Skip to content
2000
image of Towards Pharmaceutical Industry 5.0: Impact of Artificial Intelligence in Drug Discovery and Development

Abstract

The pharmaceutical industry is transforming with the advent of Industry 5.0, which is marked by integrating artificial intelligence (AI) into drug discovery and development. AI technologies, such as machine learning, deep learning, and natural language processing, revolutionize the traditional drug development pipeline by accelerating the identification of novel drug candidates, optimizing clinical trial designs, and personalizing therapies. Moreover, AI models enhance the prediction of drug efficacy, toxicity, and patient responses, minimizing the risk of failure of clinical trials. Nevertheless, despite these advancements, challenges remain in integrating AI into the pharmaceutical workflow, including data quality, regulatory concerns, and the need for interdisciplinary collaboration. This review explores the current state of AI applications in drug discovery, drug formulation and optimization, pharmacokinetics and pharmacodynamics, drug manufacturing and quality control, regulatory compliance and pharmacovigilance. Overall, AI is poised to redefine the landscape of drug discovery and development, fostering a new era of precision medicine and transforming patient outcomes globally, especially in the era of Industry 5.0.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010396035250710120501
2025-11-03
2025-11-07
Loading full text...

Full text loading...

References

  1. Pokharel P.R. Pharma scientists reflection on r&d in nepalese pharmaceuticals: A qualitative study. SSRN Electronic J. 2023 1 (1) 1 8 10.2139/ssrn.4326700
    [Google Scholar]
  2. Malerba F. Orsenigo L. The evolution of the pharmaceutical industry. Bus. Hist. 2015 57 5 664 687 10.1080/00076791.2014.975119
    [Google Scholar]
  3. Taylor D. The pharmaceutical industry and the future of drug development. In:Pharmaceutical Industry. The Royal Society of Chemistry 2015 1 33 10.1039/9781782622345‑00001
    [Google Scholar]
  4. Berdigaliyev N. Aljofan M. An overview of drug discovery and development. Future Med. Chem. 2020 12 10 939 947 10.4155/fmc‑2019‑0307 32270704
    [Google Scholar]
  5. Deore A.B. Dhumane J.R. Wagh R. Sonawane R. The stages of drug discovery and development process. Asian J. Pharm. Res. Dev. 2019 7 6 62 67 10.22270/ajprd.v7i6.616
    [Google Scholar]
  6. Blass B.E. Drug Discovery and Development: An Overview of Modern Methods and Principles. In: Chapter 1 - Basic Principles of Drug Discovery and Development; Blass, B.E., Ed.; Academic Press Boston 2015 1 34 10.1016/B978‑0‑12‑411508‑8.00001‑3
    [Google Scholar]
  7. Tabana Y. Babu D. Fahlman R. Siraki A.G. Barakat K. Target identification of small molecules: an overview of the current applications in drug discovery. BMC Biotechnol. 2023 23 1 44 10.1186/s12896‑023‑00815‑4 37817108
    [Google Scholar]
  8. Ghobakhloo M. Industry 4.0, digitization, and opportunities for sustainability. J. Clean. Prod. 2020 252 119869 10.1016/j.jclepro.2019.119869
    [Google Scholar]
  9. Bai C. Dallasega P. Orzes G. Sarkis J. Industry 4.0 technologies assessment: A sustainability perspective. Int. J. Prod. Econ. 2020 229 107776 10.1016/j.ijpe.2020.107776
    [Google Scholar]
  10. Dalenogare L.S. Benitez G.B. Ayala N.F. Frank A.G. The expected contribution of Industry 4.0 technologies for industrial performance. Int. J. Prod. Econ. 2018 204 383 394 10.1016/j.ijpe.2018.08.019
    [Google Scholar]
  11. Bashir S. Fitaihi R. Abdelhakim H.E. Advances in formulation and manufacturing strategies for the delivery of therapeutic proteins and peptides in orally disintegrating dosage forms. Eur. J. Pharm. Sci. 2023 182 106374 10.1016/j.ejps.2023.106374 36623699
    [Google Scholar]
  12. Troiano G. Nolan J. Parsons D. Van Geen Hoven C. Zale S. A quality by design approach to developing and manufacturing polymeric nanoparticle drug products. AAPS J. 2016 18 6 1354 1365 10.1208/s12248‑016‑9969‑z 27631558
    [Google Scholar]
  13. Vyas M. Thakur S. Riyaz B. Bansal K. Tomar B. Mishra V. Artificial intelligence: The beginning of a new era in pharmacy profession. Asian J. Pharm. 2018 12 72 76
    [Google Scholar]
  14. Hassanzadeh P. Atyabi F. Dinarvand R. The significance of artificial intelligence in drug delivery system design. Adv. Drug Deliv. Rev. 2019 151-152 169 190 10.1016/j.addr.2019.05.001 31071378
    [Google Scholar]
  15. Wise J. Möller A. Christie D. Kalra D. Brodsky E. Georgieva E. Jones G. Smith I. Greiffenberg L. McCarthy M. Arend M. Luttringer O. Kloss S. Arlington S. The positive impacts of Real-World Data on the challenges facing the evolution of biopharma. Drug Discov. Today 2018 23 4 788 801 10.1016/j.drudis.2018.01.034 29337204
    [Google Scholar]
  16. Schmidhuber J. Deep learning in neural networks: An overview. Neural Netw. 2015 61 85 117 10.1016/j.neunet.2014.09.003 25462637
    [Google Scholar]
  17. Sarker I.H. Machine learning: Algorithms, real-world applications and research directions. SN Computer. Science. 2021 2 3 160 10.1007/s42979‑021‑00592‑x 33778771
    [Google Scholar]
  18. Sarker I.H. AI-based modeling: Techniques, applications and research issues towards automation, intelligent and smart systems. SN Computer. Science. 2022 3 2 158 10.1007/s42979‑022‑01043‑x 35194580
    [Google Scholar]
  19. Sarshar N.T. Sadeghi S. Kamsari M. Avazpour M. Ghoushchi S.J. Ranjbarzadeh R. Advancing brain MRI image classification: Integrating VGG16 and ResNet50 with a multi-verse optimization method. BioMed 2024 4 4 499 523 10.3390/biomed4040038
    [Google Scholar]
  20. Anari S. de Oliveira G.G. Ranjbarzadeh R. Alves A.M. Vaz G.C. Bendechache M. EfficientUNetViT: Efficient breast tumor segmentation utilizing UNET architecture and pretrained vision transformer. Bioengineering 2024 11 9 945 10.3390/bioengineering11090945 39329687
    [Google Scholar]
  21. Anari S. Sadeghi S. Sheikhi G. Ranjbarzadeh R. Bendechache M. Explainable attention based breast tumor segmentation using a combination of UNet, ResNet, DenseNet, and efficientnet models. Sci. Rep. 2025 15 1 1027 10.1038/s41598‑024‑84504‑y 39762417
    [Google Scholar]
  22. Usama M. Qadir J. Raza A. Arif H. Yau K.A. Elkhatib Y. Hussain A. Al-Fuqaha A. Unsupervised machine learning for networking: Techniques, applications and research challenges. IEEE Access 2019 7 65579 65615 10.1109/ACCESS.2019.2916648
    [Google Scholar]
  23. Li A. Meng Y. Wang P. Similarity-based three-way clustering by using dimensionality reduction. Mathematics 2024 12 13 1951 10.3390/math12131951
    [Google Scholar]
  24. Velliangiri S. Alagumuthukrishnan S. Thankumar joseph, S.I. A review of dimensionality reduction techniques for efficient computation. Procedia Comput. Sci. 2019 165 104 111 10.1016/j.procs.2020.01.079
    [Google Scholar]
  25. Vora L.K. Gholap A.D. Jetha K. Thakur R.R.S. Solanki H.K. Chavda V.P. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023 15 7 1916 10.3390/pharmaceutics15071916 37514102
    [Google Scholar]
  26. Duch W. Swaminathan K. Meller J. Artificial intelligence approaches for rational drug design and discovery. Curr. Pharm. Des. 2007 13 14 1497 1508 10.2174/138161207780765954 17504169
    [Google Scholar]
  27. Gupta R. Srivastava D. Sahu M. Tiwari S. Ambasta R.K. Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021 25 3 1315 1360 10.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  28. Jing Y. Bian Y. Hu Z. Wang L. Xie X.Q.S. Deep learning for drug design: An artificial intelligence paradigm for drug discovery in the big data era. AAPS J. 2018 20 3 58 10.1208/s12248‑018‑0210‑0 29603063
    [Google Scholar]
  29. Hu X. Wang Y. Guest editorial: IEEE international conference on bioinformatics and biomedicine (BIBM 2014). special issue IEEE Trans. Nanobiosci. 2015 14 5 498 499 10.1109/TNB.2015.2446091
    [Google Scholar]
  30. Wallach I. Dzamba M. Heifets A. AtomNet: A deep convolutional neural network for bioactivity prediction in structure-based drug discovery arXiv 2015
    [Google Scholar]
  31. Tripathi N. Goshisht M.K. Sahu S.K. Arora C. Applications of artificial intelligence to drug design and discovery in the big data era: A comprehensive review. Mol. Divers. 2021 25 3 1643 1664 10.1007/s11030‑021‑10237‑z 34110579
    [Google Scholar]
  32. Paul D. Sanap G. Shenoy S. Kalyane D. Kalia K. Tekade R.K. Artificial intelligence in drug discovery and development. Drug Discov. Today 2021 26 1 80 93 10.1016/j.drudis.2020.10.010 33099022
    [Google Scholar]
  33. Turabi K.S. Deshmukh A. Paul S. Swami D. Siddiqui S. Kumar U. Naikar S. Devarajan S. Basu S. Paul M.K. Aich J. Drug repurposing—an emerging strategy in cancer therapeutics. Naunyn Schmiedebergs Arch. Pharmacol. 2022 395 10 1139 1158 10.1007/s00210‑022‑02263‑x 35695911
    [Google Scholar]
  34. Mann M. Kumar C. Zeng W.F. Strauss M.T. Artificial intelligence for proteomics and biomarker discovery. Cell Syst. 2021 12 8 759 770 10.1016/j.cels.2021.06.006 34411543
    [Google Scholar]
  35. Narayanan R. DeGroat W. Mendhe D. Abdelhalim H. Ahmed Z. IntelliGenes: Interactive and user-friendly multimodal AI/ML application for biomarker discovery and predictive medicine. Biol. Methods Protoc. 2024 9 1 bpae040 10.1093/biomethods/bpae040 38884000
    [Google Scholar]
  36. Forghani R. Savadjiev P. Chatterjee A. Muthukrishnan N. Reinhold C. Forghani B. Radiomics and artificial intelligence for biomarker and prediction model development in oncology. Comput. Struct. Biotechnol. J. 2019 17 995 1008 10.1016/j.csbj.2019.07.001 31388413
    [Google Scholar]
  37. Dong J. Wu Z. Xu H. Ouyang D. Formulation A.I. Formulation A.I. A novel web-based platform for drug formulation design driven by artificial intelligence. Brief. Bioinform. 2023 25 1 bbad419 10.1093/bib/bbad419 37991246
    [Google Scholar]
  38. Khalid G.M. Usman A.G. Application of data-intelligence algorithms for modeling the compaction performance of new pharmaceutical excipients. Future J. Pharm. Sci. 2021 7 1 31 10.1186/s43094‑021‑00183‑w
    [Google Scholar]
  39. Patel S. Patel M. Kulkarni M. Patel M.S. DE-INTERACT: A machine-learning-based predictive tool for the drug-excipient interaction study during product development—Validation through paracetamol and vanillin as a case study. Int. J. Pharm. 2023 637 122839 10.1016/j.ijpharm.2023.122839 36931538
    [Google Scholar]
  40. Hang N.T. Long N.T. Duy N.D. Chien N.N. Van Phuong N. Towards safer and efficient formulations: Machine learning approaches to predict drug-excipient compatibility. Int. J. Pharm. 2024 653 123884 10.1016/j.ijpharm.2024.123884 38341049
    [Google Scholar]
  41. Konagurthu S. Predictive modeling for solubility and bioavailability enhancement. 2024 Available from: https://www.patheon.com/us/en/insights-resources/blog/predictive-modeling-for-solubility-and-bioavailability-enhancement.html
    [Google Scholar]
  42. Yadav S. Singh A. Singhal R. Yadav J.P. Revolutionizing drug discovery: The impact of artificial intelligence on advancements in pharmacology and the pharmaceutical industry. Intell. Pharm. 2024 2 3 367 380 10.1016/j.ipha.2024.02.009
    [Google Scholar]
  43. Pawar V. Patil A. Tamboli F. Gaikwad D. Mali D. Shinde A. Harnessing the power of AI in pharmacokinetics and pharmacodynamics: A comprehensive review. Int. J. Pharm. Qual Assur 2023 14 2 426 439 10.25258/ijpqa.14.2.31
    [Google Scholar]
  44. Keutzer L. You H. Farnoud A. Nyberg J. Wicha S.G. Maher-Edwards G. Vlasakakis G. Moghaddam G.K. Svensson E.M. Menden M.P. Simonsson U.S.H. On Behalf Of C. Machine learning and pharmacometrics for prediction of pharmacokinetic data: Differences, similarities and challenges illustrated with rifampicin. Pharmaceutics 2022 14 8 1530 10.3390/pharmaceutics14081530 35893785
    [Google Scholar]
  45. Cui Q. Lu S. Ni B. Zeng X. Tan Y. Chen Y.D. Zhao H. Improved prediction of aqueous solubility of novel compounds by going deeper with deep learning. Front. Oncol. 2020 10 121 10.3389/fonc.2020.00121 32117768
    [Google Scholar]
  46. Staniszewska M. Romański M. Polak S. Garbacz G. Dobosz J. Myslitska D. Romanova S. Paszkowska J. Danielak D. A rational approach to predicting immediate release formulation behavior in multiple gastric motility patterns: A combination of a biorelevant apparatus, design of experiments, and machine learning. Pharmaceutics 2023 15 8 2056 10.3390/pharmaceutics15082056 37631270
    [Google Scholar]
  47. Anoop Krishnan N.M. Mangalathu S. Smedskjaer M.M. Tandia A. Burton H. Bauchy M. Predicting the dissolution kinetics of silicate glasses using machine learning. J. Non-Cryst. Solids 2018 487 37 45 10.1016/j.jnoncrysol.2018.02.023
    [Google Scholar]
  48. Noorain L. Nguyen V. Kim H.W. Nguyen L.T.B. A Machine learning approach for PLGA nanoparticles in antiviral drug delivery. Pharmaceutics 2023 15 2 495 10.3390/pharmaceutics15020495 36839817
    [Google Scholar]
  49. Sarmadi M. Behrens A.M. McHugh K.J. Contreras H.T.M. Tochka Z.L. Lu X. Langer R. Jaklenec A. Modeling, design, and machine learning-based framework for optimal injectability of microparticle-based drug formulations. Sci. Adv. 2020 6 28 eabb6594 10.1126/sciadv.abb6594 32923598
    [Google Scholar]
  50. Yuan Y. Han Y. Yap C.W. Kochhar J.S. Li H. Xiang X. Kang L. Prediction of drug permeation through microneedled skin by machine learning. Bioeng. Transl. Med. 2023 8 6 e10512 10.1002/btm2.10512 38023708
    [Google Scholar]
  51. Tran T.T.V. Tayara H. Chong K.T. Recent studies of artificial intelligence on in silico drug absorption. J. Chem. Inf. Model. 2023 63 20 6198 6211 10.1021/acs.jcim.3c00960 37819031
    [Google Scholar]
  52. Li Z. Cao Y. Sho W. Deep learning algorithm based tablet drug screening system. Acad. J. Eng. Technol Sci 2023 6 (5) 10.25236/AJETS.2023.060508
    [Google Scholar]
  53. Papageorgiou E. Theodosiou T. Margetis G. Dimitriou N. Charalampous P. Tzovaras D. Samakovlis I. Short Survey of Artificial Intelligent Technologies for Defect Detection in Manufacturing. Chania, Crete, Greece 2021 1 7 10.1109/IISA52424.2021.9555499
    [Google Scholar]
  54. Mardiani E. Judijanto L. Rukmana A.Y. Improving trust and accountability in AI systems through technological era advancement for decision support in indonesian manufacturing companies. West Sci. Interdiscip Stud 2023 1 10 1019 1027 10.58812/wsis.v1i10.301
    [Google Scholar]
  55. Hassan N.M. Hamdan A. Shahin F. Abdelmaksoud R. Bitar T. An artificial intelligent manufacturing process for high-quality low-cost production. Int. J. Qual 2022 10.1108/ijqrm‑07‑2022‑0204
    [Google Scholar]
  56. Ghayoor A. Kohan H.G. Revolutionizing pharmacokinetics: The dawn of AI-powered analysis. J. Pharm. Pharm. Sci. 2024 27 12671 10.3389/jpps.2024.12671 38433887
    [Google Scholar]
  57. Smith D.A. Burton L.M. Smith S.A. Through a computer monitor darkly: Artificial intelligence in absorption, distribution, metabolism and excretion science. Xenobiotica 2024 54 7 359 367 10.1080/00498254.2023.2295361 38095217
    [Google Scholar]
  58. Benet L.Z. Sodhi J.K. Investigating the theoretical basis for in vitro–in vivo extrapolation (IVIVE) in predicting drug metabolic clearance and proposing future experimental pathways. AAPS J. 2020 22 5 120 10.1208/s12248‑020‑00501‑9 32914238
    [Google Scholar]
  59. Lin Z. Chou W.C. Cheng Y.H. He C. Monteiro-Riviere N.A. Riviere J.E. Predicting nanoparticle delivery to tumors using machine learning and artificial intelligence approaches. Int. J. Nanomedicine 2022 17 1365 1379 10.2147/IJN.S344208 35360005
    [Google Scholar]
  60. Smits A. De Cock P. Vermeulen A. Allegaert K. Physiologically based pharmacokinetic (PBPK) modeling and simulation in neonatal drug development: How clinicians can contribute. Expert Opin. Drug Metab. Toxicol. 2019 15 1 25 34 10.1080/17425255.2019.1558205 30554542
    [Google Scholar]
  61. Lin Z. Chou W.C. Machine learning and artificial intelligence in toxicological sciences. Toxicol. Sci. 2022 189 1 7 19 10.1093/toxsci/kfac075 35861448
    [Google Scholar]
  62. Antontsev V. Jagarapu A. Bundey Y. Hou H. Khotimchenko M. Walsh J. Varshney J. A hybrid modeling approach for assessing mechanistic models of small molecule partitioning in vivo using a machine learning-integrated modeling platform. Sci. Rep. 2021 11 1 11143 10.1038/s41598‑021‑90637‑1 34045592
    [Google Scholar]
  63. Niu J. Straubinger R.M. Mager D.E. Pharmacodynamic drug–drug interactions. Clin. Pharmacol. Ther. 2019 105 6 1395 1406 10.1002/cpt.1434 30912119
    [Google Scholar]
  64. Takeda T. Hao M. Cheng T. Bryant S.H. Wang Y. Predicting drug–drug interactions through drug structural similarities and interaction networks incorporating pharmacokinetics and pharmacodynamics knowledge. J. Cheminform. 2017 9 1 16 10.1186/s13321‑017‑0200‑8 28316654
    [Google Scholar]
  65. Vo T.H. Nguyen N.T.K. Kha Q.H. Le N.Q.K. On the road to explainable AI in drug-drug interactions prediction: A systematic review. Comput. Struct. Biotechnol. J. 2022 20 2112 2123 10.1016/j.csbj.2022.04.021 35832629
    [Google Scholar]
  66. Wang Y. Yang Z. Yao Q. Accurate and interpretable drug-drug interaction prediction enabled by knowledge subgraph learning. Commun. Med. 2024 4 1 59 10.1038/s43856‑024‑00486‑y 38548835
    [Google Scholar]
  67. Deshpande D. Pasipanodya J.G. Mpagama S.G. Bendet P. Srivastava S. Koeuth T. Lee P.S. Bhavnani S.M. Ambrose P.G. Thwaites G. Heysell S.K. Gumbo T. Levofloxacin pharmacokinetics/ pharmacodynamics, dosing, susceptibility breakpoints, and artificial intelligence in the treatment of multidrugresistant tuberculosis. Clin. Infect. Dis 2018 67 S293 S302 (Suppl. 3) 10.1093/cid/ciy611 30496461
    [Google Scholar]
  68. Dashpute S. Pansare J. Deore Y. Pansare M. Sonawane P. Jadhav S. Artificial intelligence and machine learning in the pharmaceutical industry. Int. J. Pharm. Pharm. Res. 2023 28 2 111 131
    [Google Scholar]
  69. Rantanen J. Khinast J. The future of pharmaceutical manufacturing sciences. J. Pharm. Sci. 2015 104 11 3612 3638 10.1002/jps.24594 26280993
    [Google Scholar]
  70. Soori M. Arezoo B. Dastres R. Internet of things for smart factories in industry 4.0, a review. Internet Things Cyber-Phys. Syst. 2023 3 192 204 10.1016/j.iotcps.2023.04.006
    [Google Scholar]
  71. Moshgbar M. Hammond S. Advanced process control. Qual. Assur. J. 2010 13 3-4 62 66 10.1002/qaj.472
    [Google Scholar]
  72. Siah K.W. Kelley N.W. Ballerstedt S. Holzhauer B. Lyu T. Mettler D. Sun S. Wandel S. Zhong Y. Zhou B. Pan S. Zhou Y. Lo A.W. Predicting drug approvals: The novartis data science and artificial intelligence challenge. Patterns 2021 2 8 100312 10.1016/j.patter.2021.100312 34430930
    [Google Scholar]
  73. Kodumuru R. Sarkar S. Parepally V. Chandarana J. Artificial intelligence and internet of things integration in pharmaceutical manufacturing: A smart synergy. Pharmaceutics 2025 17 3 290 10.3390/pharmaceutics17030290 40142954
    [Google Scholar]
  74. Olajiga O. Ani E. Olu-lawal K. Montero D. Adeleke A. Intelligent monitoring systems in manufactruing: Current state and future perspectives. Eng. Sci. Technol J. 2024 5 3 750 759 10.51594/estj.v5i3.870
    [Google Scholar]
  75. Zonta T. da Costa C.A. da Rosa Righi R. de Lima M.J. da Trindade E.S. Li G.P. Predictive maintenance in the Industry 4.0: A systematic literature review. Comput. Ind. Eng. 2020 150 106889 10.1016/j.cie.2020.106889
    [Google Scholar]
  76. Hole G. Hole A.S. McFalone-Shaw I. Digitalization in pharmaceutical industry: What to focus on under the digital implementation process? Int. J. Pharm. X 2021 3 100095 10.1016/j.ijpx.2021.100095 34712948
    [Google Scholar]
  77. Niazi S. The coming of age of AI/ML in drug discovery, development, clinical testing, and manufacturing: The FDA perspectives. Drug Des. Devel. Ther. 2023 17 2691 2725 10.2147/DDDT.S424991 37701048
    [Google Scholar]
  78. Singh S. Gupta H. Sharma P. Sahi S. Advances in Artificial Intelligence (AI)-assisted approaches in drug screening. Artif. Intell. Chem. 2024 4 1 10.1016/j.aichem.2023.100039
    [Google Scholar]
  79. Basile A.O. Yahi A. Tatonetti N.P. Artificial Intelligence for Drug Toxicity and Safety. Trends Pharmacol. Sci. 2019 40 9 624 635 10.1016/j.tips.2019.07.005 31383376
    [Google Scholar]
  80. Amorim A.M.B. Piochi L.F. Gaspar A.T. Preto A.J. Rosário-Ferreira N. Moreira I.S. Advancing drug safety in drug development: Bridging computational predictions for enhanced toxicity prediction. Chem. Res. Toxicol. 2024 37 6 827 849 10.1021/acs.chemrestox.3c00352 38758610
    [Google Scholar]
  81. Tonoyan L. Siraki A.G. Machine learning in toxicological sciences: Opportunities for assessing drug toxicity. Frontiers in. Drug Discovery. 2024 4 1336025 10.3389/fddsv.2024.1336025
    [Google Scholar]
  82. Tran T.T.V. Surya Wibowo A. Tayara H. Chong K.T. Artificial intelligence in drug toxicity prediction: Recent advances, challenges, and future perspectives. J. Chem. Inf. Model. 2023 63 9 2628 2643 10.1021/acs.jcim.3c00200 37125780
    [Google Scholar]
  83. Minerali E. Foil D.H. Zorn K.M. Lane T.R. Ekins S. Comparing machine learning algorithms for predicting drug-induced liver injury (DILI). Mol. Pharm. 2020 17 7 2628 2637 10.1021/acs.molpharmaceut.0c00326 32422053
    [Google Scholar]
  84. Overgaard S.M. Graham M.G. Brereton T. Pencina M.J. Halamka J.D. Vidal D.E. Economou-Zavlanos N.J. Implementing quality management systems to close the AI translation gap and facilitate safe, ethical, and effective health AI solutions. NPJ Digit. Med. 2023 6 1 218 10.1038/s41746‑023‑00968‑8 38007604
    [Google Scholar]
  85. Tirkolaee E.B. Sadeghi S. Mooseloo F.M. Vandchali H.R. Aeini S. Application of machine learning in supply chain management: A comprehensive overview of the main areas. Math. Probl. Eng. 2021 2021 1 1 14 10.1155/2021/1476043
    [Google Scholar]
  86. Sharma R. Shishodia A. Gunasekaran A. Min H. Munim Z.H. The role of artificial intelligence in supply chain management: Mapping the territory. Int. J. Prod. Res. 2022 60 24 7527 7550 10.1080/00207543.2022.2029611
    [Google Scholar]
  87. Yang S. Kar S. Application of artificial intelligence and machine learning in early detection of adverse drug reactions (ADRs) and drug-induced toxicity. Artif. Intell. Chem. 2023 1 1 10.1016/j.aichem.2023.100011
    [Google Scholar]
  88. Shamim M.A. Shamim M.A. Arora P. Dwivedi P. Artificial intelligence and big data for pharmacovigilance and patient safety. J. Med. Surg. Public. Health. 2024 3 100139 10.1016/j.glmedi.2024.100139
    [Google Scholar]
  89. Rakhade S.V. Rakhade V.M. Sarangdhar R. Pawar U. Sarangdhar A. Predictive modelling in drug safety: Study the use of ai in predicting adverse drug reactions and improving pharmacovigilance efforts. Int. J. Adv. Res. Comput. Commun. Eng. 2025 14 1 75 81
    [Google Scholar]
  90. Zarrinpar A. David Cheng T.Y. Huo Z. What can we learn about drug safety and other effects in the era of electronic health records and big data that we would not be able to learn from classic epidemiology? J. Surg. Res. 2020 246 599 604 10.1016/j.jss.2019.09.053 31653413
    [Google Scholar]
  91. Thakkar S. Slikker W. Yiannas F. Silva P. Blais B. Chng K.R. Liu Z. Adholeya A. Pappalardo F. Soares M.L.C. Beeler P.E. Whelan M. Roberts R. Borlak J. Hugas M. Torrecilla-Salinas C. Girard P. Diamond M.C. Verloo D. Panda B. Rose M.C. Jornet J.B. Furuhama A. Fang H. Kwegyir-Afful E. Heintz K. Arvidson K. Burgos J.G. Horst A. Tong W. Artificial intelligence and real-world data for drug and food safety – A regulatory science perspective. Regul. Toxicol. Pharmacol. 2023 140 105388 10.1016/j.yrtph.2023.105388 37061083
    [Google Scholar]
  92. Mehta N. Devarakonda M.V. Machine learning, natural language programming, and electronic health records: The next step in the artificial intelligence journey? J. Allergy Clin. Immunol 2018 141 (6) 2019 2021 10.1016/j.jaci.2018.02.025 29518424
    [Google Scholar]
  93. Kenner B.J. Abrams N.D. Chari S.T. Field B.F. Goldberg A.E. Hoos W.A. Klimstra D.S. Rothschild L.J. Srivastava S. Young M.R. Go V.L.W. Early detection of pancreatic cancer. Pancreas 2021 50 7 916 922 10.1097/MPA.0000000000001882 34629446
    [Google Scholar]
  94. Gude S. Gude Y.S. The synergy of artificial intelligence and machine learning in revolutionizing pharmaceutical regulatory affairs. Transl. Regul. Sci. 2024 6 2 37 45 10.33611/trs.2024‑005
    [Google Scholar]
  95. Nene L. Flepisi B.T. Brand S.J. Basson C. Balmith M. Evolution of drug development and regulatory affairs: The demonstrated power of artificial intelligence. Clin. Ther. 2024 46 8 e6 e14 10.1016/j.clinthera.2024.05.012 38981791
    [Google Scholar]
  96. Madabushi R. Seo P. Zhao L. Tegenge M. Zhu H. Review: Role of model-informed drug development approaches in the lifecycle of drug development and regulatory decision-making. Pharm. Res. 2022 39 8 1669 1680 10.1007/s11095‑022‑03288‑w 35552984
    [Google Scholar]
  97. Busch F. Kather J.N. Johner C. Moser M. Truhn D. Adams L.C. Bressem K.K. Navigating the european union artificial intelligence act for healthcare. NPJ Digit. Med. 2024 7 1 210 10.1038/s41746‑024‑01213‑6 39134637
    [Google Scholar]
  98. Liang W. Tadesse G.A. Ho D. Fei-Fei L. Zaharia M. Zhang C. Zou J. Advances, challenges and opportunities in creating data for trustworthy AI. Nat. Mach. Intell. 2022 4 8 669 677 10.1038/s42256‑022‑00516‑1
    [Google Scholar]
  99. Hanna M. Pantanowitz L. Jackson B. Palmer O. Visweswaran S. Pantanowitz J. Deebajah M. Rashidi H. Ethical and bias considerations in artificial intelligence (ai)/machine learning. Mod. Pathol. 2024 100686 10.1016/j.modpat.2024.100686 39694331
    [Google Scholar]
  100. Yadav Yanamala A.K. Suryadevara S. Advances in data protection and artificial intelligence: Trends and challenges. Int. J. Adv. Eng. Technol Innov. 2023 1 1 294 319
    [Google Scholar]
  101. Esmaeilzadeh P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artif. Intell. Med. 2024 151 102861 10.1016/j.artmed.2024.102861 38555850
    [Google Scholar]
  102. Olawade D.B. Teke J. Fapohunda O. Weerasinghe K. Usman S.O. Ige A.O. Clement David-Olawade A. Leveraging artificial intelligence in vaccine development: A narrative review. J. Microbiol. Methods 2024 224 106998 10.1016/j.mimet.2024.106998 39019262
    [Google Scholar]
  103. DiNuzzo M. How artificial intelligence enables modeling and simulation of biological networks to accelerate drug discovery. Front. Drug Discov. 2022 2 1019706 10.3389/fddsv.2022.1019706
    [Google Scholar]
  104. Athanasopoulou K. Daneva G.N. Adamopoulos P.G. Scorilas A. Artificial intelligence: The milestone in modern biomedical research. BioMedInformatics 2022 2 4 727 744 10.3390/biomedinformatics2040049
    [Google Scholar]
  105. Russo G. Reche P. Pennisi M. Pappalardo F. The combination of artificial intelligence and systems biology for intelligent vaccine design. Expert Opin. Drug Discov. 2020 15 11 1267 1281 10.1080/17460441.2020.1791076 32662677
    [Google Scholar]
  106. Thomas S. Abraham A. Baldwin J. Piplani S. Petrovsky N. Artificial intelligence in vaccine and drug design. Methods Mol. Biol. 2022 2410 131 146 10.1007/978‑1‑0716‑1884‑4_6 34914045
    [Google Scholar]
  107. Boniolo F. Dorigatti E. Ohnmacht A.J. Saur D. Schubert B. Menden M.P. Artificial intelligence in early drug discovery enabling precision medicine. Expert Opin. Drug Discov. 2021 16 9 991 1007 10.1080/17460441.2021.1918096 34075855
    [Google Scholar]
  108. Noorain V. Srivastava V. Parveen B. Parveen R. Artificial intelligence in drug formulation and development: Applications and future prospects. Curr. Drug Metab. 2023 24 9 622 634 10.2174/0113892002265786230921062205 37779408
    [Google Scholar]
  109. Laddha C.S. Shelke A.V. Vaidya Y.V. Sheikh A.A. Biyani K.R. A review on artificial intellegence in drug discovery & pharmaceutical industry. Asian J. Pharm. Res. Dev. 2023 11 3 45 51 10.22270/ajprd.v11i3.1252
    [Google Scholar]
  110. Chhina A. Trehan K. Saini M. Thakur S. Kaur M. Shahtaghi N.R. Shivgotra R. Soni B. Modi A. Bakrey H. Jain S.K. Revolutionizing pharmaceutical industry: The radical impact of artificial intelligence and machine learning. Curr. Pharm. Des. 2023 29 21 1645 1658 10.2174/1381612829666230807161421 37550904
    [Google Scholar]
  111. Belenguer L. AI bias: Exploring discriminatory algorithmic decision-making models and the application of possible machine-centric solutions adapted from the pharmaceutical industry. AI and Ethics 2022 2 4 771 787 10.1007/s43681‑022‑00138‑8 35194591
    [Google Scholar]
  112. Ullah H. Uzair M. Jan Z. Ullah M. Integrating industry 4.0 technologies in defense manufacturing: Challenges, solutions, and potential opportunities. Array 2024 23 100358 10.1016/j.array.2024.100358
    [Google Scholar]
  113. Zafar M.H. Langås E.F. Sanfilippo F. Exploring the synergies between collaborative robotics, digital twins, augmentation, and industry 5.0 for smart manufacturing: A state-of-the-art review. Robot. Comput.-Integr. Manuf. 2024 89 102769 10.1016/j.rcim.2024.102769
    [Google Scholar]
  114. Abdelhaleem Ali M. A.; M Alrobaian, M. Strengths and weaknesses of current and future prospects of artificial intelligence-mounted technologies applied in the development of pharmaceutical products and services. Saudi Pharm. J. 2024 32 5 102043 10.1016/j.jsps.2024.102043 38585196
    [Google Scholar]
  115. Chakraborty C. Bhattacharya M. Lee S.S. Wen Z.H. Lo Y.H. The changing scenario of drug discovery using AI to deep learning: Recent advancement, success stories, collaborations, and challenges. Mol. Ther. Nucleic Acids 2024 35 3 102295 10.1016/j.omtn.2024.102295 39257717
    [Google Scholar]
  116. Bechelli S. Delhommelle J.A. I’s role in pharmaceuticals: Assisting drug design from protein interactions to drug development. Artif. Intell. Chem. 2024 2 1 100038 10.1016/j.aichem.2023.100038
    [Google Scholar]
  117. Kapustina O. Burmakina P. Gubina N. Serov N. Vinogradov V. User-friendly and industry-integrated AI for medicinal chemists and pharmaceuticals. Artif. Intell. Chem. 2024 2 2 100072 10.1016/j.aichem.2024.100072
    [Google Scholar]
  118. Hill A. True J.M. Jones C.H. Transforming drug development with synthetic biology and AI. Trends Biotechnol. 2024 42 9 1072 1075 10.1016/j.tibtech.2024.01.008 38383215
    [Google Scholar]
  119. Bolger M.B. Perspective on a chemistry classification system for AI-assisted formulation development. J. Control. Release 2022 352 833 839 10.1016/j.jconrel.2022.10.040 36334857
    [Google Scholar]
  120. Laisney M. Heimbach T. Mueller-Zsigmondy M. Blumenstein L. Costa R. Ji Y. Physiologically based biopharmaceutics modeling to demonstrate virtual bioequivalence and bioequivalence safe-space for ribociclib which has permeation rate-controlled absorption. J. Pharm. Sci. 2022 111 1 274 284 10.1016/j.xphs.2021.10.017 34678270
    [Google Scholar]
  121. Angelucci F. Ai A.R. Piendel L. Cerman J. Hort J. Integrating AI in fighting advancing Alzheimer: Diagnosis, prevention, treatment, monitoring, mechanisms, and clinical trials. Curr. Opin. Struct. Biol. 2024 87 102857 10.1016/j.sbi.2024.102857 38838385
    [Google Scholar]
  122. Obaidullah A.J. Advanced AI modeling and optimization for determination of pharmaceutical solubility in supercritical processing for production of nanosized drug particles. Case Stud. Therm. Eng. 2023 49 103199 10.1016/j.csite.2023.103199
    [Google Scholar]
  123. Madarász L. Mészáros L.A. Köte Á. Farkas A. Nagy Z.K. AI-based analysis of in-line process endoscope images for real-time particle size measurement in a continuous pharmaceutical milling process. Int. J. Pharm. 2023 641 123060 10.1016/j.ijpharm.2023.123060 37209791
    [Google Scholar]
  124. Singh B. Crasto M. Ravi K. Singh S. Pharmaceutical advances: Integrating artificial intelligence in QSAR, combinatorial and green chemistry practices. Intelligent Pharmacy 2024 2 5 598 608 10.1016/j.ipha.2024.05.005
    [Google Scholar]
  125. Jamil M.A. Mustofa R. Hossain N.U.I. Rahman S.M.A. Chowdhury S. A structural equation modeling framework for exploring the industry 5.0 and sustainable supply chain determinants. Supply Chain Anal. 2024 6 100060 10.1016/j.sca.2024.100060
    [Google Scholar]
  126. Verma S. Tiwari R. Singh L. Integrating technology and trust: Trailblazing role of AI in reframing pharmaceutical digital outreach. Intell. Pharm. 2024 2 3 435 440 10.1016/j.ipha.2024.01.005
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010396035250710120501
Loading
/content/journals/cpb/10.2174/0113892010396035250710120501
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test