C. Evolution of the probe-based loop-mediated isothermal amplification (LAMP) assays in pathogen detection. Diagnostics 2023 13 9 1530 10.3390/diagnostics13091530 37174922
    [Google Scholar]
  46. Bahavarnia F. Pashazadeh-Panahi P. Hasanzadeh M. Razmi N. DNA based biosensing of Acinetobacter baumannii using nanoparticles aggregation method. Heliyon 2020 6 7 e04474 10.1016/j.heliyon.2020.e04474 32695920
    [Google Scholar]
  47. Hu S. Niu L. Zhao F. Yan L. Nong J. Wang C. Gao N. Zhu X. Wu L. Bo T. Wang H. Gu J. Identification of Acinetobacter baumannii and its carbapenem-resistant gene blaOXA-23-like by multiple cross displacement amplification combined with lateral flow biosensor. Sci. Rep. 2019 9 1 17888 10.1038/s41598‑019‑54465‑8 31784652
    [Google Scholar]
  48. Guo J. Chan E.W.C. Chen S. Zeng Z. Development of a Novel quantum dots and graphene oxide based FRET assay for rapid detection of invA Gene of Salmonella. Front. Microbiol. 2017 8 8 10.3389/fmicb.2017.00008 28144237
    [Google Scholar]
  49. Shi J. Chan C. Pang Y. Ye W. Tian F. Lyu J. Zhang Y. Yang M. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens. Bioelectron. 2015 67 595 600 10.1016/j.bios.2014.09.059 25288044
    [Google Scholar]
  50. Alarcón-Iniesta H. de Arana G. López-Valls M. Pardo D. Escalona-Noguero C. Rodríguez C. Castellanos M. Cobelo S. Martínez-Ramírez I. Camarero J. Heras S. de Vicente J. Valera A. Smith W. Bernardo-Gavito R. Cantón R. Galán J.C. Granados D. Miranda R. Guerrero H. Sot B. CRISPR-associated plasmonic colorimeter method (Ca-PCM): A real-time RGB detection system for gold nanoparticles-based nucleic acid biosensors. Anal. Chim. Acta 2025 1338 343601 10.1016/j.aca.2024.343601 39832868
    [Google Scholar]
  51. Bhatt P. Chhillar M. Kukkar D. Yadav A.K. Kukkar M. Kim K.H. Glutathione capped gold nanoparticles-based fluorescent biosensor for dual detection of albumin and creatinine. Microchem. J. 2025 208 112457 10.1016/j.microc.2024.112457
    [Google Scholar]
  52. Kalyani T. Dhoble S.J. Domańska M.M. Quantum Dots: Emerging Materials for Versatile Applications. Elsevier 2023 581 590
    [Google Scholar]
  53. Wehrenberg B.L. Wang C. Guyot-Sionnest P. Interband and intraband optical studies of pbse colloidal quantum dots. J. Phys. Chem. B 2002 106 41 10634 10640 10.1021/jp021187e
    [Google Scholar]
  54. Rizvi S.B. Ghaderi S. Keshtgar M. Seifalian A.M. Semiconductor quantum dots as fluorescent probes for in vitro and in vivo bio-molecular and cellular imaging. Nano Rev. 2010 1 1 5161 10.3402/nano.v1i0.5161 22110865
    [Google Scholar]
  55. Wagner A.M. Knipe J.M. Orive G. Peppas N.A. Quantum dots in biomedical applications. Acta Biomater. 2019 94 44 63 10.1016/j.actbio.2019.05.022 31082570
    [Google Scholar]
  56. Jamieson T. Bakhshi R. Petrova D. Pocock R. Imani M. Seifalian A.M. Biological applications of quantum dots. Biomaterials 2007 28 31 4717 4732 10.1016/j.biomaterials.2007.07.014 17686516
    [Google Scholar]
  57. Dong H. Gao W. Yan F. Ji H. Ju H. Fluorescence resonance energy transfer between quantum dots and graphene oxide for sensing biomolecules. Anal. Chem. 2010 82 13 5511 5517 10.1021/ac100852z 20524633
    [Google Scholar]
  58. Cui J. Zhou M. Li Y. Liang Z. Li Y. Yu L. Liu Y. Liang Y. Chen L. Yang C. A new optical fiber probe-based quantum dots immunofluorescence biosensors in the detection of Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2021 11 665241 10.3389/fcimb.2021.665241 34136417
    [Google Scholar]
  59. Safari M. Recent advances in quantum dots-based biosensors. Quantum Dots - Recent Advances:ew Perspectives and Contemporary Applications. IntechOpen 2023 10.5772/intechopen.108205
    [Google Scholar]
  60. Ding R. Chen Y. Wang Q. Wu Z. Zhang X. Li B. Lin L. Recent advances in quantum dots-based biosensors for antibiotics detection. J. Pharm. Anal. 2022 12 3 355 364 10.1016/j.jpha.2021.08.002 35811614
    [Google Scholar]
  61. Ayed Z. Malhotra S. Dobhal G. Goreham R.V. Aptamer conjugated indium phosphide quantum dots with a zinc sulphide shell as photoluminescent labels for Acinetobacter baumannii. Nanomaterials 2021 11 12 3317 10.3390/nano11123317 34947666
    [Google Scholar]
  62. Tadyszak K. Wychowaniec J.K. Litowczenko J. Biomedical applications of graphene-based structures. Nanomaterials 2018 8 11 944 10.3390/nano8110944 30453490
    [Google Scholar]
  63. Nováček M. Jankovský O. Luxa J. Sedmidubský D. Pumera M. Fila V. Lhotka M. Klímová K. Matějková S. Sofer Z. Tuning of graphene oxide composition by multiple oxidations for carbon dioxide storage and capture of toxic metals. J. Mater. Chem. A Mater. Energy Sustain. 2017 5 6 2739 2748 10.1039/C6TA03631G
    [Google Scholar]
  64. Wu X. Xing Y. Zeng K. Huber K. Zhao J.X. Study of fluorescence quenching ability of graphene oxide with a layer of rigid and Tunable Silica spacer. Langmuir 2018 34 2 603 611 10.1021/acs.langmuir.7b03465 29275632
    [Google Scholar]
  65. Wang Y. Li Z. Wang J. Li J. Lin Y. Graphene and graphene oxide: Biofunctionalization and applications in biotechnology. Trends Biotechnol. 2011 29 5 205 212 10.1016/j.tibtech.2011.01.008 21397350
    [Google Scholar]
  66. Zhang L. Xia J. Zhao Q. Liu L. Zhang Z. Functional graphene oxide as a nanocarrier for controlled loading and targeted delivery of mixed anticancer drugs. Small 2010 6 4 537 544 10.1002/smll.200901680 20033930
    [Google Scholar]
  67. Lee J. Kim J. Kim S. Min D.H. Biosensors based on graphene oxide and its biomedical application. Adv. Drug Deliv Rev. 2016 105 Pt B 275 287 10.1016/j.addr.2016.06.001 27302607
    [Google Scholar]
  68. Kaur H. Garg R. Singh S. Jana A. Bathula C. Kim H.S. Kumbar S.G. Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. J. Mol. Liq 2022 368 A 120703 10.1016/j.molliq.2022.120703 38130892
    [Google Scholar]
  69. Andrews D.L. Bradshaw D.S. Dinshaw R. Scholes G.D. Resonance Energy Transfer. Photonics. Wiley 2015 101 127 10.1002/9781119011804.ch3
    [Google Scholar]
  70. Verma A.K. Noumani A. Yadav A.K. Solanki P.R. FRET based biosensor: Principle applications recent advances and challenges. Diagnostics 2023 13 8 1375 10.3390/diagnostics13081375 37189476
    [Google Scholar]
  71. Paul R. Suklabaidya S. Arshad Hussain S. Fluorescence resonance energy transfer (FRET) as biomarkers. Mater. Today Proc. 2021 46 6301 6303 10.1016/j.matpr.2020.05.217
    [Google Scholar]
  72. Van Munster E.B. Kremers G.J. Adjobo-Hermans M.J.W. Gadella T.W.J. Fluorescence resonance energy transfer (FRET) measurement by gradual acceptor photobleaching. J. Microsc. 2005 218 3 253 262 10.1111/j.1365‑2818.2005.01483.x 15958019
    [Google Scholar]
  73. Islam F. Basu M. Mishra P.P. From ensemble FRET to single-molecule imaging: Monitoring individual cellular machinery in action. Optical Spectroscopic and Microscopic Techniques. Singapore Springer Nature Singapore 2022 113 142 10.1007/978‑981‑16‑4550‑1_6
    [Google Scholar]
  74. Dennis A.M. Rhee W.J. Sotto D. Dublin S.N. Bao G. Quantum dot-fluorescent protein FRET probes for sensing intracellular pH. ACS Nano 2012 6 4 2917 2924 10.1021/nn2038077 22443420
    [Google Scholar]
  75. Vannoy C.H. Tavares A.J. Noor M.O. Uddayasankar U. Krull U.J. Biosensing with quantum dots: A microfluidic approach. Sensors 2011 11 10 9732 9763 10.3390/s111009732 22163723
    [Google Scholar]
  76. Chua C.K. Pumera M. Light and atmosphere affect the Quasi-equilibrium states of graphite oxide and graphene oxide powders. Small 2015 11 11 1266 1272 10.1002/smll.201400154 25332199
    [Google Scholar]
  77. Ono T. Okuda S. Ushiba S. Kanai Y. Matsumoto K. Challenges for field-effect-transistor-based graphene biosensors. Materials 2024 17 2 333 10.3390/ma17020333 38255502
    [Google Scholar]
  78. Vashist S.K. Venkatesh A.G. Mitsakakis K. Czilwik G. Roth G. von Stetten F. Zengerle R. Nanotechnology-based biosensors and diagnostics: Technology push versus industrial/healthcare requirements. Bionanoscience 2012 2 3 115 126 10.1007/s12668‑012‑0047‑4
    [Google Scholar]
  79. Karami P. Afsar T. Gholamin D. Pahlavan Y. Johari-Ahar M. Nanoparticles-based biosensor devices developed for point-of-care (POC) analyses of c-reactive protein (CRP) as the clinically important inflammatory biomarker. Chem. Zvesti 2025 79 2 615 635 10.1007/s11696‑024‑03810‑x
    [Google Scholar]
  80. Prabowo B.A. Cabral P.D. Freitas P. Fernandes E. The challenges of developing biosensors for clinical assessment: A review. Chemosensors 2021 9 11 299 10.3390/chemosensors9110299
    [Google Scholar]
  81. Demeke Teklemariam A. Samaddar M. Alharbi M.G. Al-Hindi R.R. Bhunia A.K. Biosensor and molecular-based methods for the detection of human coronaviruses: A review. Mol. Cell. Probes 2020 54 101662 10.1016/j.mcp.2020.101662 32911064
    [Google Scholar]
  82. Liu S. Huang G. Gong Y. Jin X. Meng Y. Peng Y. Zhao J. Li X. Li Q. Rapid and accurate detection of carbapenem-resistance gene by isothermal amplification in Acinetobacter baumannii. Burns Trauma 2020 8 tkaa026 10.1093/burnst/tkaa026 32905076
    [Google Scholar]
  83. Li P. Niu W. Li H. Lei H. Liu W. Zhao X. Guo L. Zou D. Yuan X. Liu H. Yuan J. Bai C. Rapid detection of Acinetobacter baumannii and molecular epidemiology of carbapenem-resistant A. baumannii in two comprehensive hospitals of Beijing, China. Front. Microbiol. 2015 6 997 10.3389/fmicb.2015.00997 26441924
    [Google Scholar]
  84. Zheng Y. Jin J. Shao Z. Liu J. Zhang R. Sun R. Hu B. Development and clinical validation of a droplet digital PCR assay for detecting Acinetobacter baumannii and Klebsiella pneumoniae in patients with suspected bloodstream infections. MicrobiologyOpen 2021 10 6 e1247 10.1002/mbo3.1247 34964298
    [Google Scholar]
  85. Choi H.K. Yoon J. Nanotechnology-assisted biosensors for the detection of viral nucleic acids: An overview. Biosensors 2023 13 2 208 10.3390/bios13020208 36831973
    [Google Scholar]
  86. Ghoniem S.M. ElZorkany H.E. Hagag N.M. El-Deeb A.H. Shahein M.A. Hussein H.A. Development of multiplex gold nanoparticles biosensors for ultrasensitive detection and genotyping of equine herpes viruses. Sci. Rep. 2023 13 1 15140 10.1038/s41598‑023‑41918‑4 37704638
    [Google Scholar]
  87. Ramesh M. Janani R. Deepa C. Rajeshkumar L. Nanotechnology-enabled biosensors: A review of fundamentals, design principles, materials, and applications. Biosensors 2022 13 1 40 10.3390/bios13010040 36671875
    [Google Scholar]
  88. Martín-Gracia B. Martín-Barreiro A. Cuestas-Ayllón C. Grazú V. Line A. Llorente A M de la Fuente J. Moros M. Nanoparticle-based biosensors for detection of extracellular vesicles in liquid biopsies. J. Mater. Chem. B Mater. Biol. Med. 2020 8 31 6710 6738 10.1039/D0TB00861C 32627783
    [Google Scholar]
  89. Minhas N. Gurav Y.K. Sambhare S. Potdar V. Choudhary M.L. Bhardwaj S.D. Abraham P. Cost-analysis of real time RT-PCR test performed for COVID-19 diagnosis at India’s national reference laboratory during the early stages of pandemic mitigation. PLoS One 2023 18 1 e0277867 10.1371/journal.pone.0277867 36630456
    [Google Scholar]
  90. Wang M. Jin L. Hang-Mei Leung P. Wang-Ngai Chow F. Zhao X. Chen H. Pan W. Liu H. Li S. Advancements in magnetic nanoparticle-based biosensors for point-of-care testing. Front. Bioeng. Biotechnol. 2024 12 1393789 10.3389/fbioe.2024.1393789 38725992
    [Google Scholar]
  91. Abbas S. Rafique A. Abbas B. Iqbal R. Real-Time polymerase chain reaction trends in COVID-19 patients. Pak. J. Med. Sci. 2021 37 1 180 184 33437273
    [Google Scholar]
  92. Abbasi M. Tvakoli N. Bagheri Faradonbeh S. Bakhshayeshi A. Cost-Effectiveness Analysis of Rapid Test Compared to Polymerase Chain Reaction (PCR) in Patients with Acute Respiratory Syndrome. Med. J. Islam. Repub. Iran 2022 36 36 10.47176/mjiri.36.36 36128273
    [Google Scholar]
  93. Sharma S. Saini S. Khangembam M. Singh V. Nanomaterials-based biosensors for COVID-19 detection: A review. IEEE Sens. J. 2021 21 5 5598 5611 10.1109/JSEN.2020.3036748 37974905
    [Google Scholar]
  94. Schlatter R.P. Matte U. Polanczyk C.A. Koehler-Santos P. Ashton-Prolla P. Costs of genetic testing: Supporting Brazilian Public Policies for the incorporating of molecular diagnostic technologies. Genet. Mol. Biol. 2015 38 3 332 337 10.1590/S1415‑475738320140204 26500437
    [Google Scholar]
  95. Liu H.Y. Hopping G.C. Vaidyanathan U. Ronquillo Y.C. Hoopes P.C. Moshirfar M. Polymerase chain reaction and its application in the diagnosis of infectious keratitis. Med. Hypothesis Discov. Innov. Ophthalmol. 2019 8 3 152 155 31598517
    [Google Scholar]
  96. Beal S.G. Tremblay E.E. Toffel S. Velez L. Rand K.H. A gastrointestinal PCR panel improves clinical management and lowers health care costs. J. Clin. Microbiol. 2018 56 1 e01457 17 10.1128/JCM.01457‑17 29093106
    [Google Scholar]
  97. Walker B. Powers-Fletcher M.V. Schmidt R.L. Hanson K.E. Cost-effectiveness analysis of multiplex PCR with Magnetic resonance detection versus empiric or blood culture-directed therapy for management of suspected candidemia. J. Clin. Microbiol. 2016 54 3 718 726 10.1128/JCM.02971‑15 26739159
    [Google Scholar]
  98. Manjate N.J. Sitoe N. Sambo J. Guimarães E. Canana N. Chilaúle J. Viegas S. Nguenha N. Jani I. Russo G. Testing for SARS-CoV-2 in resource-limited settings: A cost analysis study of diagnostic tests using different Ag-RDTs and RT-PCR technologies in Mozambique. PLOS Glob. Public Health 2023 3 6 e0001999 10.1371/journal.pgph.0001999 37310935
    [Google Scholar]
  99. Ogata G. Agostinho M. Fernandes R. Ortega J. Chagas H. Caruso E. EE404 cost-effectiveness of rapid direct multiplex PCR test for diagnosing meningitis and encephalitis from the Brazilian public perspective. Value Health 2024 27 12 Suppl S135 10.1016/j.jval.2024.10.685
    [Google Scholar]
  100. Migliozzi D. Guibentif T. Assessing the potential deployment of biosensors for point-of-care diagnostics in developing countries: Technological, Economic and regulatory aspects. Biosensors 2018 8 4 119 10.3390/bios8040119 30501052
    [Google Scholar]
  101. Yang S. Rothman R.E. PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. Lancet Infect. Dis. 2004 4 6 337 348 10.1016/S1473‑3099(04)01044‑8 15172342
    [Google Scholar]
  102. Adair-Rohani H. Zukor K. Bonjour S. Wilburn S. Kuesel A.C. Hebert R. Fletcher E.R. Limited electricity access in health facilities of sub-Saharan Africa: a systematic review of data on electricity access, sources, and reliability. Glob. Health Sci. Pract. 2013 1 2 249 261 10.9745/GHSP‑D‑13‑00037 25276537
    [Google Scholar]
  103. Yadav H. Shah D. Sayed S. Horton S. Schroeder L.F. Availability of essential diagnostics in ten low-income and middle-income countries: results from national health facility surveys. Lancet Glob. Health 2021 9 11 e1553 e1560 10.1016/S2214‑109X(21)00442‑3 34626546
    [Google Scholar]
  104. Amjad A. Mirza Ia. Abbasi S. Farwa U. Malik N. Zia F. Modified Hodge test: A simple and effective test for detection of carbapenemase production. Iran. J. Microbiol. 2011 3 4 189 193 22530087
    [Google Scholar]
  105. Dobhal S. Sen M. Agarwal J. Das A. Chandra A. Srivastava A. Nath S.S. Carbapenemase detection methods for carbapenem-resistant Enterobacterales: Which to choose? MGM J. Med. Sci. 2023 10 2 218 224 10.4103/mgmj.MGMJ_48_23
    [Google Scholar]
  106. Li D. Yi J. Han G. Qiao L. MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS Meas. Sci. Au 2022 2 5 385 404 10.1021/acsmeasuresciau.2c00019 36785658
    [Google Scholar]
  107. Yang Q. Rui Y. Two Multiplex Real-Time PCR Assays to Detect and Differentiate Acinetobacter baumannii and Non- baumannii Acinetobacter spp. Carrying blaNDM, blaOXA-23-Like, blaOXA-40-Like, blaOXA-51-Like, and blaOXA-58-Like Genes. PLoS One 2016 11 7 e0158958 10.1371/journal.pone.0158958 27391234
    [Google Scholar]
  108. Atceken N. Munzer Alseed M. Dabbagh S.R. Yetisen A.K. Tasoglu S. Point‐of‐Care diagnostic platforms for loop‐mediated isothermal amplification. Adv. Eng. Mater. 2023 25 8 2201174 10.1002/adem.202201174
    [Google Scholar]
  109. Garg N. Ahmad F.J. Kar S. Recent advances in loop-mediated isothermal amplification (LAMP) for rapid and efficient detection of pathogens. Curr. Res. Microb. Sci. 2022 3 100120 10.1016/j.crmicr.2022.100120 35909594
    [Google Scholar]
  110. Yang N. Zhang H. Han X. Liu Z. Lu Y. Advancements and applications of loop-mediated isothermal amplification technology: A comprehensive overview. Front. Microbiol. 2024 15 1406632 10.3389/fmicb.2024.1406632 39091309
    [Google Scholar]
  111. Xi H. Jiang H. Juhas M. Zhang Y. Multiplex Biosensing for Simultaneous Detection of Mutations in SARS-CoV-2. ACS Omega 2021 6 40 25846 25859 10.1021/acsomega.1c04024 34632242
    [Google Scholar]
  112. Sin M.L.Y. Mach K.E. Wong P.K. Liao J.C. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev. Mol. Diagn. 2014 14 2 225 244 10.1586/14737159.2014.888313 24524681
    [Google Scholar]
  113. Bai B. Eales B.M. Huang W. Ledesma K.R. Merlau P.R. Li G. Yu Z. Tam V.H. Clinical and genomic analysis of virulence-related genes in bloodstream infections caused by Acinetobacter baumannii. Virulence 2022 13 1 1920 1927 10.1080/21505594.2022.2132053 36308002
    [Google Scholar]
  114. Perez F. Hujer A.M. Hujer K.M. Decker B.K. Rather P.N. Bonomo R.A. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2007 51 10 3471 3484 10.1128/AAC.01464‑06 17646423
    [Google Scholar]
  115. Lucidi M. Visaggio D. Migliaccio A. Capecchi G. Visca P. Imperi F. Zarrilli R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024 15 1 2289769 10.1080/21505594.2023.2289769 38054753
    [Google Scholar]
  116. Ramirez M.S. Penwell W.F. Traglia G.M. Zimbler D.L. Gaddy J.A. Nikolaidis N. Arivett B.A. Adams M.D. Bonomo R.A. Actis L.A. Tolmasky M.E. Identification of potential virulence factors in the model strain Acinetobacter baumannii A118. Front. Microbiol. 2019 10 1599 10.3389/fmicb.2019.01599 31396168
    [Google Scholar]
  117. Depka D. Bogiel T. Rzepka M. Gospodarek-Komkowska E. The prevalence of virulence factor genes among carbapenem-non-susceptible Acinetobacter baumannii clinical strains and their usefulness as potential molecular biomarkers of infection. Diagnostics 2023 13 6 1036 10.3390/diagnostics13061036 36980344
    [Google Scholar]
  118. Liu C. Chang Y. Xu Y. Luo Y. Wu L. Mei Z. Li S. Wang R. Jia X. Distribution of virulence-associated genes and antimicrobial susceptibility in clinical Acinetobacter baumannii isolates. Oncotarget 2018 9 31 21663 21673 10.18632/oncotarget.24651 29774093
    [Google Scholar]
  119. Harding C.M. Hennon S.W. Feldman M.F. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat. Rev. Microbiol. 2018 16 2 91 102 10.1038/nrmicro.2017.148 29249812
    [Google Scholar]
  120. Dolma K.G. Khati R. Paul A.K. Rahmatullah M. de Lourdes Pereira M. Wilairatana P. Khandelwal B. Gupta C. Gautam D. Gupta M. Goyal R.K. Wiart C. Nissapatorn V. Virulence characteristics and emerging therapies for biofilm-forming Acinetobacter baumannii: A review. Biology 2022 11 9 1343 10.3390/biology11091343 36138822
    [Google Scholar]
  121. Argimón S. Masim M.A.L. Gayeta J.M. Lagrada M.L. Macaranas P.K.V. Cohen V. Limas M.T. Espiritu H.O. Palarca J.C. Chilam J. Jamoralin M.C. Villamin A.S. Borlasa J.B. Olorosa A.M. Hernandez L.F.T. Boehme K.D. Jeffrey B. Abudahab K. Hufano C.M. Sia S.B. Stelling J. Holden M.T.G. Aanensen D.M. Carlos C.C. Integrating whole-genome sequencing within the National Antimicrobial Resistance Surveillance Program in the Philippines. Nat. Commun. 2020 11 1 2719 10.1038/s41467‑020‑16322‑5 32483195
    [Google Scholar]
  122. Afrasiabi S. Partoazar A. Targeting bacterial biofilm-related genes with nanoparticle-based strategies. Front. Microbiol. 2024 15 1387114 10.3389/fmicb.2024.1387114 38841057
    [Google Scholar]
  123. Eksin E. An electrochemical assay for sensitive detection of Acinetobacter baumannii gene. Talanta 2022 249 123696 10.1016/j.talanta.2022.123696 35749906
    [Google Scholar]
  124. Hou C. Yang F. Drug-resistant gene of blaOXA-23, blaOXA-24, blaOXA-51 and blaOXA-58 in Acinetobacter baumannii. Int. J. Clin. Exp. Med. 2015 8 8 13859 13863 26550338
    [Google Scholar]
  125. Zong G. Zhong C. Fu J. Zhang Y. Zhang P. Zhang W. Xu Y. Cao G. Zhang R. The carbapenem resistance gene blaOXA-23 is disseminated by a conjugative plasmid containing the novel transposon Tn6681 in Acinetobacter johnsonii M19. Antimicrob. Resist. Infect. Control 2020 9 1 182 10.1186/s13756‑020‑00832‑4 33168102
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010407651250929043955
Loading
/content/journals/cpb/10.2174/0113892010407651250929043955
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test