Skip to content
2000
image of Wound Dressing Potential of Bacterial Cellulose Produced by Acetobacter tropicalis NBRC 16470 Strain Isolated from Rotten Fruits

Abstract

Background

Bacterial cellulose, which is used in many fields from biomedicine to electronics, is promising as an alternative wound dressing instead of traditional gauze in wound treatment.

Objectives

The objective of this study was to evaluate the potential use of cellulose produced by acetic acid bacteria isolated from rotten fruits as a wound dressing.

Methods

In our study, rotten fruit samples were incubated in Hestrin-Schramm (HS) Broth medium. Then, a loopful of the pellicle-forming samples was taken and inoculated onto Hestrin-Schramm (HS) agar using the streak culture method and bacteria were isolated. Identification of bacteria was performed using the BLAST program after 16S rRNA sequence analysis. Physicochemical properties and morphological characterization of bacterial cellulose produced by static culture were examined using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM), respectively, and the swelling ratio was investigated. Antibiotic susceptibilities of bacterial cellulose membranes impregnated with different concentrations of gentamicin (50 µg/mL, 100 µg/mL, 200 µg/mL) against ATCC 29213 and 25922 were determined by the disk diffusion method.

Results

The bacteria isolated from rotten fruits were identified as NBRC 16470. The structure of cellulose produced by static culture was confirmed by a peak at 3,240 cm−1 in FTIR analysis and fibril structures in SEM analysis. Bacterial cellulose had a swelling ratio of 27.37± 2 .99 fold. The zone diameters formed by bacterial cellulose disk (50 µg/mL gentamicin) and gentamicin (10 µg) disk against ATCC 29213 and ATCC 25922 were almost the same.

Conclusion

The production of bacterial cellulose, which has the potential to be used as a wound dressing from rotten fruits, is important in terms of recycling and low cost.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010361594250703060501
2025-07-08
2025-09-14
Loading full text...

Full text loading...

References

  1. Payen A. Thesis on the composition of the tissue of plants and wood. CR 1838 7 1052 1056
    [Google Scholar]
  2. Gomes R.J. Ida E.I. Spinosa W.A. Bacterial cellulose production by Komagataeibacter hansenii can be improved by successive batch culture. Braz. J. Microbiol. 2023 54 2 703 713 10.1007/s42770‑023‑00910‑w 36800074
    [Google Scholar]
  3. Brown A.J. XLIII.—On an acetic ferment which forms cellulose. J. Chem. Soc. Trans. 1886 49 0 432 439 10.1039/CT8864900432
    [Google Scholar]
  4. Ross P. Mayer R. Benziman M. Cellulose biosynthesis and function in bacteria. Microbiol. Rev. 1991 55 1 35 58 10.1128/mr.55.1.35‑58.1991 2030672
    [Google Scholar]
  5. Rangaswamy B.E. Vanitha K.P. Hungund B.S. Microbial cellulose production from bacteria isolated from rotten fruit. Int. J. Polym. Sci. 2015 2015 1 1 8 10.1155/2015/280784
    [Google Scholar]
  6. Sutherland I.W. Novel and established applications of microbial polysaccharides. Trends Biotechnol. 1998 16 1 41 46 10.1016/S0167‑7799(97)01139‑6 9470230
    [Google Scholar]
  7. Bielecki S. Krystynowicz A. Turkiewicz M. Kalinowska H. Bacterial Cellulose. Polysaccharides and Polyamides in the Food. Industry. Steinbüchel A. Rhee S.K. Weinheim, Germany WileyVCH Verlag 2005 31 85
    [Google Scholar]
  8. Zhong C. Zhang G.C. Liu M. Zheng X.T. Han P.P. Jia S.R. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl. Microbiol. Biotechnol. 2013 97 14 6189 6199 10.1007/s00253‑013‑4908‑8 23640364
    [Google Scholar]
  9. Mazhar U. Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydr. Polym. 2012 88 2 596 603 10.1016/j.carbpol.2012.01.006
    [Google Scholar]
  10. Azeredo H.M.C. Barud H. Farinas C.S. Vasconcellos V.M. Claro A.M. Bacterial cellulose as a raw material for food and food packaging applications. Front. Sustain. Food Syst. 2019 3 7 7 10.3389/fsufs.2019.00007
    [Google Scholar]
  11. Blanco Parte F.G. Santoso S.P. Chou C-C. Verma V. Wang H-T. Ismadji S. Cheng K-C. Current progress on the production, modification, and applications of bacterial cellulose. Crit. Rev. Biotechnol. 2020 40 3 397 414 10.1080/07388551.2020.1713721
    [Google Scholar]
  12. Shah N. Ul-Islam M. Khattak W.A. Park J.K. Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydr. Polym. 2013 98 2 1585 1598 10.1016/j.carbpol.2013.08.018 24053844
    [Google Scholar]
  13. Czaja W. Krystynowicz A. Bielecki S. Brown R. Microbial cellulose—The natural power to heal wounds. Biomaterials 2006 27 2 145 151 10.1016/j.biomaterials.2005.07.035 16099034
    [Google Scholar]
  14. Czaja W.K. Young D.J. Kawecki M. Brown R.M. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 2007 8 1 1 12 10.1021/bm060620d 17206781
    [Google Scholar]
  15. Keshk S.M.A.S. Bacterial cellulose production and its industrial applications. J. Bioprocess. Biotech. 2014 4 2 150 10.4172/2155‑9821.1000150
    [Google Scholar]
  16. Tsouko E. Kourmentza C. Ladakis D. Kopsahelis N. Mandala I. Papanikolaou S. Paloukis F. Alves V. Koutinas A. Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 2015 16 7 14832 14849 10.3390/ijms160714832 26140376
    [Google Scholar]
  17. Gorgieva S. Trček J. Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials 2019 9 10 1352 10.3390/nano9101352 31547134
    [Google Scholar]
  18. Schramm M. Hestrin S. Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J. Gen. Microbiol. 1954 11 1 123 129 10.1099/00221287‑11‑1‑123 13192310
    [Google Scholar]
  19. Abol-Fotouh D. Hassan M.A. Shokry H. Roig A. Azab M.S. Kashyout A.E.H.B. Bacterial nanocellulose from agro-industrial wastes: Low-cost and enhanced production by Komagataeibacter saccharivorans MD1. Sci. Rep. 2020 10 1 3491 10.1038/s41598‑020‑60315‑9 32103077
    [Google Scholar]
  20. Adebayo-Tayo B.C. Akintunde M.O. Alao S.O. Comparative effect of agrowastes on bacterial celluloseproductionby acinetobater spBAN1and Acetobacterpasteurianus PW1. Turkish J. Agric. Nat. Sci. 2017 4 2 145 154
    [Google Scholar]
  21. Gomes F.P. Silva N.H.C.S. Trovatti E. Serafim L.S. Duarte M.F. Silvestre A.J.D. Neto C.P. Freire C.S.R. Production of bacterial cellulose by Gluconacetobacter sacchari using dry olive mill residue. Biomass Bioenergy 2013 55 205 211 10.1016/j.biombioe.2013.02.004
    [Google Scholar]
  22. Kurosumi A. Sasaki C. Yamashita Y. Nakamura Y. Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr. Polym. 2009 76 2 333 335 10.1016/j.carbpol.2008.11.009
    [Google Scholar]
  23. Sar T. Yesilcimen Akbas M. Potential use of olive oil mill wastewater for bacterial cellulose production. Bioengineered 2022 13 3 7659 7669 10.1080/21655979.2022.2050492 35264062
    [Google Scholar]
  24. Sahoo B.K. Mishra R.R. Behera B.C. Isolation and identification of thermotolerent acetic acid bacteria from waste fruits. Asi. J. Biol. Life Sci. 2020 9 2 209 213 10.5530/ajbls.2020.9.32
    [Google Scholar]
  25. Konig H. Unden G. Frohlich J. Biology of microorganisms on grapes, in must and in wine. Berlin, Heidelberg Springer 2017 10.1007/978‑3‑319‑60021‑5
    [Google Scholar]
  26. Jozala A.F. Pértile R.A.N. dos Santos C.A. de Carvalho Santos-Ebinuma V. Seckler M.M. Gama F.M. Pessoa A. Bacterial cellulose production by Gluconacetobacter xylinus by employing alternative culture media. Appl. Microbiol. Biotechnol. 2015 99 3 1181 1190 10.1007/s00253‑014‑6232‑3 25472434
    [Google Scholar]
  27. Salari M. Sowti Khiabani M. Rezaei Mokarram R. Ghanbarzadeh B. Samadi Kafil H. Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. Int. J. Biol. Macromol. 2019 122 122 280 288 10.1016/j.ijbiomac.2018.10.136 30342939
    [Google Scholar]
  28. Matsuoka M. Tsuchida T. Matsushita K. Adachi O. Yoshinaga F. A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci. Biotechnol. Biochem. 1996 60 4 575 579 10.1271/bbb.60.575
    [Google Scholar]
  29. Shi Z. Zhang Y. Phillips G.O. Yang G. Utilization of bacterial cellulose in food. Food Hydrocoll. 2014 35 35 539 545 10.1016/j.foodhyd.2013.07.012
    [Google Scholar]
  30. Krystynowicz A. Czaja W. Wiktorowska-Jezierska A. Gonçalves-Miśkiewicz M. Turkiewicz M. Bielecki S. Factors affecting the yield and properties of bacterial cellulose. J. Ind. Microbiol. Biotechnol. 2002 29 4 189 195 10.1038/sj.jim.7000303 12355318
    [Google Scholar]
  31. Schramm M. Hestrin S. Synthesis of cellulose by Acetobacter xylinum. 1. Micromethod for the determination of celluloses. Biochem. J. 1954 56 1 163 166 10.1042/bj0560163 13126110
    [Google Scholar]
  32. Noman A.E. Al-Barha N.S. Sharaf A.A.M. Al-Maqtari Q.A. Mohedein A. Mohammed H.H.H. Chen F. A novel strain of acetic acid bacteria Gluconobacter oxydans FBFS97 involved in riboflavin production. Sci. Rep. 2020 10 1 13527 10.1038/s41598‑020‑70404‑4 32782276
    [Google Scholar]
  33. Machado R.T.A. Gutierrez J. Tercjak A. Trovatti E. Uahib F.G.M. Moreno G.P. Nascimento A.P. Berreta A.A. Ribeiro S.J.L. Barud H.S. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production. Carbohydr. Polym. 2016 152 152 841 849 10.1016/j.carbpol.2016.06.049 27516336
    [Google Scholar]
  34. Wei B. Yang G. Hong F. Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr. Polym. 2011 84 1 533 538 10.1016/j.carbpol.2010.12.017
    [Google Scholar]
  35. Bambery K.R. Wood B.R. McNaughton D. Resonant Mie scattering (RMieS) correction applied to FTIR images of biological tissue samples. Analyst 2012 137 1 126 132 10.1039/C1AN15628D
    [Google Scholar]
  36. Breakpoint tables for interpretation of MICs and zone diameters. 2024 Available from: http://www.eucast.org
  37. Trovatti E. Serafim L.S. Freire C.S.R. Silvestre A.J.D. Neto C.P. Gluconacetobacter sacchari: An efficient bacterial cellulose cell-factory. Carbohydr. Polym. 2011 86 3 1417 1420 10.1016/j.carbpol.2011.06.046
    [Google Scholar]
  38. Lisdiyanti P. Kawasaki H. Seki T. Yamada Y. Uchimura T. Komagata K. Systematic study of the genus Acetobacter with descriptions of Acetobacter indonesiensis sp. nov., Acetobacter tropicalis sp. nov., Acetobacter orleanensis(Henneberg 1906) comb. nov., Acetobacter lovaniensis(Frateur 1950) comb. nov., and Acetobacter estunensis(Carr 1958) comb. nov. J. Gen. Appl. Microbiol. 2000 46 3 147 165 10.2323/jgam.46.147
    [Google Scholar]
  39. Boateng J.S. Matthews K.H. Stevens H.N.E. Eccleston G.M. Wound healing dressings and drug delivery systems: A review. J. Pharm. Sci. 2008 97 8 2892 2923 10.1002/jps.21210 17963217
    [Google Scholar]
  40. Zheng L. Li S. Luo J. Wang X. Latest advances on bacterial cellulose-based antibacterial materials as wound dressings. Front. Bioeng. Biotechnol. 2020 8 8 593768 10.3389/fbioe.2020.593768 33330424
    [Google Scholar]
  41. Saitou N. Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987 4 4 406 425 3447015
    [Google Scholar]
  42. Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985 39 4 783 791 10.2307/2408678 28561359
    [Google Scholar]
  43. Tamura K. Nei M. Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc. Natl. Acad. Sci. USA 2004 101 30 11030 11035 10.1073/pnas.0404206101 15258291
    [Google Scholar]
  44. Kumar S. Stecher G. Li M. Knyaz C. Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018 35 6 1547 1549 10.1093/molbev/msy096 29722887
    [Google Scholar]
  45. Stecher G. Tamura K. Kumar S. Molecular evolutionary genetics analysis (MEGA) for macOS. Mol. Biol. Evol. 2020 37 4 1237 1239 10.1093/molbev/msz312 31904846
    [Google Scholar]
  46. Horue M. Silva J.M. Berti I.R. Brandão L.R. Barud H.S. Castro G.R. Bacterial cellulose-based materials as dressings for wound healing. Pharmaceutics 2023 15 2 424 10.3390/pharmaceutics15020424 36839745
    [Google Scholar]
  47. Williams D.F. The Williams dictionary of biomaterials. Liverpool University Press 1999 173 10.5949/UPO9781846314438
    [Google Scholar]
  48. Helenius G. Bäckdahl H. Bodin A. Nannmark U. Gatenholm P. Risberg B. In vivo biocompatibility of bacterial cellulose. J. Biomed. Mater. Res. A 2006 76 2 431 438 10.1002/jbm.a.30570 16278860
    [Google Scholar]
  49. Farah L.F. Process for the preparation of cellulose film, cellulose film produced thereby, artificial skin graft and its use. Patent US4912049A 1990
    [Google Scholar]
  50. Fontana J.D. De Souza A.M. Fontana C.K. Torriani I.L. Moreschi J.C. Gallotti B.J. De Souza S.J. Narcisco G.P. Bichara J.A. Farah L.F.X. Acetobacter cellulose pellicle as a temporary skin substitute. Appl. Biochem. Biotechnol. 1990 24-25 1 253 264 10.1007/BF02920250 2353811
    [Google Scholar]
  51. Agarwal A. McAnulty J.F. Schurr M.J. Murphy C.J. Abbott N.L. Polymeric materials for chronic wound and burn dressings. Advanced Wound. Repair Therapies. Amsterdam, The Netherlands Elsevier Inc 2011 186 208 10.1533/9780857093301.2.186
    [Google Scholar]
  52. Sugiyama J. Persson J. Chanzy H. Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 1991 24 9 2461 2466 10.1021/ma00009a050
    [Google Scholar]
  53. Jung R. Kim Y. Jin H.J. Text Sci. Eng. 2007 444 130 133
    [Google Scholar]
  54. Ullah M.W. Ul-Islam M. Khan S. Kim Y. Park J.K. Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system. Carbohydr. Polym. 2016 136 908 916 10.1016/j.carbpol.2015.10.010
    [Google Scholar]
  55. Gayathry G. Gopalaswamy G. Production and characterisation of microbial cellulosic fibre from Acetobacter xylinum. Indian J. Fibre Text. Res. 2014 39 93 96
    [Google Scholar]
  56. Shah N. Ha J.H. Park J.K. Effect of reactor surface on production of bacterial cellulose and water soluble oligosaccharides by Gluconacetobacter hansenii PJK. Biotechnol. Bioprocess Eng.; BBE 2010 15 1 110 118 10.1007/s12257‑009‑3064‑6
    [Google Scholar]
  57. Irham W.H. Tamrin M. Characterization of bacterial cellulose from coconut water supplemented Curcuma Longa Linn and Ziziphus Mauritiana extract. AIP Conf Proc 2020 2267 1 020056 10.1063/5.0023953
    [Google Scholar]
  58. Jung H.I. Lee O.M. Jeong J.H. Jeon Y.D. Park K.H. Kim H.S. An W.G. Son H.J. Production and characterization of cellulose by Acetobacter sp. V6 using a cost-effective molasses-corn steep liquor medium. Appl. Biochem. Biotechnol. 2010 162 2 486 497 10.1007/s12010‑009‑8759‑9 19730823
    [Google Scholar]
  59. Feng X. Ge Z. Wang Y. Xia X. Zhao B. Dong M. Production and characterization of bacterial cellulose from kombucha-fermented soy whey. Food. Production. Processing and Nutrition 2024 6 1 20 10.1186/s43014‑023‑00188‑3
    [Google Scholar]
  60. Tsouko E. Pilafidis S. Kourmentza K. Gomes H.I. Sarris G. Koralli P. Papagiannopoulos A. Pispas S. Sarris D. A sustainable bioprocess to produce bacterial cellulose (BC) using waste streams from wine distilleries and the biodiesel industry: Evaluation of BC for adsorption of phenolic compounds, dyes and metals. Biotechnol. Biofuels 2024 17 1 40 10.1186/s13068‑024‑02488‑3 38475851
    [Google Scholar]
  61. Sarkono S. Moeljopawiro S. Setiaji B. Sembiring L. Physico-chemical properties of bacterial cellulose produced by newly strain Gluconacetobacter xylinus ANG-29 in static and shaking fermentations. Biosci. Biotechnol. Res. Asia 2014 11 3 1259 1265 10.13005/bbra/1514
    [Google Scholar]
  62. Singh O. Panesar P.S. Chopra H.K. Isolation and characterization of cellulose producing bacterial isolate from rotten grapes. Biosci. Biotech. Res. Asia 2017 14 1 373 380
    [Google Scholar]
  63. Lipsk B.A. Hoey C. Topical antimicrobial therapy for treating chronic wounds. Clin. Infect. Dis. 2009 49 10 1541 1549 10.1086/644732 19842981
    [Google Scholar]
  64. Shao W. Liu H. Wang S. Wu J. Huang M. Min H. Liu X. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydr. Polym. 2016 145 114 120 10.1016/j.carbpol.2016.02.065 27106158
    [Google Scholar]
  65. Ullah H. Wahid F. Santos H.A. Khan T. Advances in biomedical and pharmaceutical applications of functional bacterial cellulose-based nanocomposites. Carbohydr. Polym. 2016 150 330 352 10.1016/j.carbpol.2016.05.029 27312644
    [Google Scholar]
  66. Aboelnaga A. Elmasry M. Adly O.A. Elbadawy M.A. Abbas A.H. Abdelrahman I. Salah O. Steinvall I. Microbial cellulose dressing compared with silver sulphadiazine for the treatment of partial thickness burns: A prospective, randomised, clinical trial. Burns 2018 44 8 1982 1988 10.1016/j.burns.2018.06.007 30005989
    [Google Scholar]
  67. Wen X. Zheng Y. Wu J. Yue L. Wang C. Luan J. Wu Z. Wang K. In vitro and in vivo investigation of bacterial cellulose dressing containing uniform silver sulfadiazine nanoparticles for burn wound healing. Prog. Nat. Sci. 2015 25 3 197 203 10.1016/j.pnsc.2015.05.004
    [Google Scholar]
  68. Gromovykh T.I. Sadykova V.S. Lutcenko S.V. Dmitrenok A.S. Feldman N.B. Danilchuk T.N. Kashirin V.V. Bacterial cellulose synthesized by Gluconacetobacter hansenii for medical applications. Appl. Biochem. Microbiol. 2017 53 1 60 67 10.1134/S0003683817010094
    [Google Scholar]
  69. Das M. Zandraa O. Mudenur C. Saha N. Sáha P. Mandal B. Katiyar V. Composite scaffolds based on bacterial cellulose for wound dressing application. ACS Appl. Bio Mater. 2022 5 8 3722 3733 10.1021/acsabm.2c00226 35853242
    [Google Scholar]
  70. Luan J. Wu J. Zheng Y. Song W. Wang G. Guo J. Ding X. Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing. Biomed. Mater. 2012 7 6 065006 10.1088/1748‑6041/7/6/065006 23182757
    [Google Scholar]
  71. Tamahkar E. Bacterial cellulose/poly vinyl alcohol based wound dressings with sustained antibiotic delivery. Chem. Pap. 2021 75 8 3979 3987 10.1007/s11696‑021‑01631‑w
    [Google Scholar]
  72. Sedans K.A. Stiegler Jurkevicz C. Silva B.C.C. Blener Lopes V. Lopes G.F.M. Schmitt E.F.P. Portes D.B. Fronza M. Endringer D.C. Tischer C.A. Cabeça L.F. Ferreira J.M.S. Ribeiro-Viana R.M. Development of a cationic bacterial cellulose film loaded with anionic liposomes for prolonged release of oxacillin in wound dressing applications. Int. J. Pharm. 2024 665 124649 10.1016/j.ijpharm.2024.124649 39236774
    [Google Scholar]
  73. Ao H. Jiang W. Nie Y. Zhou C. Zong J. Liu M. Liu X. Wan Y. Engineering quaternized chitosan in the 3D bacterial cellulose structure for antibacterial wound dressings. Polym. Test. 2020 86 106490 10.1016/j.polymertesting.2020.106490
    [Google Scholar]
  74. Meng S. Borjihan Q. Xiao D. Wang Y. Chen M. Cheng C. Dong A. Biosynthesis of positively charged bacterial cellulose hydrogel with antibacterial and anti-inflammatory function for efficient wound healing. Int. J. Biol. Macromol. 2024 279 Pt 3 135263 10.1016/j.ijbiomac.2024.135263 39244128
    [Google Scholar]
  75. Ciecholewska-Juśko D. Junka A. Fijałkowski K. The cross-linked bacterial cellulose impregnated with octenidine dihydrochloride-based antiseptic as an antibacterial dressing material for highly-exuding, infected wounds. Microbiol. Res. 2022 263 127125 10.1016/j.micres.2022.127125 35878492
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010361594250703060501
Loading
/content/journals/cpb/10.2174/0113892010361594250703060501
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: rotten fruits ; wound dressing ; Acetobacter ; blast ; gentamicin ; bacterial cellulose
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test