Skip to content
2000
image of Mechanistic Insights into the Therapeutic Role of Curcumin in Leukemia: Molecular Targets and Clinical Implications

Abstract

Leukemia is one of the most widespread and life-threatening malignancies that originates in the blood and bone marrow. Despite advances in treatment, there remains a need for safer and more effective therapeutic agents with fewer side effects. This review investigates the therapeutic potential of curcumin (CUR), a naturally derived polyphenol, in leukemia management, with a focus on its molecular mechanisms and regulatory effects on various signaling pathways. Peer-reviewed publications were considered till March 2025. Various scientific databases, including PubMed, Scopus, Science Direct, SciFinder, Medline, and Google Scholar, were used to collect the literature knowledge. The review focuses on the role of curcumin in modulating key cellular processes, such as apoptosis, cell cycle arrest, and gene regulation, along with its interaction with several oncogenic and protective signaling cascades. Accordingly, CUR demonstrates potent antileukemic effects by promoting apoptosis and cell cycle arrest. It downregulates oncogenes, such as , , , and , while protecting normal cells through upregulation of , which enhances antioxidant production. Additionally, CUR modulates multiple signaling pathways, including , , , , , , and , thereby affecting leukemia initiation, progression, and metastasis. CUR exhibits strong potential as a therapeutic agent for leukemia by targeting multiple molecular signaling pathways and promoting selective cytotoxicity against cancer cells. Further preclinical and clinical studies are necessary to validate its efficacy and overcome the limitations of the bioavailability parameters.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010367533250923105438
2025-10-01
2025-12-16
Loading full text...

Full text loading...

References

  1. Bray F. Ferlay J. Soerjomataram I. Siegel R.L. Torre L.A. Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018 68 6 394 424 10.3322/caac.21492 30207593
    [Google Scholar]
  2. Inaba H. Greaves M. Mullighan C.G. Acute lymphoblastic leukaemia. Lancet 2013 381 9881 1943 1955 10.1016/S0140‑6736(12)62187‑4 23523389
    [Google Scholar]
  3. Juliusson G. Hough R. Leukemia. Progress in Tumor Research. Stark D.P. Vassal G. Basel, Switzerland Karger Publications 2016 87 100
    [Google Scholar]
  4. Kipps T.J. Stevenson F.K. Wu C.J. Croce C.M. Packham G. Wierda W.G. O’Brien S. Gribben J. Rai K. Chronic lymphocytic leukaemia. Nat. Rev. Dis. Primers 2017 3 1 16096 10.1038/nrdp.2016.96 28102226
    [Google Scholar]
  5. Short N.J. Rytting M.E. Cortes J.E. Acute myeloid leukaemia. Lancet 2018 392 10147 593 606 10.1016/S0140‑6736(18)31041‑9 30078459
    [Google Scholar]
  6. Lim J.Y.S. Bhatia S. Robison L.L. Yang J.J. Genomics of racial and ethnic disparities in childhood acute lymphoblastic leukemia. Cancer 2014 120 7 955 962 10.1002/cncr.28531 24382716
    [Google Scholar]
  7. Cerhan J.R. Slager S.L. Familial predisposition and genetic risk factors for lymphoma. Blood 2015 126 20 2265 2273 10.1182/blood‑2015‑04‑537498 26405224
    [Google Scholar]
  8. Doll R. Wakeford R. Risk of childhood cancer from fetal irradiation. Br. J. Radiol. 1997 70 830 130 139 10.1259/bjr.70.830.9135438 9135438
    [Google Scholar]
  9. Katz L. Baltz R.H. Natural product discovery: Past, present, and future. J. Ind. Microbiol. Biotechnol. 2016 43 2-3 155 176 10.1007/s10295‑015‑1723‑5 26739136
    [Google Scholar]
  10. Kumar A. Premoli M. Aria F. Bonini S.A. Maccarinelli G. Gianoncelli A. Memo M. Mastinu A. Cannabimimetic plants: Are they new cannabinoidergic modulators? Planta 2019 249 6 1681 1694 10.1007/s00425‑019‑03138‑x 30877436
    [Google Scholar]
  11. Liu R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004 134 12 3479S 3485S 10.1093/jn/134.12.3479S 15570057
    [Google Scholar]
  12. Rajan L. Palaniswamy D. Mohankumar S.K. Targeting obesity with plant-derived pancreatic lipase inhibitors: A comprehensive review. Pharmacol. Res. 2020 155 104681 10.1016/j.phrs.2020.104681 32045666
    [Google Scholar]
  13. Bibi S. Hussain H. Hussain Y. Rauf M. Curcumin’s therapeutic story: Facts findings in the light of clinical studies. Phytonutrients 2024 3 46 76 10.62368/pn.v3i.25
    [Google Scholar]
  14. Drahl C. Cravatt B.F. Sorensen E.J. Protein-reactive natural products. Angew. Chem. Int. Ed. 2005 44 36 5788 5809 10.1002/anie.200500900 16149114
    [Google Scholar]
  15. Grossman E.A. Ward C.C. Spradlin J.N. Bateman L.A. Huffman T.R. Miyamoto D.K. Kleinman J.I. Nomura D.K. Covalent ligand discovery against druggable hotspots targeted by anti-cancer natural products. Cell Chem. Biol. 2017 24 11 1368 1376.e4 10.1016/j.chembiol.2017.08.013 28919038
    [Google Scholar]
  16. Park J.W. Woo K. Lee J.T. Lim J. Lee T.J. Kim S. Choi Y. Kwon T. Resveratrol induces pro-apoptotic endoplasmic reticulum stress in human colon cancer cells. Oncol. Rep. 2007 18 5 1269 1273 10.3892/or.18.5.1269 17914584
    [Google Scholar]
  17. Hussain Y. Khan H. Alam W. Ali Z. Ibrar M. Curcumin targeting oxidative mediators for therapeutic effects in diabetes and its related complications. Phytonutrients 2022 1 17 35 10.62368/pn.v1i01.10
    [Google Scholar]
  18. Roomi M.W. Kalinovsky T. Roomi N.W. Niedzwiecki A. Rath M. In vitro and in vivo inhibition of human Fanconi anemia head and neck squamous carcinoma by a phytonutrient combination. Int. J. Oncol. 2015 46 5 2261 2266 10.3892/ijo.2015.2895 25695860
    [Google Scholar]
  19. Kim C. Kim B. Anti-cancer natural products and their bioactive compounds inducing er stress-mediated apoptosis: A review. Nutrients 2018 10 8 1021 10.3390/nu10081021 30081573
    [Google Scholar]
  20. Premoli M. Aria F. Bonini S.A. Maccarinelli G. Gianoncelli A. Pina S.D. Tambaro S. Memo M. Mastinu A. Cannabidiol: Recent advances and new insights for neuropsychiatric disorders treatment. Life Sci. 2019 224 120 127 10.1016/j.lfs.2019.03.053 30910646
    [Google Scholar]
  21. Sabinsa   2024 Available from: https://sabinsa.com/media-coverage/1013-india-made-turmeric-extract-gives-uk-cancer-patient-new-lease-of-life
  22. Ames B.N. Gold L.S. Endogenous mutagens and the causes of aging and cancer. Mutat. Res. 1991 250 1-2 3 16 10.1016/0027‑5107(91)90157‑J 1944345
    [Google Scholar]
  23. Yang C.W. Chang C.L. Lee H.C. Chi C.W. Pan J.P. Yang W.C. Curcumin induces the apoptosis of human monocytic leukemia THP-1 cells via the activation of JNK/ERK Pathways. BMC Complement. Altern. Med. 2012 12 1 22 10.1186/1472‑6882‑12‑22 22443687
    [Google Scholar]
  24. Dong Y. Shi O. Zeng Q. Lu X. Wang W. Li Y. Wang Q. Leukemia incidence trends at the global, regional, and national level between 1990 and 2017. Exp. Hematol. Oncol. 2020 9 1 14 10.1186/s40164‑020‑00170‑6 32577323
    [Google Scholar]
  25. Neeraj Tandon T.K.L.K.J.M. Consensus document for management of acute myeloid leukemia (AML). 2024 Available from: https://main.icmr.nic.in/sites/default/files/guidelines/Acute_Myeloid_Leukemia.pdf
  26. Ruiz-Argüelles G.J. Morales-Toquero A. Manzano C. Ruiz-Delgado G.J. Jaramillo P. Gonzalez-Carrillo M.L. Reyes-Núñez V. t(8;21) (q22;q22) Acute myelogenous leukemia in México: A single institution experience. Hematology 2006 11 4 235 238 10.1080/10245330600702893 17178661
    [Google Scholar]
  27. Yamauchi K. Yasuda M. Comparison in treatments of nonleukemic granulocytic sarcoma. Cancer 2002 94 6 1739 1746 10.1002/cncr.10399 11920536
    [Google Scholar]
  28. Heuser M. Freeman S.D. Ossenkoppele G.J. Buccisano F. Hourigan C.S. Ngai L.L. Tettero J.M. Bachas C. Baer C. Béné M.C. Bücklein V. Czyz A. Denys B. Dillon R. Feuring-Buske M. Guzman M.L. Haferlach T. Han L. Herzig J.K. Jorgensen J.L. Kern W. Konopleva M.Y. Lacombe F. Libura M. Majchrzak A. Maurillo L. Ofran Y. Philippe J. Plesa A. Preudhomme C. Ravandi F. Roumier C. Subklewe M. Thol F. van de Loosdrecht A.A. van der Reijden B.A. Venditti A. Wierzbowska A. Valk P.J.M. Wood B.L. Walter R.B. Thiede C. Döhner K. Roboz G.J. Cloos J. 2021 Update on MRD in acute myeloid leukemia: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2021 138 26 2753 2767 10.1182/blood.2021013626 34724563
    [Google Scholar]
  29. Shih L.Y. Huang C.F. Wu J.H. Lin T.L. Dunn P. Wang P.N. Kuo M.C. Lai C.L. Hsu H.C. Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: A comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood 2002 100 7 2387 2392 10.1182/blood‑2002‑01‑0195 12239146
    [Google Scholar]
  30. Young R.M. Phelan J.D. Wilson W.H. Staudt L.M. Pathogenic B‐cell receptor signaling in lymphoid malignancies: New insights to improve treatment. Immunol. Rev. 2019 291 1 190 213 10.1111/imr.12792 31402495
    [Google Scholar]
  31. Kurzrock R. Talpaz M. The molecular pathology of chronic myelogenous leukaemia. Br. J. Haematol. 1991 79 s1 34 37 10.1111/j.1365‑2141.1991.tb08116.x 1931706
    [Google Scholar]
  32. McNeer J.L. Bleyer A. Conter V. Stock W. Acute Lymphoblastic Leukemia. Cancer in Adolescents and Young Adults, 2nd ed Springer International Berlin Bleyer A. Barr R. Ries L. Whelan J. Ferrari A. 2017 151 176 10.1007/978‑3‑319‑33679‑4_7
    [Google Scholar]
  33. Licht J.D. Sternberg D.W. The molecular pathology of acute myeloid leukemia. Hematology (Am. Soc. Hematol. Educ. Program) 2005 2005 1 137 142 10.1182/asheducation‑2005.1.137 16304371
    [Google Scholar]
  34. Anand P. Kunnumakkara A.B. Newman R.A. Aggarwal B.B. Bioavailability of curcumin: Problems and promises. Mol. Pharm. 2007 4 6 807 818 10.1021/mp700113r 17999464
    [Google Scholar]
  35. Yallapu M.M. Nagesh P.K.B. Jaggi M. Chauhan S.C. Therapeutic applications of curcumin nanoformulations. AAPS J. 2015 17 6 1341 1356 10.1208/s12248‑015‑9811‑z 26335307
    [Google Scholar]
  36. Ak T. Gülçin İ. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 2008 174 1 27 37 10.1016/j.cbi.2008.05.003 18547552
    [Google Scholar]
  37. Kant V. Gopal A. Pathak N.N. Kumar P. Tandan S.K. Kumar D. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int. Immunopharmacol. 2014 20 2 322 330 10.1016/j.intimp.2014.03.009 24675438
    [Google Scholar]
  38. Liang G. Yang S. Zhou H. Shao L. Huang K. Xiao J. Huang Z. Li X. Synthesis, crystal structure and anti-inflammatory properties of curcumin analogues. Eur. J. Med. Chem. 2009 44 2 915 919 10.1016/j.ejmech.2008.01.031 18336957
    [Google Scholar]
  39. Aggarwal B.B. Yuan W. Li S. Gupta S.C. Curcumin‐free turmeric exhibits anti‐inflammatory and anticancer activities: Identification of novel components of turmeric. Mol. Nutr. Food Res. 2013 57 9 1529 1542 10.1002/mnfr.201200838 23847105
    [Google Scholar]
  40. Sharma R.A. Gescher A.J. Steward W.P. Curcumin: The story so far. Eur. J. Cancer 2005 41 13 1955 1968 10.1016/j.ejca.2005.05.009 16081279
    [Google Scholar]
  41. Wright L. Frye J. Gorti B. Timmermann B. Funk J. Bioactivity of turmeric-derived curcuminoids and related metabolites in breast cancer. Curr. Pharm. Des. 2013 19 34 6218 6225 10.2174/1381612811319340013 23448448
    [Google Scholar]
  42. Alpers D.H. The potential use of curcumin in management of chronic disease: Too good to be true? Curr. Opin. Gastroenterol. 2008 24 2 173 175 10.1097/MOG.0b013e3282f44a19 18301267
    [Google Scholar]
  43. Aggarwal S. Ichikawa H. Takada Y. Sandur S.K. Shishodia S. Aggarwal B.B. Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IkappaBalpha kinase and Akt activation. Mol. Pharmacol. 2006 69 1 195 206 10.1124/mol.105.017400 16219905
    [Google Scholar]
  44. Aggarwal B.B. Sung B. Pharmacological basis for the role of curcumin in chronic diseases: An age-old spice with modern targets. Trends Pharmacol. Sci. 2009 30 2 85 94 10.1016/j.tips.2008.11.002 19110321
    [Google Scholar]
  45. Aggarwal B.B. Sethi G. Ahn K.S. Sandur S.K. Pandey M.K. Kunnumakkara A.B. Sung B. Ichikawa H. Targeting signal-transducer-and-activator-of-transcription-3 for prevention and therapy of cancer: Modern target but ancient solution. Ann. N. Y. Acad. Sci. 2006 1091 1 151 169 10.1196/annals.1378.063 17341611
    [Google Scholar]
  46. Anto R.J. Maliekal T.T. Karunagaran D. L-929 cells harboring ectopically expressed RelA resist curcumin-induced apoptosis. J. Biol. Chem. 2000 275 21 15601 15604 10.1074/jbc.C000105200 10747850
    [Google Scholar]
  47. Anto R.J. Mukhopadhyay A. Denning K. Aggarwal B.B. Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: Its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 2002 23 1 143 150 10.1093/carcin/23.1.143 11756235
    [Google Scholar]
  48. Balasubramanyam K. Varier R.A. Altaf M. Swaminathan V. Siddappa N.B. Ranga U. Kundu T.K. Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J. Biol. Chem. 2004 279 49 51163 51171 10.1074/jbc.M409024200 15383533
    [Google Scholar]
  49. Balasubramanian S. Eckert R.L. Curcumin suppresses AP1 transcription factor-dependent differentiation and activates apoptosis in human epidermal keratinocytes. J. Biol. Chem. 2007 282 9 6707 6715 10.1074/jbc.M606003200 17148446
    [Google Scholar]
  50. Bech-Otschir D. Kraft R. Huang X. Henklein P. Kapelari B. Pollmann C. Dubiel W. COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J. 2001 20 7 1630 1639 10.1093/emboj/20.7.1630 11285227
    [Google Scholar]
  51. Bharti A.C. Donato N. Aggarwal B.B. Curcumin (diferuloylmethane) inhibits constitutive and IL-6-inducible STAT3 phosphorylation in human multiple myeloma cells. J. Immunol. 2003 171 7 3863 3871 10.4049/jimmunol.171.7.3863 14500688
    [Google Scholar]
  52. Bharti A.C. Shishodia S. Reuben J.M. Weber D. Alexanian R. Raj-Vadhan S. Estrov Z. Talpaz M. Aggarwal B.B. Nuclear factor–κB and STAT3 are constitutively active in CD138+ cells derived from multiple myeloma patients, and suppression of these transcription factors leads to apoptosis. Blood 2004 103 8 3175 3184 10.1182/blood‑2003‑06‑2151 15070700
    [Google Scholar]
  53. Bhattacharyya S. Mandal D. Saha B. Sen G.S. Das T. Sa G. Curcumin prevents tumor-induced T cell apoptosis through Stat-5a-mediated Bcl-2 induction. J. Biol. Chem. 2007 282 22 15954 15964 10.1074/jbc.M608189200 17392282
    [Google Scholar]
  54. Chakravarti N. Myers J.N. Aggarwal B.B. Targeting constitutive and interleukin‐6‐inducible signal transducers and activators of transcription 3 pathway in head and neck squamous cell carcinoma cells by curcumin (diferuloylmethane). Int. J. Cancer 2006 119 6 1268 1275 10.1002/ijc.21967 16642480
    [Google Scholar]
  55. Collett G.P. Campbell F.C. Curcumin induces c-jun N-terminal kinase-dependent apoptosis in HCT116 human colon cancer cells. Carcinogenesis 2004 25 11 2183 2189 10.1093/carcin/bgh233 15256484
    [Google Scholar]
  56. Fang J. Lu J. Holmgren A. Thioredoxin reductase is irreversibly modified by curcumin: A novel molecular mechanism for its anticancer activity. J. Biol. Chem. 2005 280 26 25284 25290 10.1074/jbc.M414645200 15879598
    [Google Scholar]
  57. Garg A.K. Buchholz T.A. Aggarwal B.B. Chemosensitization and radiosensitization of tumors by plant polyphenols. Antioxid. Redox Signal. 2005 7 11-12 1630 1647 10.1089/ars.2005.7.1630 16356126
    [Google Scholar]
  58. Goel A. Kunnumakkara A.B. Aggarwal B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008 75 4 787 809 10.1016/j.bcp.2007.08.016 17900536
    [Google Scholar]
  59. Jana N.R. Dikshit P. Goswami A. Nukina N. Inhibition of proteasomal function by curcumin induces apoptosis through mitochondrial pathway. J. Biol. Chem. 2004 279 12 11680 11685 10.1074/jbc.M310369200 14701837
    [Google Scholar]
  60. Kim S.J. Son T.G. Park H.R. Park M. Kim M.S. Kim H.S. Chung H.Y. Mattson M.P. Lee J. Curcumin stimulates proliferation of embryonic neural progenitor cells and neurogenesis in the adult hippocampus. J. Biol. Chem. 2008 283 21 14497 14505 10.1074/jbc.M708373200 18362141
    [Google Scholar]
  61. Kunwar A. Barik A. Mishra B. Rathinasamy K. Pandey R. Priyadarsini K.I. Quantitative cellular uptake, localization and cytotoxicity of curcumin in normal and tumor cells. Biochim. Biophys. Acta, Gen. Subj. 2008 1780 4 673 679 10.1016/j.bbagen.2007.11.016 18178166
    [Google Scholar]
  62. Sandur S.K. Ichikawa H. Pandey M.K. Kunnumakkara A.B. Sung B. Sethi G. Aggarwal B.B. Role of pro-oxidants and antioxidants in the anti-inflammatory and apoptotic effects of curcumin (diferuloylmethane). Free Radic. Biol. Med. 2007 43 4 568 580 10.1016/j.freeradbiomed.2007.05.009 17640567
    [Google Scholar]
  63. Shishodia S. Amin H.M. Lai R. Aggarwal B.B. Curcumin (diferuloylmethane) inhibits constitutive NF-κB activation, induces G1/S arrest, suppresses proliferation, and induces apoptosis in mantle cell lymphoma. Biochem. Pharmacol. 2005 70 5 700 713 10.1016/j.bcp.2005.04.043 16023083
    [Google Scholar]
  64. Singh S. Aggarwal B.B. Activation of transcription factor NF-κ B is suppressed by curcumin (diferuloylmethane)[corrected]. J. Biol. Chem. 1995 270 42 24995 25000 10.1074/jbc.270.42.24995 7559628
    [Google Scholar]
  65. Syng-ai C. Kumari A.L. Khar A. Effect of curcumin on normal and tumor cells: Role of glutathione and bcl-2. Mol. Cancer Ther. 2004 3 9 1101 1108 10.1158/1535‑7163.1101.3.9 15367704
    [Google Scholar]
  66. Tsvetkov P. Asher G. Reiss V. Shaul Y. Sachs L. Lotem J. Inhibition of NAD(P)H:Quinone oxidoreductase 1 activity and induction of p53 degradation by the natural phenolic compound curcumin. Proc. Natl. Acad. Sci. USA 2005 102 15 5535 5540 10.1073/pnas.0501828102 15809436
    [Google Scholar]
  67. Aggarwal B.B. Sundaram C. Malani N. Ichikawa H. Curcumin: The Indian Solid Gold. The Molecular Targets and Therapeutic Uses of Curcumin in Health. and Disease. Boston, MA Springer US 2007 1 75 10.1007/978‑0‑387‑46401‑5_1
    [Google Scholar]
  68. Gupta S.C. Patchva S. Aggarwal B.B. Therapeutic roles of curcumin: Lessons learned from clinical trials. AAPS J. 2013 15 1 195 218 10.1208/s12248‑012‑9432‑8 23143785
    [Google Scholar]
  69. Basnet P. Skalko-Basnet N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011 16 6 4567 4598 10.3390/molecules16064567 21642934
    [Google Scholar]
  70. Lao C.D. Ruffin M.T. Normolle D. Heath D.D. Murray S.I. Bailey J.M. Boggs M.E. Crowell J. Rock C.L. Brenner D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med. 2006 6 1 10 10.1186/1472‑6882‑6‑10 16545122
    [Google Scholar]
  71. Aggarwal B.B. Harikumar K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009 41 1 40 59 10.1016/j.biocel.2008.06.010 18662800
    [Google Scholar]
  72. Wilken R. Veena M.S. Wang M.B. Srivatsan E.S. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol. Cancer 2011 10 1 12 10.1186/1476‑4598‑10‑12 21299897
    [Google Scholar]
  73. Hackler L. Ózsvári B. Gyuris M. Sipos P. Fábián G. Molnár E. Marton A. Faragó N. Mihály J. Nagy L.I. Szénási T. Diron A. Párducz Á. Kanizsai I. Puskás L.G. The curcumin analog C-150, influencing NF-κB, UPR and Akt/Notch pathways has potent anticancer activity in vitro and in vivo. PLoS One 2016 11 3 0149832 10.1371/journal.pone.0149832 26943907
    [Google Scholar]
  74. Fresco P. Borges F. Marques M. Diniz C. The anticancer properties of dietary polyphenols and its relation with apoptosis. Curr. Pharm. Des. 2010 16 1 114 134 10.2174/138161210789941856 20214622
    [Google Scholar]
  75. Anuchapreeda S. Thanarattanakorn P. Sittipreechacharn S. Tima S. Chanarat P. Limtrakul P. Inhibitory effect of curcumin on MDR1 gene expression in patient leukemic cells. Arch. Pharm. Res. 2006 29 10 866 873 10.1007/BF02973907 17121181
    [Google Scholar]
  76. Yu J. Peng Y. Wu L.C. Xie Z. Deng Y. Hughes T. He S. Mo X. Chiu M. Wang Q.E. He X. Liu S. Grever M.R. Chan K.K. Liu Z. Curcumin down-regulates DNA methyltransferase 1 and plays an anti-leukemic role in acute myeloid leukemia. PLoS One 2013 8 2 55934 10.1371/journal.pone.0055934 23457487
    [Google Scholar]
  77. Grafone T. Palmisano M. Nicci C. Storti S. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: Biology and treatment. Oncol. Rev. 2012 6 1 8 10.4081/oncol.2012.e8 25992210
    [Google Scholar]
  78. Ghalaut V.S. Sangwan L. Dahiya K. Ghalaut P.S. Dhankhar R. Saharan R. Effect of imatinib therapy with and without turmeric powder on nitric oxide levels in chronic myeloid leukemia. J. Oncol. Pharm. Pract. 2012 18 2 186 190 10.1177/1078155211416530 21844132
    [Google Scholar]
  79. Zoi V. Kyritsis A.P. Galani V. Lazari D. Sioka C. Voulgaris S. Alexiou G.A. The role of curcumin in cancer: A focus on the PI3K/Akt pathway. Cancers 2024 16 8 1554 10.3390/cancers16081554 38672636
    [Google Scholar]
  80. Jabbour E. Kantarjian H. Chronic myeloid leukemia: 2016 update on diagnosis, therapy, and monitoring. Am. J. Hematol. 2016 91 2 252 265 10.1002/ajh.24275 26799612
    [Google Scholar]
  81. Nandagopalan S.R. Kuila N. Biswas S. Pattnayak N.C. Biswas G. Chakraborty S. Dual transcripts of BCR-ABL & different polymorphisms in chronic myeloid leukaemia patients. Indian J. Med. Res. 2016 143 Suppl. 1 S136 S141 10.4103/0971‑5916.191816 27748288
    [Google Scholar]
  82. Williams L.A. Gonzalez A.G.G. Ault P. Mendoza T.R. Sailors M.L. Williams J.L. Huang F. Nazha A. Kantarjian H.M. Cleeland C.S. Cortes J.E. Measuring the symptom burden associated with the treatment of chronic myeloid leukemia. Blood 2013 122 5 641 647 10.1182/blood‑2013‑01‑477687 23777764
    [Google Scholar]
  83. Wu L.X. Xu J.H. Wu G.H. Chen Y.Z. Inhibitory effect of curcumin on proliferation of K562 cells involves down-regulation of p210(bcr/abl) initiated Ras signal transduction pathway. Acta Pharmacol. Sin. 2003 24 11 1155 1160 14627502
    [Google Scholar]
  84. Mukherjee A. Sarkar R. Mukherjee S. Biswas J. Roy M. Curcumin boosts up the efficacy of imatinib mesylate in chronic myelogenic leukemia cell line K-562 by modulation of various markers. Int. J. Curr. Microbiol. Appl. Sci. 2016 5 12 240 255 10.20546/ijcmas.2016.512.026
    [Google Scholar]
  85. Zhang K. Xu J. Huang X. Wu L. Su Y. Chen Y. Curcumin synergistically augments bcr/abl phosphorothioate antisense oligonucleotides to inhibit growth of chronic myelogenous leukemia cells. Acta Pharmacol. Sin. 2007 28 1 105 110 10.1111/j.1745‑7254.2007.00471.x 17184589
    [Google Scholar]
  86. Bilajac E. Mahmutović L. Glamočlija U. Osmanović A. Hromić-Jahjefendić A. Tambuwala M.M. Suljagić M. Curcumin decreases viability and inhibits proliferation of imatinib-sensitive and imatinib-resistant chronic myeloid leukemia cell lines. Metabolites 2022 13 1 58 10.3390/metabo13010058 36676983
    [Google Scholar]
  87. Peng X.X. Tiwari A.K. Wu H.C. Chen Z.S. Overexpression of P-glycoprotein induces acquired resistance to imatinib in chronic myelogenous leukemia cells. Chin. J. Cancer 2012 31 2 110 118 10.5732/cjc.011.10327 22098951
    [Google Scholar]
  88. Dash T.K. Konkimalla V.B. Selection of P-glycoprotein inhibitor and formulation of combinational nanoformulation containing selected agent curcumin and DOX for reversal of resistance in K562 cells. Pharm. Res. 2017 34 8 1741 1750 10.1007/s11095‑017‑2182‑7 28536971
    [Google Scholar]
  89. Misra R. Sahoo S.K. Coformulation of doxorubicin and curcumin in poly(D,L-lactide-co-glycolide) nanoparticles suppresses the development of multidrug resistance in K562 cells. Mol. Pharm. 2011 8 3 852 866 10.1021/mp100455h 21480667
    [Google Scholar]
  90. Cookson M.S. Reuter V.E. Linkov I. Fair W.R. Glutathione S-transferase PI (GST-pi) class expression by immunohistochemistry in benign and malignant prostate tissue. J. Urol. 1997 157 2 673 676 10.1016/S0022‑5347(01)65248‑0 8996396
    [Google Scholar]
  91. Sauerbrey A. Zintl F. Volm M. P-glycoprotein and glutathione S-transferase pi in childhood acute lymphoblastic leukaemia. Br. J. Cancer 1994 70 6 1144 1149 10.1038/bjc.1994.462 7981066
    [Google Scholar]
  92. Schisselbauer J.C. Silber R. Papadopoulos E. Abrams K. LaCreta F.P. Tew K.D. Characterization of glutathione S-transferase expression in lymphocytes from chronic lymphocytic leukemia patients. Cancer Res. 1990 50 12 3562 3568 2340505
    [Google Scholar]
  93. Duvoix A. Morceau F. Schnekenburger M. Delhalle S. Galteau M.M. Dicato M. Diederich M. Curcumin-induced cell death in two leukemia cell lines: K562 and Jurkat. Ann. N. Y. Acad. Sci. 2003 1010 1 389 392 10.1196/annals.1299.071 15033758
    [Google Scholar]
  94. Iqbal B. Ghildiyal A. Sahabjada; Singh, S.; Arshad, M.; Mahdi, A.A.; Tiwari, S. Antiproliferative and apoptotic effect of curcumin and TRAIL (TNF-Related Apoptosis Inducing ligand) in chronic myeloid leukaemic cells. J. Clin. Diagn. Res. 2016 10 4 XC01 XC05 10.7860/JCDR/2016/18507.7579 27190933
    [Google Scholar]
  95. Martinez-Castillo M. Bonilla-Moreno R. Aleman-Lazarini L. Meraz-Rios M.A. Orozco L. Cedillo-Barron L. Cordova E.J. Villegas-Sepulveda N. A subpopulation of the K562 cells are killed by curcumin treatment after G2/M arrest and mitotic catastrophe. PLoS One 2016 11 11 0165971 10.1371/journal.pone.0165971 27832139
    [Google Scholar]
  96. Deschler B. Lübbert M. Acute myeloid leukemia: Epidemiology and etiology. Cancer 2006 107 9 2099 2107 10.1002/cncr.22233 17019734
    [Google Scholar]
  97. Pesakhov S. Nachliely M. Barvish Z. Aqaqe N. Schwartzman B. Voronov E. Sharoni Y. Studzinski G.P. Fishman D. Danilenko M. Cancer-selective cytotoxic Ca2+ overload in acute myeloid leukemia cells and attenuation of disease progression in mice by synergistically acting polyphenols curcumin and carnosic acid. Oncotarget 2016 7 22 31847 31861 10.18632/oncotarget.7240 26870993
    [Google Scholar]
  98. Rao J. Xu D.R. Zheng F.M. Long Z.J. Huang S.S. Wu X. Zhou W.H. Huang R.W. Liu Q. Curcumin reduces expression of Bcl-2, leading to apoptosis in daunorubicin-insensitive CD34+ acute myeloid leukemia cell lines and primary sorted CD34+ acute myeloid leukemia cells. J. Transl. Med. 2011 9 1 71 10.1186/1479‑5876‑9‑71 21595920
    [Google Scholar]
  99. Toyota M. Kopecky K.J. Toyota M.O. Jair K.W. Willman C.L. Issa J.P.J. Methylation profiling in acute myeloid leukemia. Blood 2001 97 9 2823 2829 10.1182/blood.V97.9.2823 11313277
    [Google Scholar]
  100. Tima S. Ichikawa H. Ampasavate C. Okonogi S. Anuchapreeda S. Inhibitory effect of turmeric curcuminoids on FLT3 expression and cell cycle arrest in the FLT3-overexpressing EoL-1 leukemic cell line. J. Nat. Prod. 2014 77 4 948 954 10.1021/np401028h 24689857
    [Google Scholar]
  101. Zhang J. Lu F. Lu T. Dong W. Li P. Liu N. Ma D. Ji C. Inactivation of FoxM1 transcription factor contributes to curcumin-induced inhibition of survival, angiogenesis, and chemosensitivity in acute myeloid leukemia cells. J. Mol. Med. 2014 92 12 1319 1330 10.1007/s00109‑014‑1198‑2 25179295
    [Google Scholar]
  102. Zhu G.H. Dai H.P. Shen Q. Ji O. Zhang Q. Zhai Y.L. Curcumin induces apoptosis and suppresses invasion through MAPK and MMP signaling in human monocytic leukemia SHI-1 cells. Pharm. Biol. 2016 54 8 1303 1311 26134921
    [Google Scholar]
  103. Zhou H. Ning Y. Zeng G. Zhou C. Ding X. Curcumin promotes cell cycle arrest and apoptosis of acute myeloid leukemia cells by inactivating AKT. Oncol. Rep. 2021 45 4 11 10.3892/or.2021.7962 33649826
    [Google Scholar]
  104. Zeng Y. Liu F. Wu M. Wu X. Zhang D. Yuan Q. Zhou L. Wu Z. Curcumin combined with arsenic trioxide in the treatment of acute myeloid leukemia: Network pharmacology analysis and experimental validation. J. Cancer Res. Clin. Oncol. 2023 149 1 219 230 10.1007/s00432‑022‑04463‑7 36352148
    [Google Scholar]
  105. Chaitanya G.V. Alexander J.S. Babu P.P. PARP-1 cleavage fragments: Signatures of cell-death proteases in neurodegeneration. Cell Commun. Signal. 2010 8 1 31 10.1186/1478‑811X‑8‑31 21176168
    [Google Scholar]
  106. Green A.R. Caracappa D. Benhasouna A.A. Alshareeda A. Nolan C.C. Macmillan R.D. Madhusudan S. Ellis I.O. Rakha E.A. Biological and clinical significance of PARP1 protein expression in breast cancer. Breast Cancer Res. Treat. 2015 149 2 353 362 10.1007/s10549‑014‑3230‑1 25528020
    [Google Scholar]
  107. Mishra D. Singh S. Narayan G. Curcumin induces apoptosis in pre-b acute lymphoblastic leukemia cell lines via PARP-1 cleavage. Asian Pac. J. Cancer Prev. 2016 17 8 3865 3869 27644631
    [Google Scholar]
  108. Sharma V. Jha A.K. Kumar A. Bhatnagar A. Narayan G. Kaur J. Curcumin-mediated reversal of p15 gene promoter methylation: Implication in anti-neoplastic action against acute lymphoid leukaemia cell line. Folia Biol. 2015 61 2 81 89 10.14712/fb2015061020081 26333125
    [Google Scholar]
  109. Druker B.J. Sawyers C.L. Kantarjian H. Resta D.J. Reese S.F. Ford J.M. Capdeville R. Talpaz M. Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N. Engl. J. Med. 2001 344 14 1038 1042 10.1056/NEJM200104053441402 11287973
    [Google Scholar]
  110. Ottmann O.G. Druker B.J. Sawyers C.L. Goldman J.M. Reiffers J. Silver R.T. Tura S. Fischer T. Deininger M.W. Schiffer C.A. Baccarani M. Gratwohl A. Hochhaus A. Hoelzer D. Fernandes-Reese S. Gathmann I. Capdeville R. O’Brien S.G. A phase 2 study of imatinib in patients with relapsed or refractory Philadelphia chromosome-positive acute lymphoid leukemias. Blood 2002 100 6 1965 1971 10.1182/blood‑2001‑12‑0181 12200353
    [Google Scholar]
  111. Guo Y. Li Y. Shan Q. He G. Lin J. Gong Y. Curcumin potentiates the anti-leukemia effects of imatinib by downregulation of the AKT/mTOR pathway and BCR/ABL gene expression in Ph+ acute lymphoblastic leukemia. Int. J. Biochem. Cell Biol. 2015 65 1 11 10.1016/j.biocel.2015.05.003 25979368
    [Google Scholar]
  112. Zhdanovskaya N. Lazzari S. Caprioglio D. Firrincieli M. Maioli C. Pace E. Imperio D. Talora C. Bellavia D. Checquolo S. Mori M. Screpanti I. Minassi A. Palermo R. Identification of a novel curcumin derivative influencing notch pathway and DNA damage as a potential therapeutic agent in T-ALL. Cancers (Basel) 2022 14 23 5772 10.3390/cancers14235772 36497257
    [Google Scholar]
  113. Hallek M. Chronic lymphocytic leukemia: 2013 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 2013 88 9 803 816 10.1002/ajh.23491 23720127
    [Google Scholar]
  114. Stephens J.M. Gramegna P. Laskin B. Botteman M.F. Pashos C.L. Chronic lymphocytic leukemia: Economic burden and quality of life: Literature review. Am. J. Ther. 2005 12 5 460 466 10.1097/01.mjt.0000104489.93653.0f 16148431
    [Google Scholar]
  115. Golombick T. Diamond T.H. Manoharan A. Ramakrishna R. B-cell disorders and curcumin. Integr. Cancer Ther. 2017 16 3 255 257 10.1177/1534735415622013 26674787
    [Google Scholar]
  116. Ghosh A.K. Kay N.E. Secreto C.R. Shanafelt T.D. Curcumin inhibits prosurvival pathways in chronic lymphocytic leukemia B cells and may overcome their stromal protection in combination with EGCG. Clin. Cancer Res. 2009 15 4 1250 1258 10.1158/1078‑0432.CCR‑08‑1511 19228728
    [Google Scholar]
  117. Bistué-Rovira À. Rico L.G. Bardina J. Juncà J. Granada I. Bradford J.A. Ward M.D. Salvia R. Solé F. Petriz J. Persistence of chronic lymphocytic leukemia stem-like populations under simultaneous in vitro treatment with curcumin, fludarabine, and ibrutinib: Implications for therapy resistance. Int. J. Mol. Sci. 2024 25 4 1994 10.3390/ijms25041994 38396682
    [Google Scholar]
  118. Blasius R. Dicato M. Diederich M. Effect of curcumin treatment on protein phosphorylation in K562 cells. Ann. N. Y. Acad. Sci. 2007 1095 1 377 387 10.1196/annals.1397.041 17404050
    [Google Scholar]
  119. Sharma R. Ellis B. Sharma A. Role of alpha class glutathione transferases (GSTs) in chemoprevention: GSTA1 and A4 overexpressing human leukemia (HL60) cells resist sulforaphane and curcumin induced toxicity. Phytother. Res. 2011 25 4 563 568 10.1002/ptr.3297 20857431
    [Google Scholar]
  120. Zahedpanah M. Takanlu J.S. Nikbakht M. Rad F. Farhid F. Mousavi S.A. Rad S. Fumani H.K. Hosseini Rad S.M.A. Mohammadi S. Microvesicles of osteoblasts modulate bone marrow mesenchymal stem cell‐induced apoptosis to curcumin in myeloid leukemia cells. J. Cell. Physiol. 2019 234 10 18707 18719 10.1002/jcp.28511 30916405
    [Google Scholar]
  121. Liu B. Shen Y. Huang H. Croce K.D. Wu M. Fan Y. Liu Y. Xu J. Yao G. Curcumin derivative C212 inhibits Hsp90 and eliminates both growing and quiescent leukemia cells in deep dormancy. Cell Commun. Signal. 2020 18 1 159 10.1186/s12964‑020‑00652‑4 32993709
    [Google Scholar]
  122. Liu J.M. Li M. Luo W. Sun H.B. Curcumin attenuates Adriamycin-resistance of acute myeloid leukemia by inhibiting the lncRNA HOTAIR/miR-20a-5p/WT1 axis. Lab. Invest. 2021 101 10 1308 1317 10.1038/s41374‑021‑00640‑3 34282279
    [Google Scholar]
  123. Zhu G. Shen Q. Jiang H. Ji O. Zhu L. Zhang L. Curcumin inhibited the growth and invasion of human monocytic leukaemia SHI-1 cells in vivo by altering MAPK and MMP signalling. Pharm. Biol. 2020 58 1 25 34 10.1080/13880209.2019.1701042 31854220
    [Google Scholar]
  124. Tseng Y.H. Chiou S.S. Weng J.P. Lin P.C. Curcumin and tetrahydrocurcumin induce cell death in Ara‐C‐resistant acute myeloid leukemia. Phytother. Res. 2019 33 4 1199 1207 10.1002/ptr.6316 30834607
    [Google Scholar]
  125. Kemp J.A. Kwon Y. J. Cancer nanotechnology: Current status and perspectives. Nano Converg. 2021 8 1 34 10.1186/s40580‑021‑00282‑7 34727233
    [Google Scholar]
  126. Acharya S. Sahoo S.K. PLGA nanoparticles containing various anticancer agents and tumour delivery by EPR effect. Adv. Drug Deliv. Rev. 2011 63 3 170 183 10.1016/j.addr.2010.10.008 20965219
    [Google Scholar]
  127. Dilnawaz F. Singh A. Sahoo S.K. Retraction notice to “Transferrin-conjugated curcumin-loaded superparamagnetic iron oxide nanoparticles induce augmented cellular uptake and apoptosis in K562 cells”[Acta Biomaterialia 8 (2011) 704–719]. Acta Biomater. 2012 8 2 704 719 10.1016/j.actbio.2011.10.022 22051236
    [Google Scholar]
  128. Sun D. Zhou J.K. Zhao L. Zheng Z.Y. Li J. Pu W. Liu S. Liu X.S. Liu S.J. Zheng Y. Zhao Y. Peng Y. Novel curcumin liposome modified with hyaluronan targeting CD44 plays an anti-leukemic role in acute myeloid leukemia in vitro and in vivo. ACS Appl. Mater. Interfaces 2017 9 20 16857 16868 10.1021/acsami.7b02863 28489348
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010367533250923105438
Loading
/content/journals/cpb/10.2174/0113892010367533250923105438
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Curcumin ; natural products ; mechanistic insight ; leukemia ; anticancer ; signaling pathways
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test