Skip to content
2000
image of Research Progress on the Effects of Anthocyanins on Cognitive Function and Their Underlying Mechanisms

Abstract

introduction

This review aims to systematically investigate the existing research on the effects of anthocyanins on cognitive functions and their underlying mechanisms involved. It provides detailed insights into their development and potential applications.

Method

An extensive review and analysis of various animal experiments and human studies were performed using databases, such as Web of Science, Sci-Hub, EI, ScienceDirect, and PubMed. The keywords, titles, or abstracts searched included, but were not limited to, 'Anthocyanin', 'Cognition', 'Anti-inflammatory', 'Antioxidation', 'Autophagy', and 'Insulin resistance'. The search was conducted covering the period from January 2017 to November 2025. Our aim was to summarize the evidence concerning the impact of anthocyanins on cognitive functions and to explore their underlying mechanisms. We analyzed these mechanisms in terms of antioxidant activity, reduction of neuroinflammation, regulation of autophagy-related pathways, and central insulin sensitivity.

Result

A substantial body of research has indicated that anthocyanins exert beneficial effects on cognitive function. In models exhibiting cognitive impairment, supplementation with anthocyanins has been shown to significantly improve cognitive capabilities. The underlying mechanisms of action are primarily attributed to the following factors: the strong antioxidant properties of anthocyanins, which effectively neutralize free radicals in the brain, thereby diminishing oxidative stress and protecting neuronal integrity and functionality; the inhibition of neuroinflammatory responses, which alleviates the detrimental impact of inflammatory agents on neural tissues and contributes to the maintenance of the brain's homeostatic environment; and the regulation of autophagy-related pathways and central insulin sensitivity, which collectively reduce damage to proteins linked to cognitive function and enhance learning and memory processes.

Discussion

As the global population ages rapidly and the prevalence of cognitive decline-related diseases, like Alzheimer's, increases, there is a pressing need to create medications that can improve cognitive abilities. Researchers are paying close attention to anthocyanins, natural substances found in plants such as blueberries and purple grapes, due to their significant potential to influence cognitive functions. Nonetheless, further clinical trials are necessary to validate the appropriate dosage and bioavailability of anthocyanins, and certain limitations must be acknowledged.

Conclusion

In the present study, it was found that anthocyanins can improve cognitive impairment in both humans and animals. Their mechanisms of action primarily involve anti-inflammatory effects, antioxidant activity, modulation of autophagy, and the reduction of central insulin resistance. This research lays the groundwork for future studies on the role of anthocyanins in cognitive function.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010396692250826091442
2025-08-28
2025-11-05
Loading full text...

Full text loading...

References

  1. Petersen R.C. Lopez O. Armstrong M.J. Getchius T.S.D. Ganguli M. Gloss D. Gronseth G.S. Marson D. Pringsheim T. Day G.S. Sager M. Stevens J. Rae-Grant A. Practice guideline update summary: Mild cognitive impairment [RETIRED] Neurology 2018 90 3 126 135 10.1212/WNL.0000000000004826 29282327
    [Google Scholar]
  2. Li B. Tang H. He G. Jin Z. He Y. Huang P. He N. Chen S. Tai Chi enhances cognitive training effects on delaying cognitive decline in mild cognitive impairment. Alzheimers Dement. 2023 19 1 136 149 10.1002/alz.12658 35290704
    [Google Scholar]
  3. Kiani L. A biomarker for mild cognitive impairment. Nat. Rev. Neurol. 2023 19 8 459 37402806
    [Google Scholar]
  4. Amrapala A. Sabé M. Solmi M. Maes M. Neuropsychiatric disturbances in mild cognitive impairment: A scientometric analysis. Ageing Res. Rev. 2023 92 102129 10.1016/j.arr.2023.102129 37981054
    [Google Scholar]
  5. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  6. Goldfarb D. Sheard S. Shaughnessy L. Atri A. Disclosure of Alzheimer’s disease and dementia. J. Clin. Psychiatry 2019 80 2 MS18002BR1C 10.4088/JCP.MS18002BR1C 30900850
    [Google Scholar]
  7. Better M.A. 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023 19 4 1598 1695 10.1002/alz.13016 36918389
    [Google Scholar]
  8. Gale S.A. Acar D. Daffner K.R. Dementia. Am. J. Med. 2018 131 10 1161 1169 10.1016/j.amjmed.2018.01.022 29425707
    [Google Scholar]
  9. Elahi F.M. Miller B.L. A clinicopathological approach to the diagnosis of dementia. Nat. Rev. Neurol. 2017 13 8 457 476 10.1038/nrneurol.2017.96 28708131
    [Google Scholar]
  10. Ball H.A. McWhirter L. Ballard C. Bhome R. Blackburn D.J. Edwards M.J. Fleming S.M. Fox N.C. Howard R. Huntley J. Isaacs J.D. Larner A.J. Nicholson T.R. Pennington C.M. Poole N. Price G. Price J.P. Reuber M. Ritchie C. Rossor M.N. Schott J.M. Teodoro T. Venneri A. Stone J. Carson A.J. Functional cognitive disorder: Dementia’s blind spot. Brain 2020 143 10 2895 2903 10.1093/brain/awaa224 32791521
    [Google Scholar]
  11. Cai D. Li X. Chen J. Jiang X. Ma X. Sun J. Tian L. Vidyarthi S.K. Xu J. Pan Z. Bai W. A comprehensive review on innovative and advanced stabilization approaches of anthocyanin by modifying structure and controlling environmental factors. Food Chem. 2022 366 130611 10.1016/j.foodchem.2021.130611 34388403
    [Google Scholar]
  12. Wang J. Zhao Y. Sun B. Yang Y. Wang S. Feng Z. Li J. The structure of anthocyanins and the copigmentation by common micromolecular copigments: A review. Food Res. Int. 2024 176 113837 10.1016/j.foodres.2023.113837 38163689
    [Google Scholar]
  13. Van de Velde F. Esposito D. Grace M.H. Pirovani M.E. Lila M.A. Anti-inflammatory and wound healing properties of polyphenolic extracts from strawberry and blackberry fruits. Food Res. Int. 2019 121 453 462 10.1016/j.foodres.2018.11.059 31108769
    [Google Scholar]
  14. Lee S.G. Brownmiller C.R. Lee S.O. Kang H.W. Anti-inflammatory and antioxidant effects of anthocyanins of Trifolium pratense (Red Clover) in lipopolysaccharide-stimulated RAW-267.4 macrophages. Nutrients 2020 12 4 1089 10.3390/nu12041089 32326385
    [Google Scholar]
  15. Blesso C.N. Dietary anthocyanins and human health. Nutrients 2019 11 9 2107 10.3390/nu11092107 31491856
    [Google Scholar]
  16. Posadino A.M. Giordo R. Ramli I. Zayed H. Nasrallah G.K. Wehbe Z. Eid A.H. Gürer E.S. Kennedy J.F. Aldahish A.A. Calina D. Razis A.F.A. Modu B. Habtemariam S. Sharifi-Rad J. Pintus G. Cho W.C. An updated overview of cyanidins for chemoprevention and cancer therapy. Biomed. Pharmacother. 2023 163 114783 10.1016/j.biopha.2023.114783 37121149
    [Google Scholar]
  17. Zhang B. Wu J.D. Wang Q. Wang S.Y. Zhou P.P. Han L.T. Exploring the relationship between metal ion valency and electron transfer in copigmentation processes of cyanidin-3-O-glucoside in simulated fruit wine solutions. Curr. Res. Food. Sci 2024 9 100849 10.1016/j.crfs.2024.100849 39319110
    [Google Scholar]
  18. Li Y. Wang S. Zhao Q. Wang Q. Yang Z. Jia Q. Integrating metabolomics and transcriptomics comprehensively reveals the global metabolic differences in three species of Nitraria berries. Sci. Rep. 2025 15 1 15507 10.1038/s41598‑025‑00445‑0 40319076
    [Google Scholar]
  19. Maaz M. Sultan M.T. Noman A.M. Zafar S. Tariq N. Hussain M. Imran M. Mujtaba A. Yehuala T.F. Mostafa E.M. Selim S. Al Jaouni S.K. Alsagaby S.A. Al Abdulmonem W. Anthocyanins: From natural colorants to potent anticancer agents. Food Sci. Nutr. 2025 13 5 70232 10.1002/fsn3.70232 40321606
    [Google Scholar]
  20. Voss D.M. Miyagusuku-Cruzado G. Giusti M.M. Thermal stability comparison between 10-catechyl-pyranoanthocyanins and anthocyanins derived from pelargonidin, cyanidin, and malvidin. Food Chem. 2023 403 134305 10.1016/j.foodchem.2022.134305 36182854
    [Google Scholar]
  21. Yue L. Li Y. Luo Y. Alarfaj A.A. Shi Y. Pelargonidin inhibits cell growth and promotes oxidative stress‐mediated apoptosis in lung cancer A549 cells. Biotechnol. Appl. Biochem. 2024 71 5 1195 1203 10.1002/bab.2621 38853344
    [Google Scholar]
  22. Han X. Gao Y. Chen X. Bian C. Chen W. Yan F. Mitochondria UPR stimulation by pelargonidin-3-glucoside contributes to ameliorating lipid accumulation under copper exposure. Sci. Total Environ. 2024 942 173603 10.1016/j.scitotenv.2024.173603 38821275
    [Google Scholar]
  23. Zan W. Wu Q. Dou S. Wang Y. Zhu Z. Xing S. Yu Y. Analysis of flower color diversity revealed the co-regulation of cyanidin and peonidin in the red petals coloration of Rosa rugosa. Plant Physiol. Biochem. 2024 216 109126 10.1016/j.plaphy.2024.109126 39288572
    [Google Scholar]
  24. Khalifa I. Li Z. Zou X. Nawaz A. Walayat N. Manoharadas S. Sobhy R. RuBisCo can conjugate and stabilize peonidin-3-O-p-coumaroylrutinoside-5-O-glucoside in isotonic sport models: Mechanisms from kinetics, multispectral, and libDock assays. Food Chem. 2024 438 138006 10.1016/j.foodchem.2023.138006 37989023
    [Google Scholar]
  25. Shao Q. Chen M. Cheng S. Lin H. Lin B. Lin H. Liu J. Zhu H. Preliminary analysis of the formation mechanism of floret color in broccoli (Brassica oleracea L var. italica) based on transcriptomics and targeted metabolomics. Plants 2025 14 6 849 10.3390/plants14060849 40265788
    [Google Scholar]
  26. Toccaceli M. Marinelli A. Ballabio F. Bassolino L. Scalzo R.L. Parisi B. Pacifico D. Nicoletti F. Camilloni C. Mandolino G. Petroni K. Preventive effect of upland pigmented potatoes against lps‐induced inflammation in THP‐1 macrophages. Mol. Nutr. Food Res. 2025 70073 10.1002/mnfr.70073 40277304
    [Google Scholar]
  27. Buchweitz M. Speth M. Kammerer D.R. Carle R. Stabilisation of strawberry (Fragaria x ananassa Duch.) anthocyanins by different pectins. Food Chem. 2013 141 3 2998 3006 10.1016/j.foodchem.2013.04.117 23871051
    [Google Scholar]
  28. McGuire J. Taguchi T. Tombline G. Paige V. Janelsins M. Gilmore N. Seluanov A. Gorbunova V. Hyaluronidase inhibitor delphinidin inhibits cancer metastasis. Sci. Rep. 2024 14 1 14958 10.1038/s41598‑024‑64924‑6 38942920
    [Google Scholar]
  29. Bahar M.E. Hwang J.S. Lai T.H. Byun J.H. Kim D.H. Kim D.R. The survival of human intervertebral disc nucleus pulposus cells under oxidative stress relies on the autophagy triggered by delphinidin. Antioxidants 2024 13 7 759 10.3390/antiox13070759 39061828
    [Google Scholar]
  30. Ali B.M. Elbaz E.M. Al-Mokaddem A.K. El-Emam S.Z. Awny M.M. Delphinidin or α‐amyrin attenuated liver steatosis and metabolic disarrangement in rats fed a high‐fat diet. Biofactors 2025 51 1 2133 10.1002/biof.2133 39431734
    [Google Scholar]
  31. Wu G. Zhao Z. Hu J. Li Y. Sun J. Bai W. Optimized synthesis and antioxidant activity of anthocyanins delphinidin-3- O -glucoside and petunidin-3- O -glucoside. J. Agric. Food Chem. 2024 72 26 15005 15012 10.1021/acs.jafc.4c03237 38888327
    [Google Scholar]
  32. Zhang W. Shen Y. Li Z. Xie X. Gong E.S. Tian J. Si X. Wang Y. Gao N. Shu C. Meng X. Li B. Liu R.H. Effects of high hydrostatic pressure and thermal processing on anthocyanin content, polyphenol oxidase and β-glucosidase activities, color, and antioxidant activities of blueberry (Vaccinium Spp.) puree. Food Chem. 2021 342 128564 10.1016/j.foodchem.2020.128564 33223299
    [Google Scholar]
  33. Yang S.Y. Kim J.H. Su X. Kim J.A. The luteolinidin and petunidin 3-O-glucoside: A competitive inhibitor of tyrosinase. Molecules 2022 27 17 5703 10.3390/molecules27175703 36080469
    [Google Scholar]
  34. Sampaio S.L. Lonchamp J. Dias M.I. Liddle C. Petropoulos S.A. Glamočlija J. Alexopoulos A. Santos-Buelga C. Ferreira I.C.F.R. Barros L. Anthocyanin-rich extracts from purple and red potatoes as natural colourants: Bioactive properties, application in a soft drink formulation and sensory analysis. Food Chem. 2021 342 128526 10.1016/j.foodchem.2020.128526 33223300
    [Google Scholar]
  35. Yirui L. Tao L. Ruowu L. Jiao Z. Jing Z. Xiaodong X. Yan Y. Bachert C. Jintao D. Luo B. Malvidin from Malva sylvestris L. ameliorates allergic responses in ovalbumin-induced allergic rhinitis mouse model via the STAT6/GATA3 pathway. Am. J. Rhinol. Allergy 2024 38 6 403 412 10.1177/19458924241272944 39135425
    [Google Scholar]
  36. Xie J. Sameen D.E. Xiao Z. Zhu H. Lai Y. Tang T. Rong X. Fu F. Qin W. Chen M. Liu Y. Protecting anthocyanins of postharvest blueberries through konjac glucomannan/low-acyl gellan gum coatings contained thymol microcapsule during low-temperature storage. Food Chem. 2025 463 Pt 2 141347 10.1016/j.foodchem.2024.141347 39357109
    [Google Scholar]
  37. Lin L. Li K. Hua Y. Liao S. Chen J. Tan L. Yang Y. Sun B. Tang Q. Xu W. Dynamic changes of anthocyanins during ‘Ziyan’ tea wine processing. Food Chem. X 2024 24 101799 10.1016/j.fochx.2024.101799 39290755
    [Google Scholar]
  38. Godos J. Caraci F. Castellano S. Currenti W. Galvano F. Ferri R. Grosso G. Association between dietary flavonoids intake and cognitive function in an italian cohort. Biomolecules 2020 10 9 1300 10.3390/biom10091300 32916935
    [Google Scholar]
  39. Bondonno C.P. Bondonno N.P. Dalgaard F. Murray K. Gardener S.L. Martins R.N. Rainey-Smith S.R. Cassidy A. Lewis J.R. Croft K.D. Kyrø C. Gislason G. Scalbert A. Tjønneland A. Overvad K. Hodgson J.M. Flavonoid intake and incident dementia in the danish diet, cancer, and health cohort. Alzheimers Dement. 2021 7 1 12175 10.1002/trc2.12175 34027025
    [Google Scholar]
  40. Ono K. Zhao D. Wu Q. Simon J. Wang J. Radu A. Pasinetti G.M. Pine bark polyphenolic extract attenuates amyloid-β and tau misfolding in a model system of alzheimer’s disease neuropathology. J. Alzheimers Dis. 2020 73 4 1597 1606 10.3233/JAD‑190543 31958081
    [Google Scholar]
  41. Navarro-Hortal M.D. Romero-Márquez J.M. Esteban-Muñoz A. Sánchez-González C. Rivas-García L. Llopis J. Cianciosi D. Giampieri F. Sumalla-Cano S. Battino M. Quiles J.L. Strawberry (Fragaria × ananassa cv. Romina) methanolic extract attenuates Alzheimer’s beta amyloid production and oxidative stress by SKN-1/NRF and DAF-16/FOXO mediated mechanisms in C. elegans. Food Chem. 2022 372 131272 10.1016/j.foodchem.2021.131272 34628121
    [Google Scholar]
  42. Agarwal P. Holland T.M. James B.D. Cherian L.J. Aggarwal N.T. Leurgans S.E. Bennett D.A. Schneider J.A. Pelargonidin and berry intake association with Alzheimer’s disease neuropathology: A community-based study. J. Alzheimers Dis. 2022 88 2 653 661 10.3233/JAD‑215600 35694918
    [Google Scholar]
  43. Rosli H. Shahar S. Rajab N.F. Che Din N. Haron H. The effects of polyphenols-rich tropical fruit juice on cognitive function and metabolomics profile – a randomized controlled trial in middle-aged women. Nutr. Neurosci. 2022 25 8 1577 1593 10.1080/1028415X.2021.1880312 33666540
    [Google Scholar]
  44. Borda M.G. Barreto G.E. Baldera J.P. de Lucia C. Khalifa K. Bergland A.K. Pola I. Botero-Rodríguez F. Siow R.C. Kivipelto M. Zetterberg H. Ashton N.J. Ballard C. Aarsland D. A randomized, placebo-controlled trial of purified anthocyanins on cognitive function in individuals at elevated risk for dementia: Analysis of inflammatory biomarkers toward personalized interventions. Exp. Gerontol. 2024 196 112569 10.1016/j.exger.2024.112569 39226946
    [Google Scholar]
  45. Kent K. Yousefi M. do Rosario V.A. Fitzgerald Z. Broyd S. Visentin D. Roodenrys S. Walton K. Charlton K.E. Anthocyanin intake is associated with improved memory in older adults with mild cognitive impairment. Nutr. Res. 2022 104 36 43 10.1016/j.nutres.2022.04.003 35597230
    [Google Scholar]
  46. Aarsland D. Khalifa K. Bergland A.K. Soennesyn H. Oppedal K. Holteng L.B.A. Oesterhus R. Nakling A. Jarholm J.A. de Lucia C. Fladby T. Brooker H. Dalen I. Ballard C. A randomised placebo-controlled study of purified anthocyanins on cognition in individuals at increased risk for dementia. Am. J. Geriatr. Psychiatry 2023 31 2 141 151 10.1016/j.jagp.2022.10.002 36372613
    [Google Scholar]
  47. Miller M.G. Thangthaeng N. Rutledge G.A. Scott T.M. Shukitt-Hale B. Dietary strawberry improves cognition in a randomised, double-blind, placebo-controlled trial in older adults. Br. J. Nutr. 2021 126 2 253 263 10.1017/S0007114521000222 33468271
    [Google Scholar]
  48. Nakamura S. Ikeuchi T. Araki A. Kasuga K. Watanabe K. Hirayama M. Ito M. Ohtsubo K. Possibility for prevention of type 2 diabetes mellitus and dementia using three kinds of brown rice blends after high-pressure treatment. Foods 2022 11 6 818 10.3390/foods11060818 35327240
    [Google Scholar]
  49. Wood E. Hein S. Mesnage R. Fernandes F. Abhayaratne N. Xu Y. Zhang Z. Bell L. Williams C. Rodriguez-Mateos A. Wild blueberry (poly)phenols can improve vascular function and cognitive performance in healthy older individuals: A double-blind randomized controlled trial. Am. J. Clin. Nutr. 2023 117 6 1306 1319 10.1016/j.ajcnut.2023.03.017 36972800
    [Google Scholar]
  50. Bell L. Williams C.M. A pilot dose–response study of the acute effects of haskap berry extract (Lonicera caerulea L.) on cognition, mood, and blood pressure in older adults. Eur. J. Nutr. 2019 58 8 3325 3334 10.1007/s00394‑018‑1877‑9 30535796
    [Google Scholar]
  51. Wattanathorn J. Tong-un T. Thukham-mee W. Paholpak P. Rangseekhajee P.A. Randomized, double-blind, placebo-controlled study of an anthocyanin-rich functional ingredient on cognitive function and eye dryness in late adulthood volunteers: Roles of epigenetic and gut microbiome modulations. Nutrients 2023 15 16 3499 10.3390/nu15163499 37630690
    [Google Scholar]
  52. Krikorian R. Skelton M.R. Summer S.S. Shidler M.D. Sullivan P.G. Blueberry supplementation in midlife for dementia risk reduction. Nutrients 2022 14 8 1619 10.3390/nu14081619 35458181
    [Google Scholar]
  53. Kimble R. Keane K.M. Lodge J.K. Cheung W. Haskell-Ramsay C.F. Howatson G. Polyphenol-rich tart cherries (Prunus Cerasus, cv Montmorency) improve sustained attention, feelings of alertness and mental fatigue and influence the plasma metabolome in middle-aged adults: A randomised, placebo-controlled trial. Br. J. Nutr. 2022 128 12 2409 2420 10.1017/S0007114522000460 35109960
    [Google Scholar]
  54. Wen H. Cui H. Tian H. Zhang X. Ma L. Ramassamy C. Li J. Isolation of neuroprotective anthocyanins from black chokeberry (Aronia melanocarpa) against amyloid-β-induced cognitive impairment. Foods 2020 10 1 63 10.3390/foods10010063 33383966
    [Google Scholar]
  55. Lee A.Y. Choi J.M. Lee Y.A. Shin S.H. Cho E.J. Beneficial effect of black rice (Oryza sativa L. var. japonica) extract on amyloid β-induced cognitive dysfunction in a mouse model. Exp. Ther. Med. 2020 20 5 64 10.3892/etm.2020.9192 32963594
    [Google Scholar]
  56. Baek H. Sanjay; Park, M.; Lee, H-J. Cyanidin-3-O-glucoside protects the brain and improves cognitive function in APPswe/PS1ΔE9 transgenic mice model. J. Neuroinflammation 2023 20 1 268 10.1186/s12974‑023‑02950‑3 37907981
    [Google Scholar]
  57. Li H. Zheng T. Lian F. Xu T. Yin W. Jiang Y. Anthocyanin-rich blueberry extracts and anthocyanin metabolite protocatechuic acid promote autophagy-lysosomal pathway and alleviate neurons damage in in vivo and in vitro models of Alzheimer’s disease. Nutrition 2022 93 111473 10.1016/j.nut.2021.111473 34739938
    [Google Scholar]
  58. Vauzour D. Rendeiro C. D’Amato A. Waffo-Téguo P. Richard T. Mérillon J.M. Pontifex M.G. Connell E. Müller M. Butler L.T. Williams C.M. Spencer J.P.E. Anthocyanins promote learning through modulation of synaptic plasticity related proteins in an animal model of ageing. Antioxidants 2021 10 8 1235 10.3390/antiox10081235 34439483
    [Google Scholar]
  59. Fan Z. Wen H. Zhang X. Li J. Zang J. Cyanidin 3- O -β-galactoside alleviated cognitive impairment in mice by regulating brain energy metabolism during aging. J. Agric. Food Chem. 2022 70 4 1111 1121 10.1021/acs.jafc.1c06240 35040318
    [Google Scholar]
  60. Zhang N. Jing P. Red cabbage anthocyanins attenuate cognitive impairment by attenuating neuroinflammation and regulating gut microbiota in aging mice. J. Agric. Food Chem. 2023 71 41 15064 15072 10.1021/acs.jafc.3c03183 37781995
    [Google Scholar]
  61. Shimada M. Maeda H. Nanashima N. Yamada K. Nakajima A. Anthocyanin‐rich blackcurrant extract improves long‐term memory impairment and emotional abnormality in senescence‐accelerated mice. J. Food Biochem. 2022 46 10 14295 10.1111/jfbc.14295 35790009
    [Google Scholar]
  62. Medina dos Santos N. Batista Â.G. Padilha Mendonça M.C. Figueiredo Angolini C.F. Grimaldi R. Pastore G.M. Sartori C.R. Alice da Cruz-Höfling M. Maróstica Júnior M.R. Açai pulp improves cognition and insulin sensitivity in obese mice. Nutr. Neurosci. 2024 27 1 55 65 10.1080/1028415X.2022.2158931 36625400
    [Google Scholar]
  63. Wang B. Tang X. Mao B. Zhang Q. Tian F. Zhao J. Chen W. Cui S. Effects of in vitro fecal fermentation on the metabolism and antioxidant properties of cyanidin-3-O-glucoside. Food Chem. 2024 431 137132 10.1016/j.foodchem.2023.137132 37598654
    [Google Scholar]
  64. Li X. Wang X. Wang K. Yang X. Liu X. Chen J. Li J. Wang J. Guo Q. Wang H. Black rice anthocyanin extract enhances the antioxidant capacity in PC12 cells and improves the lifespan by activating IIS pathway in Caenorhabditis elegans. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2023 265 109533 10.1016/j.cbpc.2022.109533 36549628
    [Google Scholar]
  65. Zhu C. Lü H. Du L. Li J. Chen H. Zhao H. Wu W. Chen J. Li W. Five blueberry anthocyanins and their antioxidant, hypoglycemic, and hypolipidemic effects in vitro. Front. Nutr. 2023 10 1172982 10.3389/fnut.2023.1172982 37275633
    [Google Scholar]
  66. May N. de Sousa Alves Neri J.L. Clunas H. Shi J. Parkes E. Dongol A. Wang Z. Jimenez Naranjo C. Yu Y. Huang X.F. Charlton K. Weston-Green K. Investigating the therapeutic potential of plants and plant-based medicines: Relevance to antioxidant and neuroprotective effects. Nutrients 2023 15 18 3912 10.3390/nu15183912 37764696
    [Google Scholar]
  67. Pacheco S.M. Soares M.S.P. Gutierres J.M. Gerzson M.F.B. Carvalho F.B. Azambuja J.H. Schetinger M.R.C. Stefanello F.M. Spanevello R.M. Anthocyanins as a potential pharmacological agent to manage memory deficit, oxidative stress and alterations in ion pump activity induced by experimental sporadic dementia of Alzheimer’s type. J. Nutr. Biochem. 2018 56 193 204 10.1016/j.jnutbio.2018.02.014 29587242
    [Google Scholar]
  68. Khan M.S. Ali T. Kim M.W. Jo M.H. Chung J.I. Kim M.O. RETRACTED ARTICLE: Anthocyanins improve hippocampus-dependent memory function and prevent neurodegeneration via JNK/Akt/GSK3β signaling in LPS-treated adult mice. Mol. Neurobiol. 2019 56 1 671 687 10.1007/s12035‑018‑1101‑1 29779175
    [Google Scholar]
  69. Nazir M. Haq M.A. Ali S.A. Antioxidants and antidiabetic potential of polyphenolic fractions and crude extracts of Rhus coriaria L. fruit, Punica granatum L. peel, and Terminalia catappa L. leaves: In vitro and in vivo evaluation. Chem. Biodivers. 2025 e202500020 10.1002/cbdv.202500020
    [Google Scholar]
  70. Chen X. Zhou N. Yu L. Han Z. Guo Y. Ndombi S.N. Zhang H. Jiang J. Duan Y. Zou Z. Ma Y. Zhu X. Chen S. Fang W. Plant resistance inducer AMHA enhances antioxidant capacities to promote cold tolerance by regulating the upgrade of glutathione S-transferase in tea plant. Hortic. Res. 2025 12 6 uhaf073 10.1093/hr/uhaf073 40303428
    [Google Scholar]
  71. Li X. Yang M. Du X. Zhao C. Guo X. Tang Z. Comparative metabolomic profiling and biomarker identification reveal nutritional and antioxidant differences between Prunus tomentosa and Prunus avium. Food Chem. X 2025 27 102485 10.1016/j.fochx.2025.102485 40290471
    [Google Scholar]
  72. Zhou D. Cai L. Xu J. Fu D. Yan L. Xie L. Exploring the mitigating potential of anthocyanin Malvidin in a mouse model of bleomycin-induced pulmonary fibrosis by inhibiting NLRP3 inflammasome activation and oxidative stress. J. Inflamm. 2025 22 1 14 10.1186/s12950‑025‑00441‑1 40165218
    [Google Scholar]
  73. Wei J. Tan Z. Huang G. Zeng Y. Chen S. Yuan G. He S. Zhou Y. Anthocyanins delay D‐galactose–induced mouse liver aging by regulating the NF ‐ κB/IKK signaling pathway. Food Sci. Nutr. 2025 13 4 70161 10.1002/fsn3.70161 40255558
    [Google Scholar]
  74. do Rosario V.A. Fitzgerald Z. Broyd S. Paterson A. Roodenrys S. Thomas S. Bliokas V. Potter J. Walton K. Weston-Green K. Yousefi M. Williams D. Wright I.M.R. Charlton K. Food anthocyanins decrease concentrations of TNF-α in older adults with mild cognitive impairment: A randomized, controlled, double blind clinical trial. Nutr. Metab. Cardiovasc. Dis. 2021 31 3 950 960 10.1016/j.numecd.2020.11.024 33546942
    [Google Scholar]
  75. Bergland A.K. Soennesyn H. Dalen I. Rodriguez-Mateos A. Berge R.K. Giil L.M. Rajendran L. Siow R. Tassotti M. Larsen A.I. Aarsland D. Effects of anthocyanin supplementation on serum lipids, glucose, markers of inflammation and cognition in adults with increased risk of dementia – a pilot study. Front. Genet. 2019 10 536 10.3389/fgene.2019.00536 31244884
    [Google Scholar]
  76. Sanjay; Shin, J. H.; Park, M. Cyanidin-3-O-glucoside regulates the M1/M2 polarization of microglia via PPARγ and Aβ42 phagocytosis through TREM2 in an Alzheimer’s disease model. Mol. Neurobiol. 2022 59 8 5135 5148
    [Google Scholar]
  77. Li J. Zhao R. Jiang Y. Xu Y. Zhao H. Lyu X. Wu T. Bilberry anthocyanins improve neuroinflammation and cognitive dysfunction in APP/PSEN1 mice via the CD33/TREM2/TYROBP signaling pathway in microglia. Food Funct. 2020 11 2 1572 1584 10.1039/C9FO02103E 32003387
    [Google Scholar]
  78. Serra D. Henriques J.F. Sousa F.J. Laranjo M. Resende R. Ferreira-Marques M. de Freitas V. Silva G. Peça J. Dinis T.C.P. Almeida L.M. Attenuation of autism-like behaviors by an anthocyanin-rich extract from portuguese blueberries via microbiota–gut–brain axis modulation in a valproic acid mouse model. Int. J. Mol. Sci. 2022 23 16 9259 10.3390/ijms23169259 36012528
    [Google Scholar]
  79. Alshehri S. Imam S.S. Rosinidin attenuates lipopolysaccharide-induced memory impairment in rats: Possible mechanisms of action include antioxidant and anti-inflammatory effects. Biomolecules 2021 11 12 1747 10.3390/biom11121747 34944391
    [Google Scholar]
  80. Kim J.N. Han S.N. Kim H.K. Anti-inflammatory and anti-diabetic effect of black soybean anthocyanins: Data from a dual cooperative cellular system. Molecules 2021 26 11 3363 10.3390/molecules26113363 34199668
    [Google Scholar]
  81. Fan H. Cui J. Liu F. Zhang W. Yang H. He N. Dong Z. Dong J. Malvidin protects against lipopolysaccharide-induced acute liver injury in mice via regulating Nrf2 and NLRP3 pathways and suppressing apoptosis and autophagy. Eur. J. Pharmacol. 2022 933 175252 10.1016/j.ejphar.2022.175252 36063870
    [Google Scholar]
  82. Alharbi K.S. Afzal M. Alzarea S.I. Khan S.A. Alomar F.A. Kazmi I. Rosinidin protects streptozotocin-induced memory impairment-activated neurotoxicity by suppressing oxidative stress and inflammatory mediators in rats. Medicina 2022 58 8 993 10.3390/medicina58080993 35893108
    [Google Scholar]
  83. Fang Z. Luo Y. Ma C. Dong L. Chen F. Blueberry anthocyanins extract attenuates acrylamide‐induced oxidative stress and neuroinflammation in rats. Oxid. Med. Cell. Longev. 2022 2022 1 7340881 10.1155/2022/7340881 35651724
    [Google Scholar]
  84. Chen Y. Qi W. Peng W. Fang W. Song G. Hao Y. Wang Y. Cyanidin-3-glucoside improves cognitive impairment in naturally aging mice by modulating the gut microbiota and activating the ERK/CREB/BDNF pathway. Food Res. Int. 2025 208 116086 10.1016/j.foodres.2025.116086 40263878
    [Google Scholar]
  85. Petkova-Parlapanska K. Stefanov I. Ananiev J. Georgiev T. Hadzhibozheva P. Petrova-Tacheva V. Kaloyanov N. Georgieva E. Nikolova G. Karamalakova Y. Sambucus nigra-Lyophilized Fruit Extract Attenuated Acute Redox–Homeostatic Imbalance via Mutagenic and Oxidative Stress Modulation in Mice Model on Gentamicin-Induced Nephrotoxicity. Pharmaceuticals 2025 18 1 85 10.3390/ph18010085 39861148
    [Google Scholar]
  86. Borda M.G. Ramírez-Vélez R. Botero-Rodriguez F. Patricio-Baldera J. de Lucia C. Pola I. Barreto G.E. Khalifa K. Bergland A.K. Kivipelto M. Cederholm T. Zetterberg H. Ashton N.J. Ballard C. Siow R. Aarsland D. Lehtisalo J. Ngandu T. Kuroda Y. Hidenori A. Mangialasche F. Sugimoto T. Uchida K. Fujita K. Testad I. Gjestsen M.T. Anthocyanin supplementation in adults at risk for dementia: A randomized controlled trial on its cardiometabolic and anti-inflammatory biomarker effects. Geroscience 2025 1 14 10.1007/s11357‑025‑01669‑8 40314845
    [Google Scholar]
  87. Qiu M.T. Zhou L. Wang X.Y. Li Z.P. Wei M.X. Zeng Z.H. Cheng J. Xu G.H. Zhu J.X. Yi L.T. Anti-colitis comparison of polysaccharides and anthocyanins extracted from black wolfberry based on microbiomics, immunofluorescence and multi-cytokines profile analysis. Int. J. Biol. Macromol. 2025 310 Pt 3 143700 10.1016/j.ijbiomac.2025.143700 40316082
    [Google Scholar]
  88. Umsumarng S. Semmarath W. Arjsri P. Srisawad K. Intanil I. Jamjod S. Prom-u-thai C. Dejkriengkraikul P. Anthocyanin-rich fraction from kum akha black rice attenuates nlrp3 inflammasome-driven lung inflammation in vitro and in vivo. Nutrients 2025 17 7 1186 10.3390/nu17071186 40218944
    [Google Scholar]
  89. Fleming A. Bourdenx M. Fujimaki M. Karabiyik C. Krause G.J. Lopez A. Martín-Segura A. Puri C. Scrivo A. Skidmore J. Son S.M. Stamatakou E. Wrobel L. Zhu Y. Cuervo A.M. Rubinsztein D.C. The different autophagy degradation pathways and neurodegeneration. Neuron 2022 110 6 935 966 10.1016/j.neuron.2022.01.017 35134347
    [Google Scholar]
  90. Zhuang J. Lu J. Wang X. Wang X. Hu W. Hong F. Zhao X. Zheng Y. Purple sweet potato color protects against high-fat diet-induced cognitive deficits through AMPK-mediated autophagy in mouse hippocampus. J. Nutr. Biochem. 2019 65 35 45 10.1016/j.jnutbio.2018.10.015 30616064
    [Google Scholar]
  91. El-Maraghy S.A. Reda A. Essam R.M. Kortam M.A. The citrus flavonoid “Nobiletin” impedes STZ-induced Alzheimer’s disease in a mouse model through regulating autophagy mastered by SIRT1/FoxO3a mechanism. Inflammopharmacology 2023 31 5 2701 2717 10.1007/s10787‑023‑01292‑z 37598127
    [Google Scholar]
  92. Bai X. Jiang M. Wang J. Yang S. Liu Z. Zhang H. Zhu X. Cyanidin attenuates the apoptosis of rat nucleus pulposus cells and the degeneration of intervertebral disc via the JAK2/STAT3 signal pathway in vitro and in vivo. Pharm. Biol. 2022 60 1 427 436 10.1080/13880209.2022.2035773 35175176
    [Google Scholar]
  93. Zhu R. Tong X. Du Y. Liu J. Xu X. He Y. Wen L. Wang Z. Improvement of chlorpyrifos-induced cognitive impairment by mountain grape anthocyanins based on PI3K/Akt signaling pathway. Pestic. Biochem. Physiol. 2024 205 106172 10.1016/j.pestbp.2024.106172 39477625
    [Google Scholar]
  94. Yang Y. Ma C. Wang Y. Tian J. Li B. Zhao J. Pectin-coated Malvidin-3-O-galactoside attenuates silica-induced pulmonary fibrosis by promoting mitochondrial autophagy and inhibiting cell apoptosis. Phytomedicine 2025 139 156566 10.1016/j.phymed.2025.156566 40023066
    [Google Scholar]
  95. Qin S. Sun D. Mu J. Ma D. Tang R. Zheng Y. Purple sweet potato color improves hippocampal insulin resistance via down-regulating SOCS3 and galectin-3 in high-fat diet mice. Behav. Brain Res. 2019 359 370 377 10.1016/j.bbr.2018.11.025 30465813
    [Google Scholar]
  96. Micioni Di Bonaventura M. Martinelli I. Moruzzi M. Micioni Di Bonaventura E. Giusepponi M. Polidori C. Lupidi G. Tayebati S. Amenta F. Cifani C. Tomassoni D. Brain alterations in high fat diet induced obesity: Effects of tart cherry seeds and juice. Nutrients 2020 12 3 623 10.3390/nu12030623 32120798
    [Google Scholar]
  97. Batista Â.G. Soares E.S. Mendonça M.C.P. da Silva J.K. Dionísio A.P. Sartori C.R. da Cruz-Höfling M.A. Maróstica Júnior M.R. Jaboticaba berry peel intake prevents insulin‐resistance‐induced tau phosphorylation in mice. Mol. Nutr. Food Res. 2017 61 10 1600952 10.1002/mnfr.201600952 28544198
    [Google Scholar]
  98. Araya-Quintanilla F. Beatriz-Pizarro A. Sepúlveda-Loyola W. Maluf J. Pavez L. López-Gil J.F. Gutiérrez-Espinoza H. Effectiveness of anthocyanins rich foods on cardiometabolic factors in individuals with metabolic syndrome: A systematic review and meta-analysis. Eur. J. Nutr. 2023 62 5 1923 1940 10.1007/s00394‑023‑03142‑8 37042998
    [Google Scholar]
  99. Ockermann P. Headley L. Lizio R. Hansmann J. A review of the properties of anthocyanins and their influence on factors affecting cardiometabolic and cognitive health. Nutrients 2021 13 8 2831 10.3390/nu13082831 34444991
    [Google Scholar]
  100. Martínez-Lüscher J. Cabodevilla A. Abdullah M. Iglesias A. Zamarreño Á. García-Mina J.M. Morales F. Goicoechea N. Pascual I. ABA and defoliation improve phenolic composition of wine grapes while ABA reduces must free amino acid content and modifies its profile. Plant Sci. 2025 357 112541 10.1016/j.plantsci.2025.112541 40320011
    [Google Scholar]
  101. Chen B.H. Stephen Inbaraj B. Nanoemulsion and nanoliposome based strategies for improving anthocyanin stability and bioavailability. Nutrients 2019 11 5 1052 10.3390/nu11051052 31083417
    [Google Scholar]
  102. Lee Y.M. Yoon Y. Yoon H. Park H.M. Song S. Yeum K.J. Dietary anthocyanins against obesity and inflammation. Nutrients 2017 9 10 1089 10.3390/nu9101089 28974032
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010396692250826091442
Loading
/content/journals/cpb/10.2174/0113892010396692250826091442
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: anti-inflammatory ; cognitive function ; autophagy ; antioxidant ; Anthocyanin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test