Skip to content
2000
image of Elucidating the Role of Gardeniae Fructus and Scutellariae Radix Herb Pair in Alzheimer’s Disease via Network Pharmacology: Emphasis on 
Oxidative Stress, and the PI3K/Akt Pathway

Abstract

Background

The combination of Gardeniae Fructus (ZZ) and Scutellariae Radix (HQ) is a traditional Chinese medicine used for Alzheimer’s disease (AD). However, the molecular mechanisms underlying its anti-dementia effects, particularly its multi-component synergy and pathway modulation, remain poorly understood.

Objective

Our study employed an integrated systems pharmacology approach to mechanistically decode the anti-AD properties of ZZ-HQ, combining network pharmacology predictions, molecular docking simulations, and experimental validation to identify critical bioactive components, molecular targets, and therapeutic pathways.

Methods

A comprehensive network pharmacology analysis was performed to identify bioactive compounds within the ZZ-HQ complex and their potential protein targets associated with AD. Molecular docking was utilized to predict and assess the binding interactions between key bioactive compounds and AD-related protein targets. Experimental validation focused on baicalin, a major active compound in the ZZ-HQ complex, evaluating its effects on cell viability, apoptosis regulation, oxidative stress reduction, and the activation of the PI3K/Akt signaling pathway.

Results

Fifty-four bioactive compounds were identified in the ZZ-HQ complex, interacting with 258 AD-associated proteins. Key compounds, such as baicalein and norwogonin, demonstrated strong binding affinities with pivotal proteins, including SRC and PIK3R1. Experimental studies further confirmed that baicalin significantly improved cell viability by activating the PI3K/Akt pathway, reducing apoptosis, and alleviating oxidative stress.

Conclusion

Our study uncovered the therapeutic potential of the ZZ-HQ combination in addressing AD through multi-target mechanisms, particularly via modulation of the PI3K/Akt pathway and oxidative stress. These findings provide a scientific basis for the pharmacological effects of ZZ-HQ and offer valuable insights for further research on its potential application in AD treatment.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010326797250422095516
2025-06-23
2025-09-09
Loading full text...

Full text loading...

References

  1. Khan S. Barve K.H. Kumar M.S. Recent advancements in pathogenesis, diagnostics and treatment of alzheimer’s disease. Curr. Neuropharmacol. 2020 18 11 1106 1125 10.2174/1570159X18666200528142429 32484110
    [Google Scholar]
  2. Cummings J. New approaches to symptomatic treatments for Alzheimer’s disease. Mol. Neurodegener. 2021 16 1 2 10.1186/s13024‑021‑00424‑9 33441154
    [Google Scholar]
  3. Sun X. Chen W.D. Wang Y.D. β-Amyloid: The key peptide in the pathogenesis of Alzheimer’s disease. Front. Pharmacol. 2015 6 221 10.3389/fphar.2015.00221 26483691
    [Google Scholar]
  4. Millucci L. Ghezzi L. Bernardini G. Santucci A. Conformations and biological activities of amyloid beta peptide 25-35. Curr. Protein Pept. Sci. 2010 11 1 54 67 10.2174/138920310790274626 20201807
    [Google Scholar]
  5. Joe E. Ringman J.M. Cognitive symptoms of Alzheimer’s disease: Clinical management and prevention. BMJ 2019 367 l6217 10.1136/bmj.l6217 31810978
    [Google Scholar]
  6. Cho C.H. Kim E.A. Kim J. Choi S.Y. Yang S.J. Cho S.W. N -Adamantyl-4-methylthiazol-2-amine suppresses amyloid β-induced neuronal oxidative damage in cortical neurons. Free Radic. Res. 2016 50 6 678 690 10.3109/10715762.2016.1167277 27002191
    [Google Scholar]
  7. Kamat P.K. Tota S. Saxena G. Shukla R. Nath C. Okadaic acid (ICV) induced memory impairment in rats: A suitable experimental model to test anti-dementia activity. Brain Res. 2010 1309 66 74 10.1016/j.brainres.2009.10.064 19883632
    [Google Scholar]
  8. Kiššová I. Plamondon L.T. Brisson L. Priault M. Renouf V. Schaeffer J. Camougrand N. Manon S. Evaluation of the roles of apoptosis, autophagy, and mitophagy in the loss of plating efficiency induced by Bax expression in yeast. J. Biol. Chem. 2006 281 47 36187 36197 10.1074/jbc.M607444200 16990272
    [Google Scholar]
  9. Menzies F.M. Fleming A. Rubinsztein D.C. Compromised autophagy and neurodegenerative diseases. Nat. Rev. Neurosci. 2015 16 6 345 357 10.1038/nrn3961 25991442
    [Google Scholar]
  10. Corti O. Blomgren K. Poletti A. Beart P.M. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J. Neurochem. 2020 154 4 354 371 10.1111/jnc.15002 32149395
    [Google Scholar]
  11. Sairazi M.N.S. Sirajudeen K.N.S. Natural products and their bioactive compounds: Neuroprotective potentials against neurodegenerative diseases. Evid. Based Complement. Alternat. Med. 2020 2020 1 6565396 10.1155/2020/6565396 32148547
    [Google Scholar]
  12. Ding M.R. Qu Y.J. Hu B. An H.M. Signal pathways in the treatment of Alzheimer’s disease with traditional Chinese medicine. Biomed. Pharmacother. 2022 152 113208 10.1016/j.biopha.2022.113208 35660246
    [Google Scholar]
  13. Chen H.I. Ou H.C. Chen C.Y. Yu S.H. Cheng S.M. Wu X.B. Lee S.D. Neuroprotective effect of Rhodiola crenulata in d-galactose-induced aging model. Am. J. Chin. Med. 2020 48 2 373 390 10.1142/S0192415X20500196 32138536
    [Google Scholar]
  14. Zhu Z. Yan J. Jiang W. Yao X. Chen J. Chen L. Li C. Hu L. Jiang H. Shen X. Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance. J. Neurosci. 2013 33 32 13138 13149 10.1523/JNEUROSCI.4790‑12.2013 23926267
    [Google Scholar]
  15. Lim D.W. Lee J.E. Lee C. Kim Y.T. Natural products and their neuroprotective effects in degenerative brain diseases: A comprehensive review. Int. J. Mol. Sci. 2024 25 20 11223 10.3390/ijms252011223 39457003
    [Google Scholar]
  16. Li H. Song J. Zhang J. Wang T. Yan Y. Tao Z. Li S. Zhang H. Kang T. Yang J. Ginseng protein reverses amyloid beta peptide and h 2 o 2 cytotoxicity in neurons, and ameliorates cognitive impairment in AD rats induced by a combination of d-galactose and AlCl 3. Phytother. Res. 2017 31 2 284 295 10.1002/ptr.5747 27981642
    [Google Scholar]
  17. Huang H.J. Huang C.Y. Lee M. Lin J.Y. Hsieh-Li H.M. Puerariae radix prevents anxiety and cognitive deficits in mice under oligomeric aβ-induced stress. Am. J. Chin. Med. 2019 47 7 1459 1481 10.1142/S0192415X19500757 31752523
    [Google Scholar]
  18. Choi R.J. Roy A. Jung H.J. Ali M.Y. Min B.S. Park C.H. Yokozawa T. Fan T.P. Choi J.S. Jung H.A. BACE1 molecular docking and anti-Alzheimer’s disease activities of ginsenosides. J. Ethnopharmacol. 2016 190 219 230 10.1016/j.jep.2016.06.013 27275774
    [Google Scholar]
  19. Yun D. Wang Y. Zhang Y. Jia M. Xie T. Zhao Y. Yang C. Chen W. Guo R. Liu X. Dai X. Liu Z. Yuan T. Sesamol attenuates scopolamine-induced cholinergic disorders, neuroinflammation, and cognitive deficits in mice. J. Agric. Food Chem. 2022 70 42 13602 13614 10.1021/acs.jafc.2c04292 36239029
    [Google Scholar]
  20. Li Y. Li L. Hölscher C. Therapeutic potential of genipin in central neurodegenerative diseases. CNS Drugs 2016 30 10 889 897 10.1007/s40263‑016‑0369‑9 27395402
    [Google Scholar]
  21. Liu H. Zhang Z. Zang C. Wang L. Yang H. Sheng C. Shang J. Zhao Z. Yuan F. Yu Y. Yao X. Bao X. Zhang D. GJ-4 ameliorates memory impairment in focal cerebral ischemia/reperfusion of rats via inhibiting JAK2/STAT1-mediated neuroinflammation. J. Ethnopharmacol. 2021 267 113491 10.1016/j.jep.2020.113491 33091490
    [Google Scholar]
  22. Jin X. Liu M.Y. Zhang D.F. Zhong X. Du K. Qian P. Yao W.F. Gao H. Wei M.J. Baicalin mitigates cognitive impairment and protects neurons from microglia‐mediated neuroinflammation via suppressing NLRP 3 inflammasomes and TLR 4/ NF ‐κB signaling pathway. CNS Neurosci. Ther. 2019 25 5 575 590 10.1111/cns.13086 30676698
    [Google Scholar]
  23. Sowndhararajan K. Deepa P. Kim M. Park S.J. Kim S. Baicalein as a potent neuroprotective agent: A review. Biomed. Pharmacother. 2017 95 1021 1032 10.1016/j.biopha.2017.08.135 28922719
    [Google Scholar]
  24. Jiao W. Mi S. Sang Y. Jin Q. Chitrakar B. Wang X. Wang S. Integrated network pharmacology and cellular assay for the investigation of an anti-obesity effect of 6-shogaol. Food Chem. 2022 374 131755 10.1016/j.foodchem.2021.131755 34883426
    [Google Scholar]
  25. Shen Y. Zhang B. Pang X. Yang R. Chen M. Zhao J. Wang J. Wang Z. Yu Z. Wang Y. Li L. Liu A. Du G. Network pharmacology-based analysis of xiao-xu-ming decoction on the treatment of alzheimer’s disease. Front. Pharmacol. 2020 11 595254 10.3389/fphar.2020.595254 33390981
    [Google Scholar]
  26. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  27. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019 47 D1 D1102 D1109 10.1093/nar/gky1033 30371825
    [Google Scholar]
  28. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  29. Coudert E. Gehant S. Castro D.E. Pozzato M. Baratin D. Neto T. Sigrist C.J.A. Redaschi N. Bridge A. Bridge A.J. Aimo L. Argoud-Puy G. Auchincloss A.H. Axelsen K.B. Bansal P. Baratin D. Neto T.M.B. Blatter M-C. Bolleman J.T. Boutet E. Breuza L. Gil B.C. Casals-Casas C. Echioukh K.C. Coudert E. Cuche B. Castro D.E. Estreicher A. Famiglietti M.L. Feuermann M. Gasteiger E. Gaudet P. Gehant S. Gerritsen V. Gos A. Gruaz N. Hulo C. Hyka-Nouspikel N. Jungo F. Kerhornou A. Mercier L.P. Lieberherr D. Masson P. Morgat A. Muthukrishnan V. Paesano S. Pedruzzi I. Pilbout S. Pourcel L. Poux S. Pozzato M. Pruess M. Redaschi N. Rivoire C. Sigrist C.J.A. Sonesson K. Sundaram S. Bateman A. Martin M-J. Orchard S. Magrane M. Ahmad S. Alpi E. Bowler-Barnett E.H. Britto R. A-Jee H.B. Cukura A. Denny P. Dogan T. Ebenezer T.G. Fan J. Garmiri P. da Costa Gonzales L.J. Hatton-Ellis E. Hussein A. Ignatchenko A. Insana G. Ishtiaq R. Joshi V. Jyothi D. Kandasaamy S. Lock A. Luciani A. Lugaric M. Luo J. Lussi Y. MacDougall A. Madeira F. Mahmoudy M. Mishra A. Moulang K. Nightingale A. Pundir S. Qi G. Raj S. Raposo P. Rice D.L. Saidi R. Santos R. Speretta E. Stephenson J. Totoo P. Turner E. Tyagi N. Vasudev P. Warner K. Watkins X. Zaru R. Zellner H. Wu C.H. Arighi C.N. Arminski L. Chen C. Chen Y. Huang H. Laiho K. McGarvey P. Natale D.A. Ross K. Vinayaka C.R. Wang Q. Wang Y. Annotation of biologically relevant ligands in UniProtKB using ChEBI. Bioinformatics 2023 39 1 btac793 10.1093/bioinformatics/btac793 36484697
    [Google Scholar]
  30. Piñero J. Queralt-Rosinach N. Bravo A. Deu-Pons J. Bauer-Mehren A. Baron M. Sanz F. Furlong L.I. DisGeNET: A discovery platform for the dynamical exploration of human diseases and their genes. Database 2015 2015 0 bav028 10.1093/database/bav028 25877637
    [Google Scholar]
  31. Stelzer G. Rosen N. Plaschkes I. Zimmerman S. Twik M. Fishilevich S. Stein T. I. Nudel R. Lieder I. Mazor Y. The genecards suite: From gene data mining to disease genome sequence analyses. Curr. Protoc. Bioinformatics. 2016 54 1.30.1 1.30.33 10.1002/cpbi.5
    [Google Scholar]
  32. Sherman B.T. Hao M. Qiu J. Jiao X. Baseler M.W. Lane H.C. Imamichi T. Chang W. DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res. 2022 50 W1 W216 W221 10.1093/nar/gkac194 35325185
    [Google Scholar]
  33. Szklarczyk D. Morris J.H. Cook H. Kuhn M. Wyder S. Simonovic M. Santos A. Doncheva N.T. Roth A. Bork P. Jensen L.J. Mering V.C. The STRING database in 2017: Quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017 45 D1 D362 D368 10.1093/nar/gkw937 27924014
    [Google Scholar]
  34. Burley S.K. Bhikadiya C. Bi C. Bittrich S. Chen L. Crichlow G.V. Christie C.H. Dalenberg K. Costanzo D.L. Duarte J.M. Dutta S. Feng Z. Ganesan S. Goodsell D.S. Ghosh S. Green R.K. Guranović V. Guzenko D. Hudson B.P. Lawson C.L. Liang Y. Lowe R. Namkoong H. Peisach E. Persikova I. Randle C. Rose A. Rose Y. Sali A. Segura J. Sekharan M. Shao C. Tao Y.P. Voigt M. Westbrook J.D. Young J.Y. Zardecki C. Zhuravleva M. RCSB Protein Data Bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res. 2021 49 D1 D437 D451 10.1093/nar/gkaa1038 33211854
    [Google Scholar]
  35. Li Y. Zhao J. Hölscher C. Therapeutic potential of baicalein in alzheimer’s disease and parkinson’s disease. CNS Drugs 2017 31 8 639 652 10.1007/s40263‑017‑0451‑y 28634902
    [Google Scholar]
  36. Xie X.M. Hao J.J. Shi J.Z. Zhou Y.F. Liu P.F. Wang F. Zheng X.M. Yu X.Y. Wang C.C. Yan Y. Du G.H. Song J.K. He Y.Y. Pang X.B. Baicalein ameliorates Alzheimer’s disease via orchestration of CX3CR1/NF-κB pathway in a triple transgenic mouse model. Int. Immunopharmacol. 2023 118 109994 10.1016/j.intimp.2023.109994 37098656
    [Google Scholar]
  37. Shi J. Li Y. Zhang Y. Chen J. Gao J. Zhang T. Shang X. Zhang X. Baicalein ameliorates Aβ-induced memory deficits and neuronal atrophy via inhibition of PDE2 and PDE4. Front. Pharmacol. 2021 12 794458 10.3389/fphar.2021.794458 34966284
    [Google Scholar]
  38. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 2022 18 4 700 789 10.1002/alz.12638 35289055
    [Google Scholar]
  39. Scheltens P. Blennow K. Breteler M.M.B. Strooper D.B. Frisoni G.B. Salloway S. Van der Flier W.M. Alzheimer’s disease. Lancet 2016 388 10043 505 517 10.1016/S0140‑6736(15)01124‑1 26921134
    [Google Scholar]
  40. Li S. Wu Z. Le W. Traditional Chinese medicine for dementia. Alzheimers Dement. 2021 17 6 1066 1071 10.1002/alz.12258 33682261
    [Google Scholar]
  41. Yang W. Zheng X. Chen S. Shan C. Xu Q. Zhu J.Z. Bao X.Y. Lin Y. Zheng G. Wang Y. Chinese herbal medicine for Alzheimer’s disease: Clinical evidence and possible mechanism of neurogenesis. Biochem. Pharmacol. 2017 141 143 155 10.1016/j.bcp.2017.07.002 28690138
    [Google Scholar]
  42. Pei H. Ma L. Cao Y. Wang F. Li Z. Liu N. Liu M. Wei Y. Li H. Traditional chinese medicine for alzheimer’s disease and other cognitive impairment: A review. Am. J. Chin. Med. 2020 48 3 487 511 10.1142/S0192415X20500251 32329645
    [Google Scholar]
  43. Chen S.Y. Gao Y. Sun J.Y. Meng X.L. Yang D. Fan L.H. Xiang L. Wang P. Traditional chinese medicine: Role in reducing β-amyloid, apoptosis, autophagy, neuroinflammation, oxidative stress, and mitochondrial dysfunction of alzheimer’s disease. Front. Pharmacol. 2020 11 497 10.3389/fphar.2020.00497 32390843
    [Google Scholar]
  44. Ma Y. Yang M. Li X. Yue J. Chen J. Yang M. Huang X. Zhu L. Hong F. Yang S. Therapeutic effects of natural drugs on alzheimer’s disease. Front. Pharmacol. 2019 10 1355 10.3389/fphar.2019.01355 31866858
    [Google Scholar]
  45. Zhang X. Wang X. Hu X. Chu X. Li X. Han F. Neuroprotective effects of a Rhodiola crenulata extract on amyloid-β peptides (Aβ1-42) -induced cognitive deficits in rat models of Alzheimer’s disease. Phytomedicine 2019 57 331 338 10.1016/j.phymed.2018.12.042 30807987
    [Google Scholar]
  46. Zhou J.C. Li H.L. Zhou Y. Li X.T. Yang Z.Y. Tohda C. Komatsu K. Piao X.H. Ge Y.W. The roles of natural triterpenoid saponins against Alzheimer’s disease. Phytother. Res. 2023 37 11 5017 5040 10.1002/ptr.7967 37491018
    [Google Scholar]
  47. Yuan Q. Wu Y. Wang G. Zhou X. Dong X. Lou Z. Li S. Wang D. Preventive effects of arctigenin from Arctium lappa L against LPS-induced neuroinflammation and cognitive impairments in mice. Metab. Brain Dis. 2022 37 6 2039 2052 10.1007/s11011‑022‑01031‑3 35731324
    [Google Scholar]
  48. Hou M. Bao W. Gao Y. Chen J. Song G. Honokiol improves cognitive impairment in APP/PS1 mice through activating mitophagy and mitochondrial unfolded protein response. Chem. Biol. Interact. 2022 351 109741 10.1016/j.cbi.2021.109741 34752757
    [Google Scholar]
  49. Zhang Z. Shu X. Cao Q. Xu L. Wang Z. Li C. Xia S. Shao P. Bao X. Sun L. Xu Y. Xu Y. Compound from magnolia officinalis ameliorates white matter injury by promoting oligodendrocyte maturation in chronic cerebral ischemia models. Neurosci. Bull. 2023 39 10 1497 1511 10.1007/s12264‑023‑01068‑z 37291477
    [Google Scholar]
  50. Li J. He Y. Fu J. Wang Y. Fan X. Zhong T. Zhou H. Dietary supplementation of Acanthopanax senticosus extract alleviates motor deficits in MPTP-induced Parkinson’s disease mice and its underlying mechanism. Front. Nutr. 2023 9 1121789 10.3389/fnut.2023.1121789 36865944
    [Google Scholar]
  51. Kim J.M. Lee U. Kang J.Y. Park S.K. Shin E.J. Kim H.J. Kim C.W. Kim M.J. Heo H.J. Anti-amnesic effect of walnut via the regulation of BBB function and neuro-inflammation in Aβ1-42-induced mice. Antioxidants 2020 9 10 976 10.3390/antiox9100976 33053754
    [Google Scholar]
  52. Wang S. Ma Y. Huang Y. Hu Y. Huang Y. Wu Y. Potential bioactive compounds and mechanisms of Fibraurea recisa Pierre for the treatment of Alzheimer’s disease analyzed by network pharmacology and molecular docking prediction. Front. Aging Neurosci. 2022 14 1052249 10.3389/fnagi.2022.1052249 36570530
    [Google Scholar]
  53. Durairajan S.S. Huang Y.Y. Yuen P.Y. Chen L.L. Kwok K.Y. Liu L.F. Song J.X. Han Q.B. Xue L. Chung S.K. Huang J.D. Baum L. Senapati S. Li M. Effects of Huanglian-Jie-Du-Tang and its modified formula on the modulation of amyloid-β precursor protein processing in Alzheimer’s disease models. PLoS One 2014 9 3 e92954 10.1371/journal.pone.0092954 24671102
    [Google Scholar]
  54. Xu M. Yue Y. Huang J. Efficacy evaluation and metabolomics analysis of Huanglian Jiedu decoction in combination with donepezil for Alzheimer’s disease treatment. J. Pharm. Biomed. Anal. 2023 235 115610 10.1016/j.jpba.2023.115610 37542831
    [Google Scholar]
  55. Ji Y. Han J. Lee N. Yoon J.H. Youn K. Ha H.J. Yoon E. Kim D.H. Jun M. Neuroprotective effects of baicalein, wogonin, and oroxylin a on amyloid beta-induced toxicity via NF-ΚB/MAPK pathway modulation. Molecules 2020 25 21 5087 10.3390/molecules25215087 33147823
    [Google Scholar]
  56. Jadhav R. Kulkarni Y.A. The combination of baicalein and memantine reduces oxidative stress and protects against β-amyloid-induced alzheimer’s disease in rat model. Antioxidants 2023 12 3 707 10.3390/antiox12030707 36978955
    [Google Scholar]
  57. Huang H.H. Shao Z.H. Li C.Q. Hoek V.T.L. Li J. Baicalein protects cardiomyocytes against mitochondrial oxidant injury associated with JNK inhibition and mitochondrial Akt activation. Am. J. Chin. Med. 2014 42 1 79 94 10.1142/S0192415X14500050 24467536
    [Google Scholar]
  58. Kumar M. Bansal N. Implications of phosphoinositide 3-kinase-Akt (PI3K-Akt) pathway in the pathogenesis of alzheimer’s disease. Mol. Neurobiol. 2022 59 1 354 385 10.1007/s12035‑021‑02611‑7 34699027
    [Google Scholar]
  59. Long H.Z. Cheng Y. Zhou Z.W. Luo H.Y. Wen D.D. Gao L.C. PI3K/AKT Signal pathway: A target of natural products in the prevention and treatment of alzheimer’s disease and parkinson’s disease. Front. Pharmacol. 2021 12 648636 10.3389/fphar.2021.648636 33935751
    [Google Scholar]
  60. Kandezi N. Mohammadi M. Ghaffari M. Gholami M. Motaghinejad M. Safari S. Novel insight to neuroprotective potential of curcumin: A mechanistic review of possible involvement of mitochondrial biogenesis and PI3/AKT/ GSK3 or PI3/AKT/CREB/BDNF signaling pathways. Int. J. Mol. Cell. Med. 2020 9 1 1 32 32832482
    [Google Scholar]
  61. Zhang B. Wang Y. Li H. Xiong R. Zhao Z. Chu X. Li Q. Sun S. Chen S. Neuroprotective effects of salidroside through PI3K/Akt pathway activation in Alzheimer’s disease models. Drug Des. Devel. Ther. 2016 10 1335 1343 27103787
    [Google Scholar]
  62. Cui J. Shan R. Cao Y. Zhou Y. Liu C. Fan Y. Protective effects of ginsenoside Rg2 against memory impairment and neuronal death induced by Aβ25-35 in rats. J. Ethnopharmacol. 2021 266 113466 10.1016/j.jep.2020.113466 33049344
    [Google Scholar]
  63. Kaminsky Y.G. Marlatt M.W. Smith M.A. Kosenko E.A. Subcellular and metabolic examination of amyloid-β peptides in Alzheimer disease pathogenesis: Evidence for Aβ25–35. Exp. Neurol. 2010 221 1 26 37 10.1016/j.expneurol.2009.09.005 19751725
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010326797250422095516
Loading
/content/journals/cpb/10.2174/0113892010326797250422095516
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keywords: molecular docking ; mechanism ; network pharmacology ; herb pair ; Alzheimer’s disease
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test