Current Pharmaceutical Biotechnology - Online First
Description text for Online First listing goes here...
1 - 20 of 72 results
-
-
Spray Drying: A Promising Technique for Inhalable Vaccine Development
Available online: 29 July 2025More LessIn the pursuit of innovative vaccine delivery methods, this review explores the potential of spray drying for formulating inhalable vaccines. Traditional vaccine approaches face challenges in administration, storage, and accessibility, especially in resource-limited settings. Inhalable vaccines, utilizing techniques like spray drying, offer a promising solution. By bypassing systemic circulation and directly targeting the respiratory mucosa, inhalable vaccines can induce robust mucosal and systemic immune responses. Spray drying, a versatile technique, is particularly well-suited for formulating inhalable vaccines. It transforms liquid vaccine formulations into finely dispersed powders, enabling efficient delivery to the lungs. This review delves into the unique characteristics of spray-dried particles, their impact on immune system activation, and their role in overcoming traditional vaccine limitations. The exploration emphasizes the potential for spray drying to revolutionize vaccine development, providing a comprehensive overview of its applications and contributions to improving global public health.
-
-
-
Emerging Protein Therapeutics as a Strategy for Cervical Cancer Treatment
Available online: 25 July 2025More LessCervical cancer continues to be a critical public health concern globally, with increasing mortality rates, particularly in Low- and Middle-Income Countries (LMICs) where healthcare resources remain limited. With more than 300,000 fatalities each year, it is the fourth most frequent cancer in women globally. Long-term infection with carcinogenic Human Papillomavirus (HPV) variants, which cause cancer through viral proteins including E5, E6, and E7, is the leading cause of cervical cancer. These proteins interfere with host cellular functions, which promote the development and spread of cancer. Conventional treatment strategies, including chemotherapeutics and immunotherapies, have achieved varying degrees of success. However, protein-based therapeutics have recently emerged as a promising class of agents in oncology due to their ability to modulate specific molecular targets with high precision and specificity. These biologics interact with cell surface receptors and orchestrate essential signalling cascades, such as the NF-κB, MAPK, and PI3K/AKT pathways. Notably, new classes of protein therapeutics, such as toxin-based agents and Bromodomain and Extra-Terminal (BET) domain inhibitors, have shown effectiveness in disrupting tumor-promoting pathways. In addition to their direct antitumor activities, protein therapeutics also modify the tumor microenvironment, affecting stromal elements and lymphatic architecture, and ultimately promoting apoptosis. This review critically examines the landscape of protein-based therapeutic approaches for cervical cancer, delineating their mechanisms of action and highlighting their role in targeting inflammatory pathways—such as inflammasomes and cytokine networks—that contribute to tumor progression and immune modulation.
-
-
-
Formulation and Assessment of Broccoli Extract-infused Hydrogel for Targeted Breast Cancer Therapy
Authors: Kajal Parashar, Mohammad Rashid Khan, Minhaj Ahmad Khan, Pratibha Pandey and Fahad KhanAvailable online: 21 July 2025More LessIntroductionThe most prevalent kind of cancer among women is breast cancer. Consequently, the development of novel, potent medications with fewer adverse effects is required to treat it. Breast cancer is frequently treated clinically with chemotherapy and surgery. However, there are still significant challenges to be addressed in the treatment of breast cancer, including inadequate therapeutic results, inevitable side effects, and the surgical excision of breast tissue. The objective of the study is to develop broccoli extract-based Hydrogel to overcome the challenges in breast cancer treatment.
MethodsThe developed Hydrogel was characterized by certain techniques to check its stability and drug release abilities. Swelling studies and drug release behavior were checked; the porosity of Hydrogel was checked by SEM EDX Analysis. Furthermore, in vitro studies were done to check the anti-breast cancer activity of the developed Hydrogel.
ResultsThe hydrogel was a highly porous structure with and compressive modulus, which makes it good for biological use in drug delivery. The in vitro studies showed that, developed Hydrogel inhibits the growth of breast cancer cells (MCF-7) at different concentrations and time intervals of 24 and 48 Hrs and was compatible with the non-cancerous cell line 3T3-L1. The results indicate the tolerability of Hydrogel at the level of cells.
DiscussionsNumerous investigations have demonstrated the anticancer effects of SFN by influencing the various biological processes that tumor cells engage in. In breast cancer cell lines, SFN functions as an HDAC inhibitor and reduces the expression of ER, EGFR, & HER-2 proteins. SFN also triggers apoptosis and cell cycle halt. Both Hydrogel and SFN inhibit the cells growth in MCF-7 breast cancer cells and agree with the previous studies.
ConclusionIn conclusion, we synthesized a hydrogel using broccoli extract to treat breast cancer with better stability, tolerance, and effectiveness through sustained local drug delivery. It was determined that this new hydrogel was a simple and affordable way to accomplish the continuous gene release feature, which would enhance the therapeutic efficacy in anti-cancer treatment while reducing the likelihood of potentially fatal side effects.
-
-
-
Exploring Immunogenetic Mechanisms in Parkinson’s Disease Using Single-cell Transcriptomics and Mendelian Randomization
Authors: Dongyuan Xu, Yu Lei, Ji Wu, Keyu Chen, Songshan Chai and Nanxiang XiongAvailable online: 21 July 2025More LessIntroductionParkinson’s disease (PD) is a prevalent neurodegenerative disorder characterized by the progressive loss of dopaminergic neuron. Although the role of immunity in PD has been increasingly recognized, the immunogenetic mechanisms underpinning its progression remain largely unresolved.
MethodsWe employed an integrative approach combining Mendelian randomization (MR), expression quantitative trait loci analysis, and single-cell RNA sequencing to investigate immune cell infiltration and transcriptional regulation in PD. Immune cell composition, pathway activation, and gene regulatory networks were assessed through single-cell gene set enrichment analysis and transcriptional correlation analyses.
ResultsImmune profiling revealed significant increases in naive B cells (1.22-fold), plasma cells (3.00-fold), switched memory B cells (2.85-fold), and unswitched memory B cells (6.70-fold) in PD patients compared to controls (p < 0.001). MR analysis identified five causal genes- CYTH4, FGR, LRRK2, RIN3, and SAT1- associated with monocyte, neutrophil, and B cell infiltration. SAT1 (OR: 1.529; 95% CI: 1.018–2.297) and RIN3 (OR: 1.222; 95% CI: 1.039–1.437) showed strong associations with PD risk (p < 0.01). SAT1 positively correlated with PARK7 and regulated reactive oxygen species signaling, while FGR negatively correlated with ABCA4, influencing lipid metabolism and immune responses.
DiscussionThese findings highlight distinct immunogenetic mechanisms driving PD progression. The SAT1-PARK7 axis appears to modulate oxidative stress and neuroinflammation, whereas the FGR-ABCA4 interaction may affect metabolic and immune pathways. While the study is limited by population heterogeneity and the challenges of inferring causality, it provides mechanistic insights into immune contributions to PD.
ConclusionOur integrative genomic analysis identified novel regulatory networks involving immune-related genes in PD, offering potential targets for mechanistic understanding and therapeutic development.
-
-
-
Potential of the β-Myrcene Rich Essential Oil from Astronium Urundeuva (M.Allemão) Engl. (Anacardiaceae) to Potentiate Fluconazole Activity and Inhibit Morphological Transition in Candida Species
Authors: José Thyálisson da Costa Silva, Saulo Almeida Menezes, Maria Hellena Garcia Novais, Naiza Saraiva Farias, Adrielle Rodrigues Costa, Francisco Sydney Henrique Félix, Ademar Maia Filho, Murilo Felipe Felício, Nadilânia Oliveira da Silva, Ginna Gonçalves Pereira, Cicero dos Santos Leandro, Alison Honorio de Oliveira, Lariza Leisla Leandro Nascimento, Luiz Filipi Teles Feitosa, Julimery Gonçalves Ferreira Macedo, Maria Flaviana Bezerra Morais-Braga, Henrique Douglas Melo Coutinho, Natália Cruz-Martins and José Weverton Almeida-BezerraAvailable online: 11 July 2025More LessBackgroundIn view of the increasing resistance of Candida species, it is necessary to explore alternative strategies. In this context, essential oils have emerged as promising options, among which the essential oil of Astronium urundeuva (M. Allemão) Engl. has shown potential, as it is traditionally used in folk medicine for the treatment of inflammation and multiple infections. Thus, the aim of this study was to evaluate the chemical profile, anti-Candida activity, and Fluconazole (FCZ) potentiating effect of the essential oil extracted from the leaves of A. urundeuva (EOAU) and its ability to inhibit the virulence mechanism in Candida species.
MethodsThe essential oil was obtained via hydrodistillation and characterized using gas chromatography-mass spectrometry. To evaluate the antifungal effects and the modulating activity of Fluconazole (FCZ), the essential oil was diluted in DMSO (1 mL) and SDB medium (9 mL) and tested on 3 Candida strains using the serial microdilution method. In addition, a morphological transition assay was used to evaluate its capacity to inhibit fungal virulence.
ResultsThe major constituent of EOAU was the monoterpene β-myrcene (71.07%). The results indicate that the essential oil exhibits an antifungal effect, with C. tropicalis being the most susceptible species. At subinhibitory concentrations (MC/8), the EOAU enhanced the action of fluconazole against C. krusei and C. tropicalis. The EOAU strongly inhibited the morphological transition in C. tropicalis.
ConclusionEOAU is rich in β-myrcene and exhibits an interesting fungistatic effect, making it a great natural candidate for inhibiting Candida spp. virulence.
-
-
-
Advances in Polymer-based Nanoparticles for Biomedical and Industrial Applications
Available online: 11 July 2025More LessPolymeric nanoparticles (PNPs) are considered to be a revolutionary method for drug delivery and offer significantly more advantages than conventional drug delivery systems. This review synthesizes recent research on biodegradable polymers in drug delivery, emphasizing their properties, modifications, toxicity, and applications in drug absorption. It consolidates key insights from 193 research papers to offer a comprehensive overview of the field, addressing existing research gaps and highlighting various applications. Polymers can be classified based on their structure, source, and biodegradability, which are crucial for assessing their environmental impact and suitability for various applications. Polymers are categorized into two main groups based on biodegradability: biodegradable and non-biodegrad-able. The primary aim of this review is to elucidate the diverse applications of natural and synthetic biodegradable polymeric nanoparticles, which include cancer treatment, diabetes management, pulmonary drug delivery, and the treatment of ocular infections, all of which are thoroughly explored in this review. Additionally, the role of polymer-based hydrogels is explored as a promising solution in drug delivery. These hydrogels address issues such as poor stability and enhance treatment efficacy by ensuring the sustained release of drugs.
-
-
-
Growth of Chloroquine Crystals and Their Properties as a Beta-hematin Inhibitor
Available online: 10 July 2025More LessIntroductionThe crystallization of heme into β-hematin and its subsequent conversion to hemozoin has garnered significant interest as a promising target for the development of novel antimalarial therapies, particularly through the heme detoxification pathway. Furthermore, the therapeutic efficacy of chloroquine (CQ) has been widely recognized, with several studies highlighting its role as an inhibitor of β-hematin and hemozoin formation.
Materials and MethodsThis study reports the synthesis of two novel CQ-derived compounds, 7-chloroquinolin-4-amine (CQC1) and 7-chloro-4-(1-oxidaneyl)-3,4-dihydroquinoline (CQC2), and evaluates their individual inhibitory effects on β-hematin formation.
ResultsNotably, comparative analysis of the experimental data revealed significant variability in the IC50 values for these compounds, which correspond to the concentration required to inhibit 50% of β-hematin synthesis. The impact of incubation time and compound concentration on IC50 values was also investigated.
ConclusionThe findings suggest that increasing the concentration and incubation time of both CQ derivatives led to a reduction in their IC50 values, with both compounds demonstrating enhanced inhibitory activity relative to commercial chloroquine (CQ).
-
-
-
Unveiling the Influence of Culture Conditions on Mesenchymal Stem Cells: A Transcriptome Sequencing Study
Authors: Bin Wang, Jiang Xie, Bo Pang, Fang Dong, Junna Zhou and Huanzhang ZhuAvailable online: 10 July 2025More LessAimsTo optimize the culture process of Mesenchymal Stem Cells (MSCs) and enhance their biological functions.
BackgroundMSCs have shown great potential in treating various diseases due to their low immunogenicity and potent paracrine effects. However, the inherent heterogeneity of MSC populations, which can vary depending on the culture conditions, may challenge large-scale clinical application.
ObjectiveThis study investigates the inconsistency of MSCs cultured in different media, from the transcriptional level to biological functions.
MethodRNA sequencing was used to identify different expressed genes of MSCs separated and expanded in three media, which were then validated with qPCR. In vitro assays, including proliferation, tube formation, wound healing, multilineage differentiation, paracrine secretome and injured hepatocyte protection assay, were performed to verify the potential differences among three groups.
ResultMSCs cultured in platelet lysate-containing medium exhibited high expression of genes involved in extracellular matrix regulation, collagen metabolic processes, and angiogenesis, whereas those cultured in serum-free medium demonstrated high expression of genes associated with DNA replication and chromosome segregation. MSCs cultured under serum-containing medium indicated high levels of genes associated with extracellular matrix regulation, cartilage development, and chemotaxis. The results of functional comparative experiments were consistent with the differences in their gene expression patterns. Notably, MSCs cultured in the serum-containing system exhibited greater protective effect against hepatocyte activity.
ConclusionDifferent culture conditions affect the biological functions of MSCs. Optimal conditions should be investigated for applications. Next, an in vivo model should be established to evaluate differences in MSC tissue repair function under various culture conditions.
-
-
-
Wound Dressing Potential of Bacterial Cellulose Produced by Acetobacter tropicalis NBRC 16470 Strain Isolated from Rotten Fruits
By Halil BalAvailable online: 08 July 2025More LessBackgroundBacterial cellulose, which is used in many fields from biomedicine to electronics, is promising as an alternative wound dressing instead of traditional gauze in wound treatment.
ObjectivesThe objective of this study was to evaluate the potential use of cellulose produced by acetic acid bacteria isolated from rotten fruits as a wound dressing.
MethodsIn our study, rotten fruit samples were incubated in Hestrin-Schramm (HS) Broth medium. Then, a loopful of the pellicle-forming samples was taken and inoculated onto Hestrin-Schramm (HS) agar using the streak culture method and bacteria were isolated. Identification of bacteria was performed using the BLAST program after 16S rRNA sequence analysis. Physicochemical properties and morphological characterization of bacterial cellulose produced by static culture were examined using Fourier transform infrared (FTIR) and scanning electron microscopy (SEM), respectively, and the swelling ratio was investigated. Antibiotic susceptibilities of bacterial cellulose membranes impregnated with different concentrations of gentamicin (50 µg/mL, 100 µg/mL, 200 µg/mL) against Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922 were determined by the disk diffusion method.
ResultsThe bacteria isolated from rotten fruits were identified as Acetobacter tropicalis NBRC 16470. The structure of cellulose produced by static culture was confirmed by a peak at 3,240 cm−1 in FTIR analysis and fibril structures in SEM analysis. Bacterial cellulose had a swelling ratio of 27.37± 2 .99 fold. The zone diameters formed by bacterial cellulose disk (50 µg/mL gentamicin) and gentamicin (10 µg) disk against Staphylococcus aureus ATCC 29213 and Escherichia coli ATCC 25922 were almost the same.
ConclusionThe production of bacterial cellulose, which has the potential to be used as a wound dressing from rotten fruits, is important in terms of recycling and low cost.
-
-
-
Flavonoids as Antimicrobial Agents: A Comprehensive Review of Mechanisms and Therapeutic Potential
Available online: 03 July 2025More LessFlavonoids, plant-derived polyphenolic compounds, have garnered significant attention for their broad-spectrum antimicrobial potential, encompassing antibacterial, antifungal, and antiviral activities. These bioactive molecules exert their effects through multiple mechanisms, including disruption of microbial cell membranes, inhibition of nucleic acid synthesis, suppression of biofilm formation, and interference with key bacterial enzymes. Notable flavonoids such as quercetin, apigenin, and kaempferol exhibit potent activity against bacterial pathogens like Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, as well as fungal pathogens such as Aspergillus fumigatus and Candida albicans. Furthermore, flavonoids can potentiate the efficacy of conventional antibiotics by inhibiting bacterial efflux pumps, a critical mechanism contributing to antibiotic resistance. Recent advancements in structure-activity relationship (SAR) studies have underscored the influence of structural modifications—such as prenylation, hydroxylation, and methoxylation—on the antimicrobial potency of flavonoids. By highlighting these insights, this review provides a unique perspective on flavonoid-based antimicrobial strategies, particularly their synergistic potential with existing antibiotics. These findings position flavonoids as promising candidates for novel antimicrobial therapies, particularly in the face of increasing antibiotic-resistant pathogens. However, further research is needed to elucidate their precise mechanisms and optimize their therapeutic applications.
-
-
-
Green Synthesis of Silver Nanoparticles Using Grewia tiliaefolia Vahl Leaf Extract: Characterisation, Process Optimisation, and Hepatoprotective Activity Against Paracetamol-induced Liver Toxicity in Rats
Available online: 02 July 2025More LessIntroductionScientists around the world are focusing on ‘green,’ environment-friendly, and cost-effective green synthesis of nanometals using various plant extracts to combat various ailments. Among nanometals, Silver (Ag) is one of the most commercialised nano-materials due to its wide applications in biotechnology and biomedical fields. The present study reports the first facile synthesis, characterization, and process optimisation of Ag nanoparticles (NPs) using aqueous Grewia tiliaefolia leaf extract (Gt) as a reducing and surface functionalising agent.
MethodsCharacterisation of Gt-mediated Ag-NPs was performed using FTIR. The morphology and microstructures of Gt-derived Ag-NPs were analysed using TEM and FE-SEM. In vitro, antioxidant activity was evaluated against DPPH radicals, hydrogen peroxide radicals, and ferric ions. In vitro, anticancer activity was assessed on MCF-7 and HepG2 cell lines. In vivo, hepatoprotective activity was tested against paracetamol-induced liver toxicity in rats.
ResultsFTIR analysis confirmed the interaction between Ag-NPs and Gt. The optimal conditions for Gt-derived Ag-NPs were found to be 4 mM AgNO3, 5% Gt, at 90°C for 60 minutes, at pH 9. UV-Visible spectroscopy, XRD, FE-SEM, and TEM revealed the phase formation, spherical morphology, and surface functionalisation of Gt-derived Ag-NPs, which were stable (-28.3 mV) with an average particle size of 14.5±0.05 nm. The Gt-derived Ag-NPs were found to be highly effective in significantly inhibiting DPPH radical, ferric ions, and hydroxyl radicals. Additionally, the cytotoxicity of Gt-derived Ag-NPs was more effective against MCF-7 cells compared to HepG2 cells. They also exhibited dose-dependent protection against hepatoprotective activity in albino rats.
DiscussionThe hepatoprotective effects of Gt-mediated Ag-NPs likely result from the combined action of bioactive phytochemicals (such as α/β-amyrin, γ-lactones, betulin, and lupeol), and their ability to scavenge ROS, reduce oxidative stress, and modulate inflammatory pathways. These mechanisms, supported by reduced lipid peroxidation and increased antioxidant activity in paracetamol-induced hepatotoxicity, suggest their therapeutic potential in liver protection and regeneration.
ConclusionOverall, Gt proves to be an eco-friendly and non-toxic source for synthesizing bioactive Ag-NPs at optimal conditions.
-
-
-
HIV Co-infected with Asymptomatic Visceral Leishmaniasis Exhibited a High Prevalence of the B type HBV Genotype
Authors: Shiril Kumar, Ganesh Chandra Sahoo, Krishna Pandey and Ashish KumarAvailable online: 23 June 2025More LessBackgroundMultiple organisms infect the host simultaneously in the case of co-infection. This study intended to determine the prevalence of viral hepatitis B in HIV/Asymptomatic VL co-infected patients and to identify the HBV genotype circulating in these patients in Bihar, India.
MethodsThere were 96 archived samples with co-infection with HIV and asymptomatic VL-positivity included in this study. A real-time PCR test was performed to measure the load of HBV DNA, and a chemiluminescent immunoassay was performed to determine the level of HBsAg.
ResultsOur study evaluated HIV and AVL co-infected patients with two coexisting genotypes of HBV and observed the expression of the B, C, and D genotypes. HBsAg levels correlated directly with HBV DNA levels in almost every case.
ConclusionFor a better understanding of this disease, authors need approaches and strategies for improving the current diagnostic techniques, as well as studies focusing on vector control procedures and other operational tools.
-
-
-
Elucidating the Role of Gardeniae Fructus and Scutellariae Radix Herb Pair in Alzheimer’s Disease via Network Pharmacology: Emphasis on Oxidative Stress, and the PI3K/Akt Pathway
Authors: Jia Xi Ye, Jia Ying Wu, Min Zhu, Liang Ai and Qihui HuangAvailable online: 23 June 2025More LessBackgroundThe combination of Gardeniae Fructus (ZZ) and Scutellariae Radix (HQ) is a traditional Chinese medicine used for Alzheimer’s disease (AD). However, the molecular mechanisms underlying its anti-dementia effects, particularly its multi-component synergy and pathway modulation, remain poorly understood.
ObjectiveOur study employed an integrated systems pharmacology approach to mechanistically decode the anti-AD properties of ZZ-HQ, combining network pharmacology predictions, molecular docking simulations, and experimental validation to identify critical bioactive components, molecular targets, and therapeutic pathways.
MethodsA comprehensive network pharmacology analysis was performed to identify bioactive compounds within the ZZ-HQ complex and their potential protein targets associated with AD. Molecular docking was utilized to predict and assess the binding interactions between key bioactive compounds and AD-related protein targets. Experimental validation focused on baicalin, a major active compound in the ZZ-HQ complex, evaluating its effects on cell viability, apoptosis regulation, oxidative stress reduction, and the activation of the PI3K/Akt signaling pathway.
ResultsFifty-four bioactive compounds were identified in the ZZ-HQ complex, interacting with 258 AD-associated proteins. Key compounds, such as baicalein and norwogonin, demonstrated strong binding affinities with pivotal proteins, including SRC and PIK3R1. Experimental studies further confirmed that baicalin significantly improved cell viability by activating the PI3K/Akt pathway, reducing apoptosis, and alleviating oxidative stress.
ConclusionOur study uncovered the therapeutic potential of the ZZ-HQ combination in addressing AD through multi-target mechanisms, particularly via modulation of the PI3K/Akt pathway and oxidative stress. These findings provide a scientific basis for the pharmacological effects of ZZ-HQ and offer valuable insights for further research on its potential application in AD treatment.
-
-
-
Challenges and Progress of Orphan Drug Development for Rare Diseases
Authors: Abhijit Debnath, Rupa Mazumder, Avijit Mazumder, Pankaj Kumar Tyagi and Rajesh Kumar SinghAvailable online: 23 June 2025More LessRare diseases, defined as conditions affecting fewer than 200,000 people in the United States or less than 1 in 2,000 people in Europe, pose significant challenges for healthcare systems and pharmaceutical research. This comprehensive review examines the evolving landscape of orphan drug development, analyzing scientific, economic, and regulatory challenges while highlighting recent technological breakthroughs and innovative approaches. We explore how artificial intelligence, next-generation sequencing, and personalized medicine are revolutionizing rare disease research and treatment development. The review details key advances in therapeutic approaches, including gene therapy, cell-based treatments, and drug repurposing strategies, which have led to breakthrough treatments for previously untreatable conditions. We analyze the impact of international collaborations, such as the International Rare Diseases Research Consortium, and discuss how regulatory frameworks worldwide have evolved to accelerate orphan drug development. The paper highlights the growing market for orphan drugs, projected to reach $242 billion by 2024 while examining the complex challenges of ensuring treatment accessibility and economic sustainability. We assess innovative clinical trial designs, patient registry development, and emerging strategies in personalized medicine that are transforming the field. Despite notable advancements, significant gaps remain in diagnosis, treatment accessibility, and sustainable funding for rare disease research. The review concludes by proposing specific actions for enhancing international collaboration, improving patient registries, and aligning incentives to address the unmet medical needs of rare disease patients, emphasizing the critical role of continued public-private partnerships and technological innovation in advancing orphan drug development.
-
-
-
A Novel Weight Loss Mechanism of Hydroxysafflor Yellow A in Obese Mice: Involvement of Immune Inflammation via Prkcd, Btk, and Vav1 Genes in Adipose Tissue
Authors: Ruizhen Hou, Wenjing Hu, Kemin Yan, Xiaorui Lyu, Yuchen Jiang, Xiaonan Guo, Yuxing Zhao, Linjie Wang, Hongbo Yang, Huijuan Zhu, Hui Pan and Fengying GongAvailable online: 22 May 2025More LessIntroductionHydroxysafflor Yellow A (HSYA), known for its anti-inflammatory effects in cardiovascular diseases, has also been shown to reduce adiposity and improve metabolic disorders in diet-induced obese (DIO) mice. However, the molecular mechanisms underlying its anti-obesity effects, particularly whether they are mediated through immune-inflammatory pathways, remain unclear. This study aims to identify the key molecular mechanisms involved in HSYA's anti-obesity action.
MethodsMale C57BL/6J mice were divided into three groups: Standard Feed (SF), High-Fat Diet (HFD), and HFD with HSYA treatment (250 mg/kg/day for 9 weeks). Whole transcriptome sequencing of White Adipose Tissue (WAT) identified Differentially Expressed Genes (DEGs), which were integrated with network pharmacology predictions to identify key molecular targets of HSYA. RT-qPCR in WAT, 3T3-L1 adipocytes, and RAW264.7 macrophages validated the core genes, and molecular docking assessed HSYA’s binding affinity with these targets.
ResultsHSYA treatment significantly reduced body weight (35.27 ± 1.27g vs. 45.46 ± 1.68g, p < 0.05) and WAT mass (3.38±0.21g vs. 1.86±0.27g, p < 0.05) in DIO mice and ameliorated glucose and lipid metabolism abnormalities. Transcriptome analysis revealed 739 DEGs, with 21 overlapping genes identified between sequencing and network pharmacology analyses. Experimental validation highlighted Prkcd, Btk, and Vav1 as core genes within immune-inflammatory pathways, including chemokine and B cell receptor signaling, which are implicated in obesity-related inflammation. RT-qPCR confirmed the downregulation of Prkcd, Btk, and Vav1 after HSYA treatment, consistent with transcriptomic findings. Molecular docking analysis demonstrated strong binding affinities between HSYA and VAV1 (-8.5 kcal/mol), BTK (-6.9 kcal/mol), and PRKCD (-6.6 kcal/mol).
ConclusionHSYA demonstrates the therapeutic potential for obesity by modulating immune-inflammatory pathways in WAT, specifically targeting Prkcd, Btk, and Vav1 in mice. Given its clinical use in cardiovascular disease, these findings suggest that HSYA may offer broader therapeutic benefits, including obesity management, though further studies are needed to clarify the mechanisms and assess its applicability to humans.
-
-
-
Naringin Alleviates Digoxin-induced Nephrotoxicity via Regulating Nrf2/ HO-1 and PI3K/ AKT/TGF-β Cascades in Rats’ Renal Tissues
Available online: 20 May 2025More LessBackgroundNephrotoxicity limits the clinical application of digoxin. One area that might be useful is the mechanical knowledge of altered renal function and renal impairment. We hypothesized that co-administration of naringin would affect digoxin nephrotoxicity by alleviating the altered renal oxidative/ antioxidant redox and apoptotic cascade.
Method40 male Wistar Albino rats (200 ± 50 g) were grouped into 4, every group included (n= 7), control, Nar., Dig. and Nar. + dig. Groups. Colorimetric estimation of kidney functions and renal oxidative/ antioxidant redox were done.
ResultsComparing digoxin alone, the concomitant administration of digoxin and naringin restored renal antioxidant/ oxidative redox, redistributed Nrf2, HO-1 mRNA exposure with a concomitant down-regulation of NF-κB, AKT and PI3K mRNA expressions. Moreover, a significant decrease of Smad3 and transforming growth factor-β (TGF- β) protein concentrations with a simultaneous rise of Smad7 were noticed in Nar. + dig. Arm when compared to Dig. group.
ConclusionThe co-administration of naringin and digoxin can mitigate digoxin-mediated nephrotoxicity by introducing antioxidant action. This is done by maintaining effects on renal oxidative/antioxidant cycle and lethality via regulating AKT/ PI3k/ Smad3/ Smad7 signaling pathways.
-
-
-
Causal Relationships Between Specific Gut Microbiota Taxa, Plasma Metabolites, and Cerebral Small Vessel Disease Risk: A Mendelian Randomization Analysis
Available online: 20 May 2025More LessAimsThis study investigates causal relationships between gut microbiota (GM), plasma metabolites, and cerebral small vessel disease (CSVD), with a focus on identifying GM taxa and metabolites that mediate disease risk.
MethodsSummary data from genome-wide association studies on GM (MiBioGen), 1,400 plasma metabolites, and CSVD were analyzed using a two-step Mendelian randomization (MR) approach. The primary analysis utilized inverse-variance weighting, complemented by weighted median, weighted mode, and MR-Egger methods for robustness.
ResultsThe MR analysis identified 12 GM taxa associated with CSVD risk, including 7 taxa linked to increased risk (Veillonellaceae, Hungatella, Ruminococcus2, Lachnospiraceae UCG010, Streptococcus, Cyanobacteria, Verrucomicrobia) and 5 taxa linked to decreased risk (Faecalibacterium, Alphaproteobacteria, Eubacterium nodatum group, Fusicatenibacter, Rhodospirillales). Additionally, 10 plasma metabolites were causally associated with CSVD risk, with sphingomyelin (d18:2/14:0, d18:1/14:1), nicotinamide, 3-ethylcatechol sulfate (2), sphingosine, and phenylpyruvate-to-4 hydroxyphenylpyruvate ratio linked to increased risk, while phosphate-to-uridine ratio, adenosine 5'-diphosphate (ADP)-toflavin adenine dinucleotide (FAD) ratio, arginine, caffeine-to-theobromine ratio and N-succinylphenylalanine were linked to decreased risk. Mediation analysis identified 8 causal pathways through which plasma metabolites connect GM taxa to CSVD.
ConclusionThese findings underscore the substantial influence of GM and plasma metabolites on CSVD risk, highlighting potential therapeutic targets. Further investigation is needed to elucidate the biological mechanisms underlying these associations.
-
-
-
Analysis of the Mechanism of PGLP-1 Inhibiting Gluconeogenesis Based on Whole Transcriptome Sequencing
Authors: Huashan Gao, Hao Yu, Weishuang Tong, Weiwei Fan, Yanqun Mai, Wenpo Feng and Yuanhao QiuAvailable online: 16 May 2025More LessObjectiveThrough comprehensive transcriptome sequencing of liver RNA in mice induced with streptozotocin (STZ) to develop hyperglycemia, we uncovered crucial genes associated with hyperglycemic processes, shedding light on their respective functions. Furthermore, we delved deeply into a discussion surrounding the mechanism behind plasma glucagon-like peptide 1 (PGLP-1) and its role in inhibiting gluconeogenesis.
MethodsLiver tissues from mice induced with STZ to develop hyperglycemia (M group), as well as those treated with PGLP-1 (P11 group) and Exendin-4 (E group), were collected. RNA extraction was performed for comprehensive transcriptome sequencing. Differentially expressed mRNA, microRNA (miRNA), and long-chain non-coding RNA (lncRNA) were identified and subjected to analysis of their respective GO and KEGG pathways. An association network involving mRNA-miRNA-lncRNA was constructed to pinpoint target molecules associated with gluconeogenesis. Furthermore, personalized analysis focused on eight gluconeogenesis-related signal pathways obtained from KEGG.
ResultsA total of 289 differentially expressed mRNA (dif-mRNA), 21 differentially expressed miRNA (dif-miRNA), and 463 differentially expressed lncRNA (dif-lncRNA) were screened from the M group and P11 group. 182 dif-mRNA, 239 dif-miRNA, and 384 dif-lncRNA were screened from the M group and E group. A total of 427 dif-mRNA, 261 dif-miRNA, and 525 dif-lncRNA were screened from the E group and the P11 group. Among them, mRNA was enriched to the PI3K-Akt signaling pathway, Type ll diabetes mellitus, the Insulin signaling pathway, and the PPAR signaling pathway, while lncRNA was mainly enriched in PI3K-Akt signaling pathway. Similar to the whole transcriptome sequencing, the results of gluconeogenesis personalized analysis showed that the PI3K-Akt signaling pathway was the key pathway, and Gck and Cyp7a1 were highly expressed after PGLP-1 was administered.
ConclusionAccording to our findings, we believe that PGLP-1 is a potential regulator of non-coding RNAs, including miRNAs and lncRNAs. Additionally, it modulates the PI3K-Akt signaling pathway, resulting in the upregulation of GcK and Cyp7a1. In this way, it effectively inhibits gluconeogenesis.
-
-
-
Trojan Horses: A Secret Route for Nanomedicines
Authors: Zoya Amin, Daniya Nadeem, Huzaifa Shakil, Munsif Ali Jatoi, Rabail Baloch and Raahim AliAvailable online: 16 May 2025More LessThe nanoparticles are widely used in various drug delivery applications due to their versatility to encapsulate cargo loading and transport of therapeutic agents. Numerous studies have explored the use of nanomedicine-based drug delivery systems for treating various diseases. This research provides a smart and precise review of one of the nanoparticles-based drug delivery approaches i.e. the Trojan horse strategy which is employed for delivering the drug to the target efficiently and reliably. Furthermore the applicability of nanomedicines to cancer treatment is discussed with examples drawn from various systematic studies. The use of different nanomedicine platforms such as liposomes nanoparticles spherical nucleic acids extracellular vesicles and immune cells acting as Trojan horses is also explored in the context of cancer therapy. Finally a precise conclusion and future recommendations are provided for future researchers in the field of applied nanotechnology for the pharmaceutical domain.
-
-
-
Circ-LRP6 Inhibits the Development and Progression of AAA Via miR-29a-3p/HIF-1α Axis
Authors: Fang Wang, Zhijian Sun, Wenke Yan and Haiqing WangAvailable online: 12 May 2025More LessBackgroundAt present, the research on the potential molecular mechanism of abdominal aortic aneurysm (AAA) is limited, which hinders the treatment of aneurysm and the development of drugs. CircRNA has been identified as a potential therapeutic target for diagnostic biomarkers in a variety of diseases. The purpose of this study was to explore the molecular mechanism of circLRP6 in AAA and to provide a theoretical basis for further clinical optimization of treatment.
MethodsThe animal model and cell model of AAA were constructed, and the circLRP6 expression was verified by in situ hybridization and qRT-PCR. The effect of circLRP6 on cell viability was determined using CCK-8 and BrdU. The effects of circLRP6 on the cell cycle and apoptosis were determined by flow cytometry. In addition, the interaction of circLRP6 with miR-29a-3p and HIF-1α was verified by the luciferase reporter gene and RIP. HIF-1α or caspase 3 expression was detected by immunofluorescence or western blot analysis.
ResultsOur previous results showed that the circLRP6 had reduced expression in AAA, and its overexpression significantly inhibited AngII-induced hAoSMC cell viability. In addition, bioinformatics prediction showed that there was a binding site between miR-29a-3p and circLRP6, showing a negative regulatory relationship in hAoSMC. In addition, the results of the luciferase reporter gene and RIP showed that the circLRP6 interacted with HIF-1α, and achieved effective treatment of AAA by inhibiting the miR-29a-3p/HIF-1α.
ConclusionCircLRP6 effectively inhibited the development of AAA by inhibiting the miR-29a-3p/HIF-1α, providing a theoretical basis for further clinical optimization of treatment.
-