Skip to content
2000
image of A Multidisciplinary Approach for Developing a Natural Antifungal Formulation Targeting Oropharyngeal Candidiasis: A Mini-review

Abstract

Background

Oropharyngeal candidiasis (OPC), a fungal infection affecting the mouth and throat, imposes a substantial burden on vulnerable populations such as HIV/AIDS patients, cancer treatment recipients, and the elderly. Conventional antifungal medications are encountering increasing resistance and side effects, necessitating the exploration of novel therapeutic approaches.

Objectives

This review proposes a comprehensive strategy for developing a novel natural product-based antifungal formulation targeting OPC. The approach involves harnessing promising natural compounds with established antifungal properties and employing advanced delivery systems like mucoadhesive microemulsions to improve efficacy and minimize adverse effects. Additionally, the review explores the integration of computational methods to expedite the identification and development of potent antifungal agents.

Methods

A comprehensive literature review was conducted using databases such as PubMed, Scopus, and Web of Science. Search terms included combinations of “oropharyngeal candidiasis,” “natural antifungal agents,” “flavonoids,” “mucoadhesive microemulsions,” “computational drug discovery,” and “/ studies.” Priority was given to studies published within the last ten years.

Results

The review identifies promising natural compounds with antifungal activity against species commonly associated with OPC. Additionally, several studies highlight the potential of computational tools such as molecular docking and in silico ADMET for rapidly identifying natural compounds with potent antifungal activity and favorable pharmacokinetic and safety profiles. A brief overview of and experiments is provided, emphasizing their role in validating the safety and efficacy of the proposed natural product-based antifungal formulation. Formulation and analytical aspects are also discussed.

Conclusion

The multidisciplinary approach outlined, incorporating natural products, computational methods, advanced preclinical and experiments, and advanced delivery systems, offers promise for the rapid, cost-effective development of safe and effective optimized formulations to address the growing challenge of OPC, particularly in vulnerable populations.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010374288250612065712
2025-06-23
2025-10-29
Loading full text...

Full text loading...

References

  1. Taverne-Ghadwal L. Kuhns M. Buhl T. Schulze M.H. Mbaitolum W.J. Kersch L. Weig M. Bader O. Groß U. Epidemiology and prevalence of oral candidiasis in hiv patients from chad in the post-haart era. Front. Microbiol. 2022 13 844069 10.3389/fmicb.2022.844069 35250957
    [Google Scholar]
  2. Bashir H. Ahmad J. Oral Candida colonization and infection in cancer patients and their antifungal susceptibility in a tertiary care hospital. Int. J. Adv. Res. 2014 2 541 550
    [Google Scholar]
  3. Laurent M. Gogly B. Tahmasebi F. Paillaud E. Oropharyngeal candidiasis in elderly patients. Gériatr. Psychol. Neuropsychiatr. Vieil. 2011 9 1 21 28 10.1684/pnv.2011.0259 21586373
    [Google Scholar]
  4. Bensadoun R.J. Patton L.L. Lalla R.V. Epstein J.B. Oropharyngeal candidiasis in head and neck cancer patients treated with radiation: Update 2011. Support. Care Cancer 2011 19 6 737 744 10.1007/s00520‑011‑1154‑4 21479787
    [Google Scholar]
  5. Mohamed A.A. Lu X. Mounmin F.A. Diagnosis and treatment of esophageal candidiasis: Current updates. Can. J. Gastroenterol. Hepatol. 2019 2019 1 6 10.1155/2019/3585136 31772927
    [Google Scholar]
  6. Sakaguchi H. Treatment and prevention of oral candidiasis in elderly patients. Med. Mycol. J. 2017 58 2 J43 J49 10.3314/mmj.17.004 28566666
    [Google Scholar]
  7. Quindós G. Gil-Alonso S. Marcos-Arias C. Sevillano E. Mateo E. Jauregizar N. Eraso E. Therapeutic tools for oral candidiasis: Current and new antifungal drugs. Med. Oral Patol Oral Cir Bucal 2019 24 2 0 10.4317/medoral.22978 30818309
    [Google Scholar]
  8. Lee Y. Puumala E. Robbins N. Cowen L.E. Antifungal drug resistance: Molecular mechanisms in Candida albicans and beyond. Chem. Rev. 2021 121 6 3390 3411 10.1021/acs.chemrev.0c00199 32441527
    [Google Scholar]
  9. Jucá M.M. Cysne Filho F.M.S. de Almeida J.C. Mesquita D.S. Barriga J.R.M. Dias K.C.F. Barbosa T.M. Vasconcelos L.C. Leal L.K.A.M. Ribeiro J.E. Vasconcelos S.M.M. Flavonoids: biological activities and therapeutic potential. Nat. Prod. Res. 2020 34 5 692 705 10.1080/14786419.2018.1493588 30445839
    [Google Scholar]
  10. Aghaei Gharehbolagh S. Izadi A. Talebi M. Sadeghi F. Zarrinnia A. Zarei F. Darmiani K. Borman A.M. Mahmoudi S. New weapons to fight a new enemy: A systematic review of drug combinations against the drug‐resistant fungus Candida auris. Mycoses 2021 64 11 1308 1316 10.1111/myc.13277 33774879
    [Google Scholar]
  11. Dróżdż A. Kubera D. Sławińska-Brych A. Matwijczuk A. Ślusarczyk L. Czernel G. Karcz D. Olender A. Bogut A. Pietrzak D. Dąbrowski W. Stepulak A. Wójcik-Załuska A. Gagoś M. Synergistic antifungal interactions between antibiotic amphotericin B and selected 1, 3, 4-thiadiazole derivatives, determined by microbiological, cytochemical, and molecular spectroscopic studies. Int. J. Mol. Sci. 2023 24 4 3430 10.3390/ijms24043430 36834848
    [Google Scholar]
  12. Strovel J. Early drug discovery and development guidelines: For academic researchers, collaborators, and start-up companies. Assay Guidance Manual 2016
    [Google Scholar]
  13. Cerqueira P. Cunha A. Almeida-Aguiar C. Potential of propolis antifungal activity for clinical applications. J. Appl. Microbiol. 2022 133 3 1207 1228 10.1111/jam.15628 35592938
    [Google Scholar]
  14. Hsu H. Sheth C.C. Veses V. Herbal extracts with antifungal activity against Candida albicans: A systematic review. Mini Rev. Med. Chem. 2021 21 1 90 117 10.2174/1389557520666200628032116 32600229
    [Google Scholar]
  15. Khan A. Moni S.S. Ali M. Mohan S. Jan H. Rasool S. Kamal M.A. Alshahrani S. Halawi M. Alhazmi H.A. Antifungal activity of plant secondary metabolites on Candida albicans: An updated review. Curr. Mol. Pharmacol. 2023 16 1 15 42 10.2174/1874467215666220304143332 35249516
    [Google Scholar]
  16. Redondo-Blanco S. Fernández J. López-Ibáñez S. Miguélez E.M. Villar C.J. Lombó F. Plant phytochemicals in food preservation: Antifungal bioactivity: A review. J. Food Prot. 2020 83 1 163 171 31860394
    [Google Scholar]
  17. Thawabteh A.M. Swaileh Z. Ammar M. Jaghama W. Yousef M. Karaman R.A. Bufo S. Scrano L. Antifungal and antibacterial activities of isolated marine compounds. Toxins 2023 15 2 93 10.3390/toxins15020093 36828408
    [Google Scholar]
  18. Tian F. Woo S.Y. Lee S.Y. Park S.B. Zheng Y. Chun H.S. Antifungal activity of essential oil and plant-derived natural compounds against Aspergillus flavus. Antibiotics 2022 11 12 1727 10.3390/antibiotics11121727 36551384
    [Google Scholar]
  19. Zacchino S.A. Butassi E. Liberto M.D. Raimondi M. Postigo A. Sortino M. Plant phenolics and terpenoids as adjuvants of antibacterial and antifungal drugs. Phytomedicine 2017 37 27 48 29174958
    [Google Scholar]
  20. Zhang C-W. Antifungal natural products and their derivatives: A review of their activity and mechanism of actions. Pharmacol. Res. Mod Chin Med. 2023 7 100262 10.1016/j.prmcm.2023.100262
    [Google Scholar]
  21. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. The protein data bank. Nucleic Acids Res. 2000 28 1 235 242 10.1093/nar/28.1.235 10592235
    [Google Scholar]
  22. Aboody M.S.A. Mickymaray S. Anti-fungal efficacy and mechanisms of flavonoids. Antibiotics 2020 9 2 45 10.3390/antibiotics9020045 31991883
    [Google Scholar]
  23. Arendrup M.C. Friberg N. Mares M. Kahlmeter G. Meletiadis J. Guinea J. How to interpret MICs of antifungal compounds according to the revised clinical breakpoints v. 10.0 European committee on antimicrobial susceptibility testing (EUCAST). Clin. Microbiol. Infect. 2020 26 11 1464 1472 32562861
    [Google Scholar]
  24. Zhao J. Yang J. Xie Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm. 2019 570 118642 10.1016/j.ijpharm.2019.118642 31446024
    [Google Scholar]
  25. Corcoran M.P. McKay D.L. Blumberg J.B. Flavonoid basics: Chemistry, sources, mechanisms of action, and safety. J. Nutr. Gerontol. Geriatr. 2012 31 3 176 189 10.1080/21551197.2012.698219 22888837
    [Google Scholar]
  26. Bugel S.M. Bonventre J.A. Tanguay R.L. Comparative developmental toxicity of flavonoids using an integrative zebrafish system. Toxicol. Sci. 2016 154 1 55 68 10.1093/toxsci/kfw139 27492224
    [Google Scholar]
  27. Kumar V. Huang J. Dong Y. Hao G.F. Targeting Fks1 proteins for novel antifungal drug discovery. Trends Pharmacol. Sci. 2024 45 4 366 384 10.1016/j.tips.2024.02.007 38493014
    [Google Scholar]
  28. Barbarossa A. Rosato A. Corbo F. Clodoveo M.L. Fracchiolla G. Carrieri A. Carocci A. Non-antibiotic drug repositioning as an alternative antimicrobial approach. Antibiotics 2022 11 6 816 10.3390/antibiotics11060816 35740222
    [Google Scholar]
  29. Agarwal S. Mehrotra R. An overview of molecular docking. JSM Chem. 2016 4 2 1024 1028
    [Google Scholar]
  30. Manjunath M. Skariyachan S. Screening of natural lead molecules against putative molecular targets of drug-resistant cryptococcus spp: An insight from computer-aided molecular design. Curr. Top. Med. Chem. 2019 18 31 2681 2701 10.2174/1568026619666190119145434 30659541
    [Google Scholar]
  31. Adnan M. Siddiqui A.J. Ashraf S.A. Bardakci F. Alreshidi M. Badraoui R. Noumi E. Tepe B. Sachidanandan M. Patel M. Network pharmacology, molecular docking, and molecular dynamics simulation to elucidate the molecular targets and potential mechanism of Phoenix dactylifera (Ajwa Dates) against Candidiasis. Pathogens 2023 12 11 1369 10.3390/pathogens12111369 38003833
    [Google Scholar]
  32. Sama-ae I. Pattaranggoon N.C. Tedasen A. In silico prediction of antifungal compounds from natural sources towards lanosterol 14-alpha demethylase (CYP51) using molecular docking and molecular dynamic simulation. J. Mol. Graph. Model. 2023 121 108435 10.1016/j.jmgm.2023.108435 36848730
    [Google Scholar]
  33. Prajapati J. Goswami D. Dabhi M. Acharya D. Rawal R.M. Potential dual inhibition of SE and CYP51 by eugenol conferring inhibition of Candida albicans: Computationally curated study with experimental validation. Comput. Biol. Med. 2022 151 Pt A 106237 10.1016/j.compbiomed.2022.106237 36327880
    [Google Scholar]
  34. Stanzione F. Giangreco I. Cole J.C. Use of molecular docking computational tools in drug discovery. Prog. Med. Chem. 2021 60 273 343 10.1016/bs.pmch.2021.01.004 34147204
    [Google Scholar]
  35. Hussain A. Verma C.K. Computational drug repurposing resources and approaches for discovering novel antifungal drugs against Candida albicans n-myristoyl transferase. J. Pure Appl. Microbiol. 2021 15 2 556 579 10.22207/JPAM.15.2.49
    [Google Scholar]
  36. Gallo-Ebert C. Donigan M. Stroke I.L. Swanson R.N. Manners M.T. Francisco J. Toner G. Gallagher D. Huang C.Y. Gygax S.E. Webb M. Nickels J.T. Novel antifungal drug discovery based on targeting pathways regulating the fungus-conserved Upc2 transcription factor. Antimicrob. Agents Chemother. 2014 58 1 258 266 10.1128/AAC.01677‑13 24145546
    [Google Scholar]
  37. Karki R.G. Azole compounds designed by molecular modelling show antifungal activity as predicted 2003
    [Google Scholar]
  38. Lombardo F. Desai P.V. Arimoto R. Desino K.E. Fischer H. Keefer C.E. Petersson C. Winiwarter S. Broccatelli F. In Silico absorption, distribution, metabolism, excretion, and pharmacokinetics (ADME-PK): Utility and best practices. an industry perspective from the international consortium for innovation through quality in pharmaceutical development. Miniperspective. J. Med. Chem. 2017 60 22 9097 9113 10.1021/acs.jmedchem.7b00487 28609624
    [Google Scholar]
  39. de Sá A.G.C. Long Y. Portelli S. Pires D.E.V. Ascher D.B. toxCSM: comprehensive prediction of small molecule toxicity profiles. Brief. Bioinform. 2022 23 5 bbac337 10.1093/bib/bbac337 35998885
    [Google Scholar]
  40. Raies A.B. Bajic V.B. In silico toxicology: Computational methods for the prediction of chemical toxicity. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016 6 2 147 172 10.1002/wcms.1240 27066112
    [Google Scholar]
  41. Simhadri Vsdna N. Muniappan M. Kannan I. Viswanathan S. Phytochemical analysis and docking study of compounds present in a polyherbal preparation used in the treatment of dermatophytosis. Curr. Med. Mycol. 2017 3 4 6 14 10.29252/cmm.3.4.6 29707673
    [Google Scholar]
  42. Foudah A.I. Alqarni M.H. Alam A. Salkini M.A. Ross S.A. Yusufoglu H.S. Phytochemical screening, in vitro and in silico studies of volatile compounds from Petroselinum crispum (Mill) leaves grown in Saudi Arabia. Molecules 2022 27 3 934 10.3390/molecules27030934 35164196
    [Google Scholar]
  43. Puri S. Iron chelator deferasirox reduces candida albicans invasion of oral epithelial cells and infection levels in murine oropharyngeal candidiasis. Antimicrob. Agents Chemother. 2019 63 4 10.1128/AAC.02152‑18
    [Google Scholar]
  44. Moyes D.L. Wilson D. Richardson J.P. Mogavero S. Tang S.X. Wernecke J. Höfs S. Gratacap R.L. Robbins J. Runglall M. Murciano C. Blagojevic M. Thavaraj S. Förster T.M. Hebecker B. Kasper L. Vizcay G. Iancu S.I. Kichik N. Häder A. Kurzai O. Luo T. Krüger T. Kniemeyer O. Cota E. Bader O. Wheeler R.T. Gutsmann T. Hube B. Naglik J.R. Candidalysin is a fungal peptide toxin critical for mucosal infection. Nature 2016 532 7597 64 68 10.1038/nature17625 27027296
    [Google Scholar]
  45. Yang H. Tsang P.C.S. Pow E.H.N. Lam O.L.T. Tsang P.W. Potential role of Candida albicans secreted aspartic protease 9 in serum induced-hyphal formation and interaction with oral epithelial cells. Microb. Pathog. 2020 139 103896 10.1016/j.micpath.2019.103896 31794816
    [Google Scholar]
  46. Villar C.C. Zhao X.R. Candida albicans induces early apoptosis followed by secondary necrosis in oral epithelial cells. Mol. Oral Microbiol. 2010 25 3 215 225 10.1111/j.2041‑1014.2010.00577.x 20536749
    [Google Scholar]
  47. Silva S. Henriques M. Oliveira R. Azeredo J. Malic S. Hooper S.J. Williams D.W. Characterization of Candida parapsilosis infection of an in vitro reconstituted human oral epithelium. Eur. J. Oral Sci. 2009 117 6 669 675 10.1111/j.1600‑0722.2009.00677.x 20121929
    [Google Scholar]
  48. Silva S. Henriques M. Hayes A. Oliveira R. Azeredo J. Williams D.W. Candida glabrata and Candida albicans co‐infection of an in vitro oral epithelium. J. Oral Pathol. Med. 2011 40 5 421 427 10.1111/j.1600‑0714.2010.00981.x 21158929
    [Google Scholar]
  49. Nailis H. Kucharíková S. Řičicová M. Van Dijck P. Deforce D. Nelis H. Coenye T. Real-time PCR expression profiling of genes encoding potential virulence factors in Candida albicans biofilms: identification of model-dependent and -independent gene expression. BMC Microbiol. 2010 10 1 114 10.1186/1471‑2180‑10‑114 20398368
    [Google Scholar]
  50. Montelongo-Jauregui D. Lopez-Ribot J.L. Candida interactions with the oral bacterial microbiota. J. Fungi 2018 4 4 122 10.3390/jof4040122 30400279
    [Google Scholar]
  51. de Carvalho Dias K. de Sousa D.L. Barbugli P.A. Cerri P.S. Salih V.M. Vergani C.E. Development and characterization of a 3D oral mucosa model as a tool for host-pathogen interactions. J. Microbiol. Methods 2018 152 52 60 10.1016/j.mimet.2018.07.004 30017850
    [Google Scholar]
  52. Rahimi C. Rahimi B. Padova D. Rooholghodos S.A. Bienek D.R. Luo X. Kaufman G. Raub C.B. Oral mucosa-on-a-chip to assess layer-specific responses to bacteria and dental materials. Biomicrofluidics 2018 12 5 054106 10.1063/1.5048938 30310527
    [Google Scholar]
  53. Makkar H. Sriram G. Advances in modeling periodontal host-microbe interactions: Insights from organotypic and organ-on-chip systems. Lab Chip 2025 25 5 1342 1371 10.1039/d4lc00871e 39963082
    [Google Scholar]
  54. Bauer A.W. Kirby W.M. Sherris J.C. Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1966 45 4 493 496 10.1093/ajcp/45.4_ts.493 5325707
    [Google Scholar]
  55. Hombach M. Maurer F.P. Pfiffner T. Böttger E.C. Furrer R. Standardization of operator-dependent variables affecting precision and accuracy of the disk diffusion method for antibiotic susceptibility testing. J. Clin. Microbiol. 2015 53 12 3864 3869 10.1128/JCM.02351‑15 26468500
    [Google Scholar]
  56. Orszulik S.T. The quality of antimicrobial susceptibility test discs and implications for clinical outcomes. Diagn. Microbiol. Infect. Dis. 2024 109 1 116237 10.1016/j.diagmicrobio.2024.116237 38428376
    [Google Scholar]
  57. Wiegand I. Hilpert K. Hancock R.E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 2008 3 2 163 175 10.1038/nprot.2007.521 18274517
    [Google Scholar]
  58. Zgoda J. Porter J. A convenient microdilution method for screening natural products against bacteria and fungi. Pharm. Biol. 2001 39 3 221 225 10.1076/phbi.39.3.221.5934
    [Google Scholar]
  59. CLSI M27 Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts. 2017 Available from:
    [Google Scholar]
  60. Chadha S. Kale S.P. Simple fluorescence-based high throughput cell viability assay for filamentous fungi. Lett. Appl. Microbiol. 2015 61 3 238 244 10.1111/lam.12460 26118969
    [Google Scholar]
  61. McMahon C.L. Esqueda M. Yu J.J. Wall G. Romo J.A. Vila T. Chaturvedi A. Lopez-Ribot J.L. Wormley F. Hung C.Y. Development of an Imaging Flow Cytometry Method for Fungal Cytological Profiling and Its Potential Application in Antifungal Drug Development. J. Fungi 2023 9 7 722 10.3390/jof9070722 37504711
    [Google Scholar]
  62. Serrano R. González-Menéndez V. Tormo J.R. Genilloud O. Development and validation of a HTS platform for the discovery of new antifungal agents against four relevant fungal phytopathogens. J. Fungi 2023 9 9 883 10.3390/jof9090883 37754991
    [Google Scholar]
  63. Riss T.L. Moravec R.A. Niles A.L. Cytotoxicity testing: Measuring viable cells, dead cells, and detecting mechanism of cell death. Methods Mol. Biol. 2011 740 103 114 10.1007/978‑1‑61779‑108‑6_12
    [Google Scholar]
  64. Shukla S.K. Rao T.S. An improved crystal violet assay for biofilm quantification in 96-well microtitre plate. Biorxiv 2017 100214 10.1101/100214
    [Google Scholar]
  65. Kuhn D.M. Balkis M. Chandra J. Mukherjee P.K. Ghannoum M.A. Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J. Clin. Microbiol. 2003 41 1 506 508 10.1128/JCM.41.1.506‑508.2003 12517908
    [Google Scholar]
  66. Shailaja A. Bruce T.F. Gerard P. Powell R.R. Pettigrew C.A. Kerrigan J.L. Comparison of cell viability assessment and visualization of Aspergillus niger biofilm with two fluorescent probe staining methods. Biofilm 2022 4 100090 10.1016/j.bioflm.2022.100090 36389263
    [Google Scholar]
  67. Waring M.J. Lipophilicity in drug discovery. Expert Opin. Drug Discov. 2010 5 3 235 248 10.1517/17460441003605098 22823020
    [Google Scholar]
  68. Elder D. Holm R. Aqueous solubility: Simple predictive methods (in silico, in vitro and bio-relevant approaches). Int. J. Pharm. 2013 453 1 3 11 10.1016/j.ijpharm.2012.10.041 23124107
    [Google Scholar]
  69. Fortuna A. Alves G. Falcão A. The importance of permeability screening in drug discovery process: PAMPA, Caco-2 and rat everted gut assays. Pharmacology 2007 11 2 66
    [Google Scholar]
  70. Faller B. Artificial membrane assays to assess permeability. Curr. Drug Metab. 2008 9 9 886 892 10.2174/138920008786485227 18991585
    [Google Scholar]
  71. Wu X. Wang J. Tan L. Bui J. Gjerstad E. McMillan K. Zhang W. In vitro ADME profiling using high-throughput rapidfire mass spectrometry: Cytochrome p450 inhibition and metabolic stability assays. SLAS Discov. 2012 17 6 761 772 10.1177/1087057112441013 22460176
    [Google Scholar]
  72. Chiba M. Ishii Y. Sugiyama Y. Prediction of hepatic clearance in human from in vitro data for successful drug development. AAPS J. 2009 11 2 262 276 10.1208/s12248‑009‑9103‑6 19408130
    [Google Scholar]
  73. Knights K.M. In vitro drug metabolism using liver microsomes. Curr. Protoc Pharmacol. 2016 74 7.8.1 7.8.24 10.1002/cpph.9
    [Google Scholar]
  74. Reed G.A. Stability of Drugs, Drug Candidates, and Metabolites in Blood and Plasma. Curr. Protoc Pharmacol. 2016 75 7.6.1 7.6.12 10.1002/cpph.16
    [Google Scholar]
  75. Bohnert T. Gan L-S. Plasma protein binding: From discovery to development. J. Pharm. Sci. 2013 102 9 2953 2994 23798314
    [Google Scholar]
  76. Lambrinidis G. Vallianatou T. Tsantili-Kakoulidou A. In vitro, in silico and integrated strategies for the estimation of plasma protein binding. A review. Adv. Drug Deliv. Rev. 2015 86 27 45 10.1016/j.addr.2015.03.011 25819487
    [Google Scholar]
  77. Secker P.F. Schlichenmaier N. Beilmann M. Deschl U. Dietrich D.R. Functional transepithelial transport measurements to detect nephrotoxicity in vitro using the RPTEC/TERT1 cell line. Arch. Toxicol. 2019 93 7 1965 1978 10.1007/s00204‑019‑02469‑8 31076804
    [Google Scholar]
  78. Gómez-Lechón M.J. Lahoz A. Gombau L. Castell J.V. Donato M.T. In vitro evaluation of potential hepatotoxicity induced by drugs. Curr. Pharm. Des. 2010 16 17 1963 1977 10.2174/138161210791208910 20236064
    [Google Scholar]
  79. Suk H-J. Boyden E.S. van Welie I. Advances in the automation of whole-cell patch clamp technology. J. Neurosci. Methods 2019 326 108357 31336060
    [Google Scholar]
  80. Brambilla G. Martelli A. Update on genotoxicity and carcinogenicity testing of 472 marketed pharmaceuticals. Mutat. Res. 2009 681 2-3 209 229 10.1016/j.mrrev.2008.09.002 18845271
    [Google Scholar]
  81. Kilbey B.J. Handbook of mutagenicity test procedures. Elsevier 2012
    [Google Scholar]
  82. Steinberg P. In vitro-in vivo carcinogenicity. Adv. Biochem. Eng. Biotechnol. 2017 157 81 96 10.1007/10_2015_5013
    [Google Scholar]
  83. Parent-Massin D. Relevance of clonogenic assays in hematotoxicology. Cell Biol. Toxicol. 2001 17 2 87 94 10.1023/A:1010906104558 11499699
    [Google Scholar]
  84. Mahalingaiah P.K. Palenski T. Van Vleet T.R. An in vitro model of hematotoxicity: Differentiation of bone marrow–derived stem/progenitor cells into hematopoietic lineages and evaluation of lineage‐specific hematotoxicity. Curr. Protoc. Toxicol. 2018 76 1 e45 10.1002/cptx.45 30040226
    [Google Scholar]
  85. Harry G.J. Billingsley M. Bruinink A. Campbell I.L. Classen W. Dorman D.C. Galli C. Ray D. Smith R.A. Tilson H.A. In vitro techniques for the assessment of neurotoxicity. Environ. Health Perspect. 1998 106 Suppl. 1 131 158 10.1289/ehp.98106s1131 9539010
    [Google Scholar]
  86. Blum J. Masjosthusmann S. Bartmann K. Bendt F. Dolde X. Dönmez A. Förster N. Holzer A.K. Hübenthal U. Keßel H.E. Kilic S. Klose J. Pahl M. Stürzl L.C. Mangas I. Terron A. Crofton K.M. Scholze M. Mosig A. Leist M. Fritsche E. Establishment of a human cell-based in vitro battery to assess developmental neurotoxicity hazard of chemicals. Chemosphere 2023 311 Pt 2 137035 10.1016/j.chemosphere.2022.137035 36328314
    [Google Scholar]
  87. Li M. Fokkink R. Ni Y. Kleijn J.M. Bovine beta-casein micelles as delivery systems for hydrophobic flavonoids. Food Hydrocoll. 2019 96 653 662 10.1016/j.foodhyd.2019.06.005
    [Google Scholar]
  88. Tai T.T. Wu T.J. Wu H.D. Tsai Y.C. Wang H.T. Wang A.M. Shih S.F. Chen Y.C. A strategy to treat covid‐19 disease with targeted delivery of inhalable liposomal hydroxychloroquine: A preclinical pharmacokinetic study. Clin. Transl. Sci. 2021 14 1 132 136 10.1111/cts.12923 33135382
    [Google Scholar]
  89. Cefali L.C. Ataide J.A. Fernandes A.R. Sousa I.M.O. Gonçalves F.C.S. Eberlin S. Dávila J.L. Jozala A.F. Chaud M.V. Sanchez-Lopez E. Marto J. d’Ávila M.A. Ribeiro H.M. Foglio M.A. Souto E.B. Gava Mazzola P. Flavonoid-enriched plant-extract-loaded emulsion: A novel phytocosmetic sunscreen formulation with antioxidant properties. Antioxidants 2019 8 10 443 10.3390/antiox8100443 31581509
    [Google Scholar]
  90. Khan A.W. Kotta S. Ansari S.H. Sharma R.K. Ali J. Self-nanoemulsifying drug delivery system (SNEDDS) of the poorly water-soluble grapefruit flavonoid Naringenin: design, characterization, in vitro and in vivo evaluation. Drug Deliv. 2015 22 4 552 561 10.3109/10717544.2013.878003 24512268
    [Google Scholar]
  91. Tan M. He C. Jiang W. Zeng C. Yu N. Huang W. Gao Z. Xing J. Development of solid lipid nanoparticles containing total flavonoid extract from Dracocephalum moldavica L. and their therapeutic effect against myocardial ischemia–reperfusion injury in rats. Int. J. Nanomedicine 2017 12 3253 3265 10.2147/IJN.S131893 28458544
    [Google Scholar]
  92. Bim-Júnior O. Gaglieri C. Bedran-Russo A.K. Bueno-Silva B. Bannach G. Frem R. Ximenes V.F. Lisboa-Filho P.N. MOF-based erodible system for on-demand release of bioactive flavonoid at the polymer–tissue interface. ACS Biomater. Sci. Eng. 2020 6 8 4539 4550 10.1021/acsbiomaterials.0c00564 33455170
    [Google Scholar]
  93. Zlotnikov I.D. Belogurova N.G. Poddubnaya I.V. Kudryashova E.V. Mucosal adhesive chitosan nanogel formulations of antibiotics and adjuvants (terpenoids, flavonoids, etc.) and their potential for the treatment of infectious diseases of the gastrointestinal tract. Pharmaceutics 2023 15 9 2353 10.3390/pharmaceutics15092353 37765322
    [Google Scholar]
  94. Tokunaga S. Uchikoshi C. Hayashi K. Suzuki H. Ito M. Noguchi S. Novel pharmaceutical cocrystals and solvate crystals of nobiletin, a citrus flavonoid with potent pharmacological activity. Chem. Pharm. Bull. 2023 71 8 633 640 10.1248/cpb.c23‑00109 37532533
    [Google Scholar]
  95. Gujar K. Wairkar S. Nanocrystal technology for improving therapeutic efficacy of flavonoids. Phytomedicine 2020 71 153240 10.1016/j.phymed.2020.153240 32450461
    [Google Scholar]
  96. Vijaya Bhaskar Reddy A. Yusop Z. Jaafar J. Madhavi V. Madhavi G. Advances in drug discovery: Impact of genomics and role of analytical instrumentation. Curr. Drug Discov. Technol. 2016 13 4 211 224 10.2174/1570163813666160930122643 27697028
    [Google Scholar]
  97. Kamai Y. Kubota M. Kamai Y. Hosokawa T. Fukuoka T. Filler S.G. New model of oropharyngeal candidiasis in mice. Antimicrob. Agents Chemother. 2001 45 11 3195 3197 10.1128/AAC.45.11.3195‑3197.2001 11600377
    [Google Scholar]
  98. Dorsaz S. Coste A.T. Sanglard D. Red-shifted firefly luciferase optimized for Candida albicans in vivo bioluminescence imaging. Front. Microbiol. 2017 8 1478 10.3389/fmicb.2017.01478 28824601
    [Google Scholar]
  99. Mosci P. Pericolini E. Gabrielli E. Kenno S. Perito S. Bistoni F. d’Enfert C. Vecchiarelli A. A novel bioluminescence mouse model for monitoring oropharyngeal candidiasis in mice. Virulence 2013 4 3 250 254 10.4161/viru.23529 23334179
    [Google Scholar]
  100. Samaranayake Y.H. Samaranayake L.P. Experimental oral candidiasis in animal models. Clin. Microbiol. Rev. 2001 14 2 398 429 10.1128/CMR.14.2.398‑429.2001 11292645
    [Google Scholar]
  101. Fischer I. Milton C. Wallace H. Toxicity testing is evolving! Toxicol. Res. 2020 9 2 67 80 10.1093/toxres/tfaa011 32440338
    [Google Scholar]
  102. Reddy J. Madishetti S. Vachaspati P.R. Fast mouse PK (Fast PK): A rapid screening method to increase pharmacokinetic throughput in pre-clinical drug discovery. Eur. J. Pharm. Sci. 2012 47 2 444 450 10.1016/j.ejps.2012.07.001 22789493
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010374288250612065712
Loading
/content/journals/cpb/10.2174/0113892010374288250612065712
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test