Skip to content
2000
image of Analysis of the Molecular Mechanism of Comorbidity Genes Between Breast Cancer and Depression

Abstract

Introduction

Breast cancer and depression are both serious diseases that significantly impact women's physical health. The molecular mechanisms underlying their comorbidity remain elusive. This study aims to identify key genes and the molecular mechanisms associated with the comorbidity of breast cancer and depression using bioinformatics analysis methods.

Methods

Data files for breast cancer and depression were obtained from the TCGA database and the NCBI GEO public database, respectively. The random survival forest algorithm was utilized to identify key genes co-expressed in both breast cancer and depression. Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA) were employed to predict biological functions and signaling pathway differences influenced by these key genes in both diseases. The R package “RcisTarget” was utilized to predict molecular transcriptional regulatory relationships of the key genes. The CIBERSORT algorithm was applied for immune function correlation analysis of comorbid key genes. The differential expression of key genes was validated in breast cancer tissue and depression blood by qPCR.

Results

The TCGA database provided original mRNA expression data for breast cancer, while the NCBI GEO public database offered the dataset GSE58430 related to depression. Through functional enrichment and random survival forest analysis, CCNB1, MLPH, PSME1, and RACGAP1 were identified as four key genes. The specific signaling pathways、strong correlation with immune cells, and the potential molecular mechanisms of these four key genes were analyzed in breast cancer and depression. Their expression levels were verified in blood and tissue samples.

Discussion

This study discovered the comorbidity genes of breast cancer and depression, providing a certain direction for the prevention and treatment of these two diseases. At present, breast cancer and depression are serious diseases that affect women's physical and mental health. The connection between the two is not very clear. This study proposes that these two diseases have comorbidity genes. The risk population of the disease can be detected early through testing, so as to intervene early and improve prognosis. However, the sample size of the database analyzed in this study was relatively small, and the sample size and methods for clinical validation were insufficient. Further in-depth research will be conducted in the future.

Conclusion

This study identified CCNB1, MLPH, PSME1, and RACGAP1 as key genes associated with the comorbidity of breast cancer and depression.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010384217250831211539
2025-10-17
2025-11-05
Loading full text...

Full text loading...

References

  1. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  2. Buja A. Pierbon M. Lago L. Grotto G. Baldo V. Breast cancer primary prevention and diet: An umbrella review. Int. J. Environ. Res. Public Health 2020 17 13 4731 10.3390/ijerph17134731 32630215
    [Google Scholar]
  3. Zainal N.Z. Nik-Jaafar N.R. Baharudin A. Sabki Z.A. Ng C.G. Prevalence of depression in breast cancer survivors: A systematic review of observational studies. Asian Pac. J. Cancer Prev. 2013 14 4 2649 2656 10.7314/APJCP.2013.14.4.2649 23725190
    [Google Scholar]
  4. Bortolato B. Hyphantis T.N. Valpione S. Perini G. Maes M. Morris G. Kubera M. Köhler C.A. Fernandes B.S. Stubbs B. Pavlidis N. Carvalho A.F. Depression in cancer: The many biobehavioral pathways driving tumor progression. Cancer Treat. Rev. 2017 52 58 70 10.1016/j.ctrv.2016.11.004 27894012
    [Google Scholar]
  5. Pilevarzadeh M. Amirshahi M. Afsargharehbagh R. Rafiemanesh H. Hashemi S.M. Balouchi A. Global prevalence of depression among breast cancer patients: A systematic review and meta-analysis. Breast Cancer Res. Treat. 2019 176 3 519 533 10.1007/s10549‑019‑05271‑3 31087199
    [Google Scholar]
  6. Tojal C. Costa R. Depressive symptoms and mental adjustment in women with breast cancer. Psychooncology 2015 24 9 1060 1065 10.1002/pon.3765 25645194
    [Google Scholar]
  7. Lei F. Vanderpool R.C. McLouth L.E. Romond E.H. Chen Q. Durbin E.B. Tucker T.C. Tai E. Huang B. Influence of depression on breast cancer treatment and survival: A Kentucky population‐based study. Cancer 2023 129 12 1821 1835 10.1002/cncr.34676 37063057
    [Google Scholar]
  8. Wu X. Zhang W. Zhao X. Zhang L. Xu M. Hao Y. Xiao J. Zhang B. Li J. Kraft P. Smoller J.W. Jiang X. Investigating the relationship between depression and breast cancer: observational and genetic analyses. BMC Med. 2023 21 1 170 10.1186/s12916‑023‑02876‑w 37143087
    [Google Scholar]
  9. Gradishar W.J. Moran M.S. Abraham J. Aft R. Agnese D. Allison K.H. Anderson B. Burstein H.J. Chew H. Dang C. Elias A.D. Giordano S.H. Goetz M.P. Goldstein L.J. Hurvitz S.A. Isakoff S.J. Jankowitz R.C. Javid S.H. Krishnamurthy J. Leitch M. Lyons J. Mortimer J. Patel S.A. Pierce L.J. Rosenberger L.H. Rugo H.S. Sitapati A. Smith K.L. Smith M.L. Soliman H. Stringer-Reasor E.M. Telli M.L. Ward J.H. Wisinski K.B. Young J.S. Burns J. Kumar R. Breast cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 2022 20 6 691 722 10.6004/jnccn.2022.0030 35714673
    [Google Scholar]
  10. Al-Alawi K.S. Al-Azri M. Al-Fahdi A. Chan M.F. Effect of psycho-educational intervention to reduce anxiety and depression at postintervention and follow-up in women with breast cancer: A systematic review and meta-analysis. Semin. Oncol. Nurs. 2022 38 6 151315 10.1016/j.soncn.2022.151315 35879186
    [Google Scholar]
  11. Fournier J.C. DeRubeis R.J. Hollon S.D. Dimidjian S. Amsterdam J.D. Shelton R.C. Fawcett J. Antidepressant drug effects and depression severity: A patient-level meta-analysis. JAMA 2010 303 1 47 53 10.1001/jama.2009.1943 20051569
    [Google Scholar]
  12. Ferrúa C.P. Giorgi R. da Rosa L.C. do Amaral C.C. Ghisleni G.C. Pinheiro R.T. Nedel F. MicroRNAs expressed in depression and their associated pathways: A systematic review and a bioinformatics analysis. J. Chem. Neuroanat. 2019 100 101650 10.1016/j.jchemneu.2019.101650 31125682
    [Google Scholar]
  13. Takahashi M. Lim P.J. Tsubosaka M. Kim H.K. Miyashita M. Suzuki K. Tan E.L. Shibata S. Effects of increased daily physical activity on mental health and depression biomarkers in postmenopausal women. J. Phys. Ther. Sci. 2019 31 4 408 413 10.1589/jpts.31.408 31037019
    [Google Scholar]
  14. Howard D.M. Adams M.J. Clarke T.K. Hafferty J.D. Gibson J. Shirali M. Coleman J.R.I. Hagenaars S.P. Ward J. Wigmore E.M. Alloza C. Shen X. Barbu M.C. Xu E.Y. Whalley H.C. Marioni R.E. Porteous D.J. Davies G. Deary I.J. Hemani G. Berger K. Teismann H. Rawal R. Arolt V. Baune B.T. Dannlowski U. Domschke K. Tian C. Hinds D.A. Trzaskowski M. Byrne E.M. Ripke S. Smith D.J. Sullivan P.F. Wray N.R. Breen G. Lewis C.M. McIntosh A.M. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat. Neurosci. 2019 22 3 343 352 10.1038/s41593‑018‑0326‑7 30718901
    [Google Scholar]
  15. Wang X. Wang N. Zhong L.L.D. Su K. Wang S. Zheng Y. Yang B. Zhang J. Pan B. Yang W. Wang Z. Development and validation of a risk prediction model for breast cancer prognosis based on depression-related genes. Front. Oncol. 2022 12 879563 10.3389/fonc.2022.879563 35619902
    [Google Scholar]
  16. Si T. Huang Z. Jiang Y. Walker-Jacobs A. Gill S. Hegarty R. Hamza M. Khorsandi S.E. Jassem W. Heaton N. Ma Y. Expression levels of three key genes CCNB1, CDC20, and CENPF in HCC are associated with antitumor immunity. Front. Oncol. 2021 11 738841 10.3389/fonc.2021.738841 34660300
    [Google Scholar]
  17. Agarwal R. Gonzalez-Angulo A.M. Myhre S. Carey M. Lee J.S. Overgaard J. Alsner J. Stemke-Hale K. Lluch A. Neve R.M. Kuo W.L. Sorlie T. Sahin A. Valero V. Keyomarsi K. Gray J.W. Borresen-Dale A.L. Mills G.B. Hennessy B.T. Integrative analysis of cyclin protein levels identifies cyclin b1 as a classifier and predictor of outcomes in breast cancer. Clin. Cancer Res. 2009 15 11 3654 3662 10.1158/1078‑0432.CCR‑08‑3293 19470724
    [Google Scholar]
  18. Li M.X. Jin L.T. Wang T.J. Feng Y.J. Pan C.P. Zhao D.M. Shao J. Identification of potential core genes in triple negative breast cancer using bioinformatics analysis. OncoTargets Ther. 2018 11 4105 4112 10.2147/OTT.S166567 30140156
    [Google Scholar]
  19. Fang L. Liu Q. Cui H. Zheng Y. Wu C. Bioinformatics analysis highlight differentially expressed CCNB and Plk1 genes as potential anti-breast cancer drug targets and prognostic markers. Genes (Basel) 2022 13 4 654 10.3390/genes13040654 35456460
    [Google Scholar]
  20. Aljohani A.I. Toss M.S. Green A.R. Rakha E.A. The clinical significance of cyclin B1 (CCNB1) in invasive breast cancer with emphasis on its contribution to lymphovascular invasion development. Breast Cancer Res. Treat. 2023 198 3 423 435 10.1007/s10549‑022‑06801‑2 36418517
    [Google Scholar]
  21. Mokgautsi N. Kuo Y.C. Tang S.L. Liu F.C. Chen S.J. Wu A.T.H. Huang H.S. Anticancer activities of 9-chloro-6-(piperazin-1-yl)-11H-indeno[1,2-c] quinolin-11-one (SJ10) in Glioblastoma Multiforme (GBM) chemoradioresistant cell ucycle-related oncogenic signatres. Cancers 2022 14 1 262 10.3390/cancers14010262 35008426
    [Google Scholar]
  22. Pliarchopoulou K. Kalogeras K.T. Kronenwett R. Wirtz R.M. Eleftheraki A.G. Batistatou A. Bobos M. Soupos N. Polychronidou G. Gogas H. Samantas E. Christodoulou C. Makatsoris T. Pavlidis N. Pectasides D. Fountzilas G. Prognostic significance of RACGAP1 mRNA expression in high-risk early breast cancer: A study in primary tumors of breast cancer patients participating in a randomized Hellenic Cooperative Oncology Group trial. Cancer Chemother. Pharmacol. 2013 71 1 245 255 10.1007/s00280‑012‑2002‑z 23096218
    [Google Scholar]
  23. Ren K. Zhou D. Wang M. Li E. Hou C. Su Y. Zou Q. Zhou P. Liu X. RACGAP1 modulates ECT2-Dependent mitochondrial quality control to drive breast cancer metastasis. Exp. Cell Res. 2021 400 1 112493 10.1016/j.yexcr.2021.112493 33485843
    [Google Scholar]
  24. Zhou D. Ren K. Wang M. Wang J. Li E. Hou C. Su Y. Jin Y. Zou Q. Zhou P. Liu X. Long non‐coding RNA RACGAP1P promotes breast cancer invasion and metastasis via miR‐345‐5p/RACGAP1‐mediated mitochondrial fission. Mol. Oncol. 2021 15 2 543 559 10.1002/1878‑0261.12866 33252198
    [Google Scholar]
  25. Yang Y. Luo D. Gao W. Wang Q. Yao W. Xue D. Ma B. Combination analysis of ferroptosis and immune status predicts patients survival in breast invasive ductal carcinoma. Biomolecules 2023 13 1 147 10.3390/biom13010147 36671532
    [Google Scholar]
  26. Zhang T. Sun Y. Zheng T. Wang R. Jia D. Zhang W. MLPH accelerates the epithelial–mesenchymal transition in prostate cancer. OncoTargets Ther. 2020 13 701 708 10.2147/OTT.S225023 32158222
    [Google Scholar]
  27. Fu W.F. Li J.J. Kang S.H. Song C.G. The expression, clinicopathologic characteristics, and prognostic value of androgen receptor in breast cancer: A bioinformatics analysis using public databases. DNA Cell Biol. 2020 39 5 864 874 10.1089/dna.2019.5192 32181676
    [Google Scholar]
  28. Cheng Y. Qiao Z. Dang C. Zhou B. Li S. Zhang W. Jiang J. Song Y. Zhang J. Diao D. p38 predicts depression and poor outcome in esophageal cancer. Oncol. Lett. 2017 14 6 7241 7249 10.3892/ol.2017.7129 29344159
    [Google Scholar]
  29. Liao J. Zeng G. Fang W. Huang W. Dai X. Ye Q. Zhang J. Chen X. Increased Notch2/NF-κB signaling may mediate the depression susceptibility: Evidence from chronic social defeat stress mice and WKY Rats. Physiol. Behav. 2021 228 113197 10.1016/j.physbeh.2020.113197 33017602
    [Google Scholar]
  30. Ouyang X. Zhu Z. Yang C. Wang L. Ding G. Jiang F. Epinephrine increases malignancy of breast cancer through p38 MAPK signaling pathway in depressive disorders. Int. J. Clin. Exp. Pathol. 2019 12 6 1932 1946 31934016
    [Google Scholar]
  31. Liu X. Zhang R. Fan J. Chen Y. Wang H. Ge Y. The role of ROS/p38 MAPK/NLRP3 inflammasome cascade in arsenic-induced depression-/anxiety-like behaviors of mice. Ecotoxicol. Environ. Saf. 2023 261 115111
    [Google Scholar]
  32. Terao R. Murata A. Sugamoto K. Watanabe T. Nagahama K. Nakahara K. Kondo T. Murakami N. Fukui K. Hattori H. Eto N. Immunostimulatory effect of kumquat (Fortunella crassifolia) and its constituents, β-cryptoxanthin and R -limonene. Food Funct. 2019 10 1 38 48 10.1039/C8FO01971A 30548041
    [Google Scholar]
  33. Bower J.E. Shiao S.L. Sullivan P. Lamkin D.M. Atienza R. Mercado F. Arevalo J. Asher A. Ganz P.A. Cole S.W. Prometastatic molecular profiles in breast tumors from socially isolated women. JNCI Cancer Spectr. 2018 2 3 pky029 10.1093/jncics/pky029 30057973
    [Google Scholar]
  34. Cheng Y. Tang X.Y. Li Y.X. Zhao D.D. Cao Q.H. Wu H.X. Yang H.B. Hao K. Yang Y. Depression-induced neuropeptide y secretion promotes prostate cancer growth by recruiting myeloid cells. Clin. Cancer Res. 2019 25 8 2621 2632 10.1158/1078‑0432.CCR‑18‑2912 30504424
    [Google Scholar]
  35. Kim J.M. Stewart R. Kim S.Y. Kang H.J. Jang J.E. Kim S.W. Shin I.S. Park M.H. Yoon J.H. Park S.W. Kim Y.H. Yoon J.S. A one year longitudinal study of cytokine genes and depression in breast cancer. J. Affect. Disord. 2013 148 1 57 65 10.1016/j.jad.2012.11.048 23276701
    [Google Scholar]
  36. Chen Y. Maitiniyazi G. Li Z. Li T. Liu Y. Zhang R. Cao X. Gu D. Xia S. TNF-α mediates the association between dietary inflammatory index and depressive symptoms in breast cancer. Nutrients 2022 15 1 84 10.3390/nu15010084 36615742
    [Google Scholar]
  37. Lan B. Lv D. Sun X. Yang M. Zhang L. Ma F. Genetic variations in ifngr1, bdnf and IL-10 may predict the susceptibility to depression and anxiety in chinese women with breast cancer. Clin. Breast Cancer 2022 22 7 674 680 10.1016/j.clbc.2022.07.002 35918221
    [Google Scholar]
  38. Xiang X. You X.M. Li L.Q. Expression of HSP90AA1/HSPA8 in hepatocellular carcinoma patients with depression. OncoTargets Ther. 2018 11 3013 3023 10.2147/OTT.S159432 29872313
    [Google Scholar]
  39. Mir O. Salvador A. Dauchy S. Ropert S. Lemogne C. Gaillard R. Everolimus induced mood changes in breast cancer patients: A case-control study. Invest. New Drugs 2018 36 3 503 508 10.1007/s10637‑017‑0554‑9 29250741
    [Google Scholar]
  40. Li Y.F. Liu D.Q. Nie J.Y. Chen D.D. Yan M. Zuo Z. Liu L.X. Wang W.Y. Zhu M.S. Li W.H. ATAS acupuncture reduces chemotherapy induced fatigue in breast cancer through regulating ADROA1 expression: A randomized sham-controlled pilot trial. OncoTargets Ther. 2020 13 11743 11754 10.2147/OTT.S272747 33244238
    [Google Scholar]
  41. Armstrong G.A.B. Rodgers C.I. Money T.G.A. Robertson R.M. Suppression of spreading depression-like events in locusts by inhibition of the NO/cGMP/PKG pathway. J. Neurosci. 2009 29 25 8225 8235 10.1523/JNEUROSCI.1652‑09.2009 19553462
    [Google Scholar]
  42. Zhang X.T. Zhang Y. Zhang Y.X. Jiang Z.Y. Yang H. Jiang L. Yang B. Tong J.C. Helicid reverses the effect of overexpressing NCALD, Which Blocks the sGC/cGMP/PKG signaling pathway in the CUMS-induced rat model. J. Healthc. Eng. 2021 2021 1 12 10.1155/2021/7168397 34931140
    [Google Scholar]
  43. Wang T. Li T. Li B. Zhao J. Li Z. Sun M. Li Y. Zhao Y. Zhao S. He W. Guo X. Ge R. Wang L. Ding D. Liu S. Min S. Zhang X. Immunogenomic landscape in breast cancer reveals immunotherapeutically relevant gene signatures. Front. Immunol. 2022 13 805184 10.3389/fimmu.2022.805184 35154121
    [Google Scholar]
  44. Dieci M.V. Miglietta F. Guarneri V. Immune infiltrates in breast cancer: Recent updates and clinical implications. Cells 2021 10 2 223 10.3390/cells10020223 33498711
    [Google Scholar]
  45. Li H. Zhao J. Chen M. Tan Y. Yang X. Caudle Y. Yin D. Toll-like receptor 9 is required for chronic stress-induced immune suppression. Neuroimmunomodulation 2014 21 1 1 7 10.1159/000354610 24080854
    [Google Scholar]
  46. Ding K. Li W. Zou Z. Zou X. Wang C. CCNB1 is a prognostic biomarker for ER+ breast cancer. Med. Hypotheses 2014 83 3 359 364 10.1016/j.mehy.2014.06.013 25044212
    [Google Scholar]
  47. Kongsema M. Wongkhieo S. Khongkow M. Lam E. Boonnoy P. Vongsangnak W. Wong-Ekkabut J. Molecular mechanism of Forkhead box M1 inhibition by thiostrepton in breast cancer cells. Oncol. Rep. 2019 42 3 953 962 10.3892/or.2019.7225 31322278
    [Google Scholar]
  48. Sawant M. Wilson A. Sridaran D. Mahajan K. O’Conor C.J. Hagemann I.S. Luo J. Weimholt C. Li T. Roa J.C. Pandey A. Wu X. Mahajan N.P. Epigenetic reprogramming of cell cycle genes by ACK1 promotes breast cancer resistance to CDK4/6 inhibitor. Oncogene 2023 42 29 2263 2277 10.1038/s41388‑023‑02747‑x 37330596
    [Google Scholar]
  49. Zhu X. Li Y. Liu F. Zhang F. Li J. Cheng C. Shen Y. Jiang N. Du J. Zhou Y. Huo B. Construction of a prognostic nomogram model for patients with mucinous breast cancer. J. Healthc. Eng. 2022 2022 1 8 10.1155/2022/1230812 35368964
    [Google Scholar]
  50. Ma X. Xing Y. Li Z. Qiu S. Wu W. Bai J. Construction and validation of a prognostic nomogram in metastatic breast cancer patients of childbearing age: A study based on the SEER database and a Chinese cohort. Front. Oncol. 2022 12 999873 10.3389/fonc.2022.999873 36505800
    [Google Scholar]
  51. Png K.J. Halberg N. Yoshida M. Tavazoie S.F. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature 2012 481 7380 190 194 10.1038/nature10661 22170610
    [Google Scholar]
  52. Sang M. Wu M. Meng L. Zheng Y. Gu L. Liu F. Sang M. Identification of epithelial-mesenchymal transition-related circRNA-miRNA-mRNA ceRNA regulatory network in breast cancer. Pathol. Res. Pract. 2020 216 9 153088 10.1016/j.prp.2020.153088 32825956
    [Google Scholar]
  53. Chuffa L.G.A. Carvalho R.F. Justulin L.A. Cury S.S. Seiva F.R.F. Jardim-Perassi B.V. Zuccari D.A.P.C. Reiter R.J. A meta‐analysis of microRNA networks regulated by melatonin in cancer: Portrait of potential candidates for breast cancer treatment. J. Pineal Res. 2020 69 4 e12693 10.1111/jpi.12693 32910542
    [Google Scholar]
  54. Xie H. Ding C.X. Li Q. Xu J. Cheng H. Sheng W. Multivariate analysis of the molecular mechanism related to breast cancer and depression. Research Square 2023 10.21203/rs.3.rs‑3485762/v1
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010384217250831211539
Loading
/content/journals/cpb/10.2174/0113892010384217250831211539
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article


  • Article Type:
    Research Article
Keywords: key genes ; comorbidity ; TCGA ; Breast cancer ; GEO ; depression
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test