Skip to content
2000
image of Naringin Alleviates Digoxin-induced Nephrotoxicity via Regulating Nrf2/ HO-1 and PI3K/ AKT/TGF-β Cascades in Rats’ Renal Tissues

Abstract

Background

Nephrotoxicity limits the clinical application of digoxin. One area that might be useful is the mechanical knowledge of altered renal function and renal impairment. We hypothesized that co-administration of naringin would affect digoxin nephrotoxicity by alleviating the altered renal oxidative/ antioxidant redox and apoptotic cascade.

Method

40 male Wistar Albino rats (200 ± 50 g) were grouped into 4, every group included (n= 7), control, Nar., Dig. and Nar. + dig. Groups. Colorimetric estimation of kidney functions and renal oxidative/ antioxidant redox were done.

Results

Comparing digoxin alone, the concomitant administration of digoxin and naringin restored renal antioxidant/ oxidative redox, redistributed Nrf2, HO-1 mRNA exposure with a concomitant down-regulation of NF-κB, AKT and PI3K mRNA expressions. Moreover, a significant decrease of Smad3 and transforming growth factor- (TGF- β) protein concentrations with a simultaneous rise of Smad7 were noticed in Nar. + dig. Arm when compared to Dig. group.

Conclusion

The co-administration of naringin and digoxin can mitigate digoxin-mediated nephrotoxicity by introducing antioxidant action. This is done by maintaining effects on renal oxidative/antioxidant cycle and lethality via regulating AKT/ PI3k/ Smad3/ Smad7 signaling pathways.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010340746250421065424
2025-05-20
2025-09-19
Loading full text...

Full text loading...

References

  1. Mercado M.G. Smith D.K. Guard E.L. Acute kidney injury: Diagnosis and management. Am. Fam. Physician 2019 100 11 687 694 31790176
    [Google Scholar]
  2. Perazella M.A. Drug-induced renal failure: Update on new medications and unique mechanisms of nephrotoxicity. Am. J. Med. Sci. 2003 325 6 349 362 10.1097/00000441‑200306000‑00006 12811231
    [Google Scholar]
  3. Lip G.Y.H. Laroche C. Dan G.A. Santini M. Kalarus Z. Rasmussen L.H. Oliveira M.M. Mairesse G. Crijns H.J.G.M. Simantirakis E. Atar D. Kirchhof P. Vardas P. Tavazzi L. Maggioni A.P. A prospective survey in European Society of Cardiology member countries of atrial fibrillation management: Baseline results of EURObservational research programme atrial fibrillation (EORP-AF) pilot general registry. Europace 2014 16 3 308 319 10.1093/europace/eut373 24351881
    [Google Scholar]
  4. Shahouzehi B. Nasri H.R. Masoumi-Ardakani Y. The effect of different digoxin concentrations on heart tissue and antioxidant status in iron-overloaded rats. ARYA Atheroscler. 2018 14 2 46 52 30108635
    [Google Scholar]
  5. Digiovanni-Kinsley S. Duke B. Giovane R. Paisley C. A case of digoxin toxicity due to acute renal failure. Cureus 2021 13 8 e17599 10.7759/cureus.17599 34646651
    [Google Scholar]
  6. Paczula A. Więcek A. Piecha G. The role of endogenous cardiotonic steroids in pathogenesis of cardiovascular and renal complications of arterial hypertension. Postepy Hig. Med. Dosw. 2016 70 243 250 10.5604/17322693.1197486 27117099
    [Google Scholar]
  7. Watson R. Preedy V.R. Zibadi S. Polyphenols: Prevention and treatment of human disease. United States Academic press 2018
    [Google Scholar]
  8. Burke A.C. Sutherland B.G. Telford D.E. Morrow M.R. Sawyez C.G. Edwards J.Y. Huff M.W. Naringenin enhances the regression of atherosclerosis induced by a chow diet in Ldlr mice. Atherosclerosis 2019 286 60 70 10.1016/j.atherosclerosis.2019.05.009 31102954
    [Google Scholar]
  9. Salehi B. Fokou P.V.T. Sharifi-Rad M. Zucca P. Pezzani R. Martins N. Sharifi-Rad J. The therapeutic potential of naringenin: A review of clinical trials. Pharmaceuticals 2019 12 1 11 10.3390/ph12010011 30634637
    [Google Scholar]
  10. Kulasekaran G. Ganapasam S. Neuroprotective efficacy of naringin on 3-nitropropionic acid-induced mitochondrial dysfunction through the modulation of Nrf2 signaling pathway in PC12 cells. Mol. Cell. Biochem. 2015 409 1-2 199 211 10.1007/s11010‑015‑2525‑9 26280522
    [Google Scholar]
  11. Pengnet S. Sumarithum P. Phongnu N. Prommaouan S. Kantip N. Phoungpetchara I. Malakul W. Naringin attenuates fructose-induced NAFLD progression in rats through reducing endogenous triglyceride synthesis and activating the Nrf2/HO-1 pathway. Front. Pharmacol. 2022 13 1049818 10.3389/fphar.2022.1049818 36588703
    [Google Scholar]
  12. Galicia-Moreno M. Lucano-Landeros S. Monroy-Ramirez H.C. Silva-Gomez J. Gutierrez-Cuevas J. Santos A. Armendariz-Borunda J. Roles of Nrf2 in liver diseases: Molecular, pharmacological, and epigenetic aspects. Antioxidants 2020 9 10 980 10.3390/antiox9100980 33066023
    [Google Scholar]
  13. Origassa C.S.T. Câmara N.O.S. Cytoprotective role of heme oxygenase-1 and heme degradation derived end products in liver injury. World J. Hepatol. 2013 5 10 541 549 10.4254/wjh.v5.i10.541 24179613
    [Google Scholar]
  14. Kuo N.C. Huang S.Y. Yang C.Y. Shen H.H. Lee Y.M. Involvement of HO-1 and autophagy in the protective effect of magnolol in hepatic steatosis-induced NLRP3 inflammasome activation in vivo and in vitro. Antioxidants 2020 9 10 924 10.3390/antiox9100924 32992548
    [Google Scholar]
  15. Zhao X.J. Yu H.W. Yang Y.Z. Wu W.Y. Chen T.Y. Jia K.K. Kang L.L. Jiao R.Q. Kong L.D. Polydatin prevents fructose-induced liver inflammation and lipid deposition through increasing miR-200a to regulate Keap1/Nrf2 pathway. Redox Biol. 2018 18 124 137 10.1016/j.redox.2018.07.002 30014902
    [Google Scholar]
  16. Ge X. Zhou G. Protective effects of naringin on glucocorticoid-induced osteoporosis through regulating the PI3K/Akt/mTOR signaling pathway. Am. J. Transl. Res. 2021 13 6 6330 6341 34306372
    [Google Scholar]
  17. Kang S. Dong S.M. Kim B.R. Park M.S. Trink B. Byun H.J. Rho S.B. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis 2012 17 9 989 997 10.1007/s10495‑012‑0717‑2 22460505
    [Google Scholar]
  18. Cheng H. Jiang X. Zhang Q. Ma J. Cheng R. Yong H. Shi H. Zhou X. Ge L. Gao G. Naringin inhibits colorectal cancer cell growth by repressing the PI3K/AKT/mTOR signaling pathway. Exp. Ther. Med. 2020 19 6 3798 3804 10.3892/etm.2020.8649 32346444
    [Google Scholar]
  19. Engelman J.A. Luo J. Cantley L.C. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat. Rev. Genet. 2006 7 8 606 619 10.1038/nrg1879 16847462
    [Google Scholar]
  20. Revathidevi S. Munirajan A.K. Akt in cancer: Mediator and more. Seminars in cancer biology. Amsterdam, Netherland Elsevier 2019 10.1016/j.semcancer.2019.06.002
    [Google Scholar]
  21. Larson-Casey J.L. Deshane J.S. Ryan A.J. Thannickal V.J. Carter A.B. Macrophage Akt1 kinase-mediated mitophagy modulates apoptosis resistance and pulmonary fibrosis. Immunity 2016 44 3 582 596 10.1016/j.immuni.2016.01.001 26921108
    [Google Scholar]
  22. Xu Z. Jia K. Wang H. Gao F. Zhao S. Li F. Hao J. METTL14-regulated PI3K/Akt signaling pathway via PTEN affects HDAC5-mediated epithelial–mesenchymal transition of renal tubular cells in diabetic kidney disease. Cell Death Dis. 2021 12 1 32 10.1038/s41419‑020‑03312‑0 33414476
    [Google Scholar]
  23. Conte E. Fruciano M. Fagone E. Gili E. Caraci F. Iemmolo M. Crimi N. Vancheri C. Inhibition of PI3K prevents the proliferation and differentiation of human lung fibroblasts into myofibroblasts: The role of class I P110 isoforms. PLoS One 2011 6 10 e24663 10.1371/journal.pone.0024663 21984893
    [Google Scholar]
  24. Sun Y. Zhang Y. Chi P. Pirfenidone suppresses TGF‑β1‑induced human intestinal fibroblasts activities by regulating proliferation and apoptosis via the inhibition of the Smad and PI3K/AKT signaling pathway. Mol. Med. Rep. 2018 18 4 3907 3913 10.3892/mmr.2018.9423 30152848
    [Google Scholar]
  25. Turgut N.H. The protective effect of naringin against bleomycin-induced pulmonary fibrosis in Wistar rats. Pulm. Med. 2016 2016 7601393 10.1155/2016/7601393
    [Google Scholar]
  26. Patton C.J. Crouch S.R. Spectrophotometric and kinetics investigation of the Berthelot reaction for the determination of ammonia. Anal. Chem. 1977 49 3 464 469 10.1021/ac50011a034
    [Google Scholar]
  27. Fawcett J.K. Scott J.E. A rapid and precise method for the determination of urea. J. Clin. Pathol. 1960 13 2 156 159 10.1136/jcp.13.2.156 13821779
    [Google Scholar]
  28. Beutler E. Duron O. Kelly B.M. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 1963 61 882 888 13967893
    [Google Scholar]
  29. Mahera Z.M. Abdel-rahman A.E. El-Dinc M.M.M. Clinicopathological studies on the remodeling effect of Platelet-Rich plasma on lung fibrosis induced by amiodarone in Albino rats. Veter. Med. Public Health J. 2020 1 3 108 114 10.31559/vmph2020.1.3.8
    [Google Scholar]
  30. Aebi H. Catalase in vitro. Methods in enzymology. Amsterdam, Netherland Elsevier 1984 121 126 [13]
    [Google Scholar]
  31. Buege J.A. Aust S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978 52 302 310 10.1016/S0076‑6879(78)52032‑6 672633
    [Google Scholar]
  32. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 2001 25 4 402 408 10.1006/meth.2001.1262
    [Google Scholar]
  33. Marks H.M. The progress of experiment: Science and therapeutic reform in the United States, 1900-1990. Cambridge, England Cambridge University Press 1997
    [Google Scholar]
  34. Wang J. Edeen K. Manzer R. Chang Y. Wang S. Chen X. Funk C.J. Cosgrove G.P. Fang X. Mason R.J. Differentiated human alveolar epithelial cells and reversibility of their phenotype in vitro. Am. J. Respir. Cell Mol. Biol. 2007 36 6 661 668 10.1165/rcmb.2006‑0410OC 17255555
    [Google Scholar]
  35. Burton K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem. J. 1956 62 2 315 323 10.1042/bj0620315 13293190
    [Google Scholar]
  36. Fontana J. Vogt A. Hohenstein A. Vettermann U. Doroshenko E. Lammer E. Yard B.A. Hoeger S. Impact of steroids on the inflammatory response after ischemic acute kidney injury in rats. Indian J. Nephrol. 2017 27 5 365 371 10.4103/ijn.IJN_40_17 28904432
    [Google Scholar]
  37. Testani J.M. Brisco M.A. Tang W.H.W. Kimmel S.E. Tiku-Owens A. Forfia P.R. Coca S.G. Potential effects of digoxin on long-term renal and clinical outcomes in chronic heart failure. J. Card. Fail. 2013 19 5 295 302 10.1016/j.cardfail.2013.03.002 23663810
    [Google Scholar]
  38. Parreira G.M. Faria J.A. Marques S.M.S. Garcia I.J.P. Silva I.F. Carvalho D.L.E.D. Villar J.A.F.P. Machado M.V. Lima C.d.M. Barbosa L.A. Cortes V.F. Santos L.d.H. The γ-benzylidene digoxin derivative BD-15 increases the α3-Na, K-ATPase activity in rat hippocampus and prefrontal cortex and no change on heart. J. Membr. Biol. 2021 254 2 189 199 10.1007/s00232‑021‑00173‑2 33598793
    [Google Scholar]
  39. Zhou Y. Zhou Y. Yang M. Wang K. Liu Y. Zhang M. Yang Y. Jin C. Wang R. Hu R. Digoxin sensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine via inhibiting Nrf2 signaling pathway. Redox Biol. 2019 22 101131 10.1016/j.redox.2019.101131 30735911
    [Google Scholar]
  40. Zgorzynska E. Dziedzic B. Walczewska A. An overview of the Nrf2/ARE pathway and its role in neurodegenerative diseases. Int. J. Mol. Sci. 2021 22 17 9592 10.3390/ijms22179592 34502501
    [Google Scholar]
  41. Ma Y. Kong J. Yan G. Ren X. Jin D. Jin T. Lin L. Lin Z. NQO1 overexpression is associated with poor prognosis in squamous cell carcinoma of the uterine cervix. BMC Cancer 2014 14 1 414 10.1186/1471‑2407‑14‑414 24912939
    [Google Scholar]
  42. Siednienko J. Gorczyca W.A. Regulation of NF-kappa B activity]. Postepy Hig. Med. Dosw. 2003 57 1 19 32 12765121
    [Google Scholar]
  43. Ren Q. Guo F. Tao S. Huang R. Ma L. Fu P. Flavonoid fisetin alleviates kidney inflammation and apoptosis via inhibiting Src-mediated NF-κB p65 and MAPK signaling pathways in septic AKI mice. Biomed. Pharmacother. 2020 122 109772 10.1016/j.biopha.2019.109772 31918290
    [Google Scholar]
  44. El-Shitany N.A. Eid B.G. Icariin modulates carrageenan-induced acute inflammation through HO-1/Nrf2 and NF-kB signaling pathways. Biomed. Pharmacother. 2019 120 109567 10.1016/j.biopha.2019.109567 31670031
    [Google Scholar]
  45. Wang M. Hu R. Wang Y. Liu L. You H. Zhang J. Wu X. Pei T. Wang F. Lu L. Xiao W. Wei L. Atractylenolide III attenuates muscle wasting in chronic kidney disease via the oxidative stress-mediated PI3K/AKT/mTOR pathway. Oxid. Med. Cell. Longev. 2019 2019 1 16 10.1155/2019/1875471 31178951
    [Google Scholar]
  46. Liu B. Cao Y. Wang D. Zhou Y. Zhang P. Wu J. Chen J. Qiu J. Zhou J. Zhen-Wu-tang induced mitophagy to protect mitochondrial function in chronic glomerulonephritis via PI3K/AKT/mTOR and AMPK pathways. Front. Pharmacol. 2021 12 777670 10.3389/fphar.2021.777670 35757387
    [Google Scholar]
  47. Lee Y.J. Han H.J. Troglitazone ameliorates high glucose-induced EMT and dysfunction of SGLTs through PI3K/Akt, GSK-3β, Snail1, and β-catenin in renal proximal tubule cells. Am. J. Physiol. Renal Physiol. 2010 298 5 F1263 F1275 10.1152/ajprenal.00475.2009 20015942
    [Google Scholar]
  48. Kattla J.J. Carew R.M. Heljić M. Godson C. Brazil D.P. Protein kinase B/Akt activity is involved in renal TGF-β1-driven epithelial-mesenchymal transition in vitro and in vivo. Am. J. Physiol. Renal Physiol. 2008 295 1 F215 F225 10.1152/ajprenal.00548.2007 18495798
    [Google Scholar]
  49. Ghafouri-Fard S. Abak A. Shoorei H. Mohaqiq M. Majidpoor J. Sayad A. Taheri M. Regulatory role of microRNAs on PTEN signaling. Biomed. Pharmacother. 2021 133 110986 10.1016/j.biopha.2020.110986 33166764
    [Google Scholar]
  50. Heljić M. Brazil D.P. Protein kinase B/Akt regulation in diabetic kidney disease. Front. Biosci. 2011 3 1 98 104 21196360
    [Google Scholar]
  51. Runyan C.E. Schnaper H.W. Poncelet A.C. The phosphatidylinositol 3-kinase/Akt pathway enhances Smad3-stimulated mesangial cell collagen I expression in response to transforming growth factor-β1. J. Biol. Chem. 2004 279 4 2632 2639 10.1074/jbc.M310412200 14610066
    [Google Scholar]
  52. Xie F. Zhang Z. Dam V.H. Zhang L. Zhou F. Regulation of TGF-β superfamily signaling by SMAD mono-ubiquitination. Cells 2014 3 4 981 993 10.3390/cells3040981 25317929
    [Google Scholar]
  53. Xia H. Ooi L.L.P.J. Hui K.M. MicroRNA-216a/217-induced epithelial-mesenchymal transition targets PTEN and SMAD7 to promote drug resistance and recurrence of liver cancer. Hepatology 2013 58 2 629 641 10.1002/hep.26369 23471579
    [Google Scholar]
  54. Alam M.A. Subhan N. Rahman M.M. Uddin S.J. Reza H.M. Sarker S.D. Effect of citrus flavonoids, naringin and naringenin, on metabolic syndrome and their mechanisms of action. Adv. Nutr. 2014 5 4 404 417 10.3945/an.113.005603 25022990
    [Google Scholar]
  55. Duvigneau J.C. Esterbauer H. Kozlov A.V. Role of heme oxygenase as a modulator of heme-mediated pathways. Antioxidants 2019 8 10 475 10.3390/antiox8100475 31614577
    [Google Scholar]
  56. Chen Y. Varghese Z. Ruan X.Z. The molecular pathogenic role of inflammatory stress in dysregulation of lipid homeostasis and hepatic steatosis. Genes Dis. 2014 1 1 106 112 10.1016/j.gendis.2014.07.007 30258859
    [Google Scholar]
  57. Jiang Q.G. Li T.Y. Liu D.N. Zhang H.T. PI3K/Akt pathway involving into apoptosis and invasion in human colon cancer cells LoVo. Mol. Biol. Rep. 2014 41 5 3359 3367 10.1007/s11033‑014‑3198‑2 24496855
    [Google Scholar]
  58. Zhao Y. Feng X. Li B. Sha J. Wang C. Yang T. Cui H. Fan H. Dexmedetomidine protects against lipopolysaccharide-induced acute kidney injury by enhancing autophagy through inhibition of the PI3K/AKT/mTOR pathway. Front. Pharmacol. 2020 11 128 10.3389/fphar.2020.00128 32158395
    [Google Scholar]
  59. Sun J. Ge X. Wang Y. Niu L. Tang L. Pan S. USF2 knockdown downregulates THBS1 to inhibit the TGF-β signaling pathway and reduce pyroptosis in sepsis-induced acute kidney injury. Pharmacol. Res. 2022 176 105962 10.1016/j.phrs.2021.105962 34756923
    [Google Scholar]
  60. Xu F. Liu C. Zhou D. Zhang L. TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J. Histochem. Cytochem. 2016 64 3 157 167 10.1369/0022155415627681 26747705
    [Google Scholar]
  61. Meng J. Qin Y. Chen J. Wei L. Huang X. Yu X. Lan H. Treatment of hypertensive heart disease by targeting smad3 signaling in mice. Mol. Ther. Methods Clin. Dev. 2020 18 791 802 10.1016/j.omtm.2020.08.003 32953930
    [Google Scholar]
  62. Hermenean A. Ardelean A. Stan M. Herman H. Mihali C.V. Costache M. Dinischiotu A. Protective effects of naringenin on carbon tetrachloride-induced acute nephrotoxicity in mouse kidney. Chem. Biol. Interact. 2013 205 2 138 147 10.1016/j.cbi.2013.06.016 23845967
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010340746250421065424
Loading
/content/journals/cpb/10.2174/0113892010340746250421065424
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: digoxin ; western plot ; apoptotic cascade ; nephrotoxicity ; Naringenin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test