Skip to content
2000
image of The Contribution of Wearable Devices and Artificial Intelligence to Promoting Healthy Aging

Abstract

Introduction

Healthy aging involves consistently maximizing opportunities to maintain and enhance physical and mental well-being, fostering independence, and sustaining a high quality of life. This review examines recent technological innovations aimed at promoting the well-being of older adults. The scope encompasses wearable devices and telemedicine, showcasing their potential to enhance the health and overall well-being of older individuals. The review highlights the crucial role of assistive technologies, including mobility aids, hearing aids, and adaptive home devices, in addressing the specific challenges associated with aging.

Methods

The relevant literature was collected and selected based on the objective of the study and reviewed.

Results

Digital technologies, including brain-computer interfaces (BCIs), are explored as potential solutions to enhance communication between healthcare providers and aging patients, considering engagement levels and active interaction. Sophisticated BCIs, such as electroencephalograms, electrocorticography, and signal modeling for real-time identification, play a crucial role in event detection, with machine learning algorithms enhancing signal processing for accurate decoding. The exploration of smart wearable systems for health monitoring emerges as a dynamic and promising field in the context of aging.

Discussion

Fitbit® showcases accurate step counting, making it suitable for monitoring physical activity in older adults engaged in slow walking. ActiGraphÔ is evaluated for accuracy in monitoring physical activity in older adults, with results indicating reliable concurrence with Fitbit® devices. The study identifies several limitations, including sample size constraints, challenges in keeping pace with technological advancements, and the need for further investigation into the suitability of fitness trackers for individuals with significant mobility impairments.

Conclusion

The evolving landscape of wearable technologies, exemplified by Fitbit®, ActiGraphÔ, and other interventions, holds substantial promise for reshaping healthcare approaches for the aging population. Addressing the limitations will be crucial as research progresses to ensure the effective and ethical integration of wearables into geriatric care, maximizing their potential benefits.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010390500250911104231
2025-09-30
2025-12-15
Loading full text...

Full text loading...

References

  1. Carmona J.J. Michan S. Biology of healthy aging and longevity. Rev. Invest. Clin. 2016 68 1 7 16 27028172
    [Google Scholar]
  2. de Batlle J. Benítez I.D. Moncusí-Moix A. Androutsos O. Angles Barbastro R. Antonini A. Arana E. Cabrera-Umpierrez M.F. Cea G. Dafoulas G.E. Folkvord F. Fullaondo A. Giuliani F. Huang H.L. Innominato P.F. Kardas P. Lou V.W.Q. Manios Y. Matsangidou M. Mercalli F. Mokhtari M. Pagliara S. Schellong J. Stieler L. Votis K. Currás P. Arredondo M.T. Posada J. Guillén S. Pecchia L. Barbé F. Torres G. Fico G. GATEKEEPER’s Strategy for the multinational large-scale piloting of an ehealth platform: tutorial on how to identify relevant settings and use cases. J. Med. Internet Res. 2023 25 42187 10.2196/42187 37379060
    [Google Scholar]
  3. Bojang K.P. Manchana V. Nutrition and healthy aging: A review. Curr. Nutr. Rep. 2023 12 3 369 375 10.1007/s13668‑023‑00473‑0 37191867
    [Google Scholar]
  4. Decade of healthy ageing: baseline report 2021 Available from: https://www.who.int/publications/i/item/9789240017900
  5. Wearable Sensors Market Size Wearable Sensors Market Size 2023 Available from: https://straitsresearch.com/report/wearable-sensors-market
  6. Vaghasiya J.V. Mayorga-Martinez C.C. Pumera M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. NPJ Flex Electron. 2023 7 1 26 10.1038/s41528‑023‑00261‑4 37304907
    [Google Scholar]
  7. Lobo L. Can men find health through their gadgets? Trends Urol. Men’s Health 2023 14 3 2 5 10.1002/tre.915
    [Google Scholar]
  8. Bariya M. Nyein H.Y.Y. Javey A. Wearable sweat sensors. Nat. Electron. 2018 1 3 160 171 10.1038/s41928‑018‑0043‑y
    [Google Scholar]
  9. Gao W. Ota H. Kiriya D. Takei K. Javey A. Flexible electronics toward wearable sensing. Acc. Chem. Res. 2019 52 3 523 533 10.1021/acs.accounts.8b00500 30767497
    [Google Scholar]
  10. Kalasin S. Surareungchai W. Challenges of emerging wearable sensors for remote monitoring toward telemedicine healthcare. Anal. Chem. 2023 95 3 1773 1784 10.1021/acs.analchem.2c02642 36629753
    [Google Scholar]
  11. Li Y. Zheng L. Wang X. Flexible and wearable healthcare sensors for visual reality health-monitoring 2019 1 4 411 427 10.1016/j.vrih.2019.08.001
    [Google Scholar]
  12. Smith A.A. Li R. Tse Z.T.H. Reshaping healthcare with wearable biosensors. Sci. Rep. 2023 13 1 4998 10.1038/s41598‑022‑26951‑z 36973262
    [Google Scholar]
  13. Stoppa M. Chiolerio A. Wearable electronics and smart textiles: A critical review. Sensors 2014 14 7 11957 11992 10.3390/s140711957 25004153
    [Google Scholar]
  14. Roy N. Khattak N. Phan K.K. Hossain M.S. Thomas S. Ram M. Sheridan M. Lorentz B. Takshi A. Sequential laser-burned lignin and hydrogen evolution-assisted copper electrodeposition to manufacture wearable electronics. ACS Appl. Mater. Interfaces 2023 15 39 46571 46578 10.1021/acsami.3c11814 37733934
    [Google Scholar]
  15. Syedmoradi L. Norton M.L. Omidfar K. Point-of-care cancer diagnostic devices: From academic research to clinical translation. Talanta 2021 225 122002 10.1016/j.talanta.2020.122002 33592810
    [Google Scholar]
  16. Lin Z. Zheng J. Wang Y. Su Z. Zhu R. Liu R. Wei Y. Zhang X. Wang F. Prediction of the efficacy of group cognitive behavioral therapy using heart rate variability based smart wearable devices: A randomized controlled study. BMC Psychiatry 2024 24 1 187 10.1186/s12888‑024‑05638‑x 38448895
    [Google Scholar]
  17. Joymangul J.S. Ciobanu I. Agnoloni F. Lampe J. Pedrini C. Pinto A. Franceschini B. Nicolas D. Tamburini E. Cecchi F. Berteanu M. Khadraoui D. Empowering active and healthy ageing: Integrating IoT and wearable technologies for personalised interventions. Appl. Sci. 2024 14 11 4789 10.3390/app14114789
    [Google Scholar]
  18. Zhang Z. Zhang X. Huang W. Zheng X. Ding B. Wang X. Breathable and wearable graphene/waterborne polyurethane coated regenerated polyethylene terephthalate fabrics for motion sensing and thermal therapy. Discov Nano 2024 19 1 61 10.1186/s11671‑024‑04004‑w 38573408
    [Google Scholar]
  19. Zhou L. Guess M. Kim K.R. Yeo W.H. Skin-interfacing wearable biosensors for smart health monitoring of infants and neonates. Commun Mater. 2024 5 1 72 10.1038/s43246‑024‑00511‑6 38737724
    [Google Scholar]
  20. Phipps J. Passage B. Sel K. Martinez J. Saadat M. Koker T. Damaso N. Davis S. Palmer J. Claypool K. Kiley C. Pettigrew R.I. Jafari R. Early adverse physiological event detection using commercial wearables: challenges and opportunities. NPJ Digit. Med. 2024 7 1 136 10.1038/s41746‑024‑01129‑1 38783001
    [Google Scholar]
  21. Guo Z. Wu T. Lockhart T.E. Soangra R. Yoon H. Correlation enhanced distribution adaptation for prediction of fall risk. Sci. Rep. 2024 14 1 3477 10.1038/s41598‑024‑54053‑5 38347050
    [Google Scholar]
  22. Wang C. Wang Z. Guan W. Wang W. Xu L. Li L. Huang S. Wang W. Trustworthy health monitoring based on distributed wearable electronics with edge intelligence. IEEE Trans. Consum. Electron. 2024 70 1 2333 2341 10.1109/TCE.2024.3358803
    [Google Scholar]
  23. Folstein M.F. Folstein S.E. McHugh P.R. Mini-mental state. J. Psychiatr. Res. 1975 12 3 189 198 10.1016/0022‑3956(75)90026‑6 1202204
    [Google Scholar]
  24. Buysse D.J. Reynolds C.F. Monk T.H. Berman S.R. Kupfer D.J. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989 28 2 193 213 10.1016/0165‑1781(89)90047‑4 2748771
    [Google Scholar]
  25. Delbaere K. Close J.C.T. Mikolaizak A.S. Sachdev P.S. Brodaty H. Lord S.R. The falls efficacy scale international (FES-I). A comprehensive longitudinal validation study. Age Ageing 2010 39 2 210 216 10.1093/ageing/afp225 20061508
    [Google Scholar]
  26. Ferreira C.H.J. Barbosa P.B. Souza F.O. Antônio F.I. Franco M.M. Bø K. Inter-rater reliability study of the modified oxford grading scale and the peritron manometer. Physiotherapy 2011 97 2 132 138 10.1016/j.physio.2010.06.007 21497247
    [Google Scholar]
  27. Simpson L. Eng J. Klassen T. Lim S. Louie D. Parappilly B. Sakakibara B. Zbogar D. Capturing step counts at slow walking speeds in older adults: Comparison of ankle and waist placement of measuring device. J. Rehabil. Med. 2015 47 9 830 835 10.2340/16501977‑1993 26181670
    [Google Scholar]
  28. Collins J.E. Yang H.Y. Trentadue T.P. Gong Y. Losina E. Validation of the fitbit charge 2 compared to the actigraph GT3X+ in older adults with knee osteoarthritis in free-living conditions. PLoS One 2019 14 1 0211231 10.1371/journal.pone.0211231 30699159
    [Google Scholar]
  29. Hewage K. Fosker S. Leckie T. Venn R. Gonçalves A.C. Koulouglioti C. Hodgson L.E. The hospital to home study (H2H): Smartwatch technology-enabled rehabilitation following hip fracture in older adults, a feasibility non-randomised trial. Future Healthc. J. 2023 10 1 14 20 10.7861/fhj.2022‑0101 37786494
    [Google Scholar]
  30. Vranceanu A.M. Choukas N.R. Rochon E.A. Duarte B. Pietrzykowski M.O. McDermott K. Hooker J.E. Kulich R. Quiroz Y.T. Parker R.A. Macklin E.A. Ritchie C. Mace R.A. Addressing the chronic pain–early cognitive decline comorbidity among older adults: Protocol for the active brains remote efficacy trial. JMIR Res. Protoc. 2023 12 47319 10.2196/47319 37768713
    [Google Scholar]
  31. Chan M. Estève D. Fourniols J.Y. Escriba C. Campo E. Smart wearable systems: Current status and future challenges. Artif. Intell. Med. 2012 56 3 137 156 10.1016/j.artmed.2012.09.003 23122689
    [Google Scholar]
  32. Santini J.T. Cima M.J. Langer R. A controlled-release microchip. Nature 1999 397 6717 335 338 10.1038/16898 9988626
    [Google Scholar]
  33. Curone D. Dudnik G. Loriga G. Luprano J. Magenes G. Paradiso R. Tognetti A. Bonfiglio A. Smart garments for safety improvement of emergency/disaster operators. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2007 2007 3962 3965 10.1109/IEMBS.2007.4353201 18002867
    [Google Scholar]
  34. Curone D. Secco E.L. Tognetti A. Loriga G. Dudnik G. Risatti M. Whyte R. Bonfiglio A. Magenes G. Smart garments for emergency operators: The ProeTEX project. IEEE Trans. Inf. Technol. Biomed. 2010 14 3 694 701 10.1109/TITB.2010.2045003 20371413
    [Google Scholar]
  35. Kario K. Yasui N. Yokoi H. Ambulatory blood pressure monitoring for cardiovascular medicine. IEEE Eng. Med. Biol. Mag. 2003 22 3 81 88 10.1109/MEMB.2003.1213630 12845823
    [Google Scholar]
  36. GÓmez E.J.; Hernando PÉrez, M.E.; Vering, T.; Rigla Cros, M.; Bott, O.; GarcÍa-SÁez, G.; Pretschner, P.; BruguÉs, E.; Schnell, O.; Patte, C.; Bergmann, J.; Dudde, R.; de Leiva, A. The INCA system: A further step towards a telemedical artificial pancreas. IEEE Trans. Inf. Technol. Biomed. 2008 12 4 470 479 10.1109/TITB.2007.902162 18632327
    [Google Scholar]
  37. Fissell W.H. Fleischman A.J. Humes H.D. Roy S. Development of continuous implantable renal replacement: Past and future. Transl. Res. 2007 150 6 327 336 10.1016/j.trsl.2007.06.001 18022594
    [Google Scholar]
  38. Okubo M. Imai Y. Ishikawa T. Hayasaka T. Ueno S. Yamaguchi T. Development of automatic respiration monitoring for home-care patients of respiratory diseases with therapeutic aids. IFMBE Proceedings-4th European Conference of the International Federation for Medical and Biological Engineering, Springer: Berlin, Heidelberg 2009 vol. 22 1117 1120 10.1007/978‑3‑540‑89208‑3_267
    [Google Scholar]
  39. Islam R. Ahamed S.I. Talukder N. Obermiller I. Usability of mobile computing technologies to assist cancer patients. In: USAB 2007 Lecture notes in computer science (including subseries Lecture notes in artificial intelligence and lecture notes in bioinformatics); Berlin, Heidelberg 2007 217 224 10.1007/978‑3‑540‑76805‑0_19
    [Google Scholar]
  40. Akay M. Sekine M. Tamura T. Higashi Y. Fujimoto T. Unconstrained monitoring of body motion during walking. IEEE Eng. Med. Biol. Mag. 2003 22 3 104 109 10.1109/MEMB.2003.1213633 12845826
    [Google Scholar]
  41. Prochazka A. Gauthier M. Wieler M. Kenwell Z. The bionic glove: An electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia. Arch. Phys. Med. Rehabil. 1997 78 6 608 614 10.1016/S0003‑9993(97)90426‑3 9196468
    [Google Scholar]
  42. Lorussi F. Scilingo E.P. Tesconi M. Tognetti A. DeRossi D. Strain sensing fabric for hand posture and gesture monitoring. IEEE Trans. Inf. Technol. Biomed. 2005 9 3 372 381 10.1109/TITB.2005.854510 16167691
    [Google Scholar]
  43. Katsis C.D. Goletsis Y. Rigas G. Fotiadis D.I. A wearable system for the affective monitoring of car racing drivers during simulated conditions. Transp. Res., Part C Emerg. Technol. 2011 19 3 541 551 10.1016/j.trc.2010.09.004
    [Google Scholar]
  44. Jourand P. De Clercq H. Puers R. Robust monitoring of vital signs integrated in textile. Sens. Actuators A Phys. 2010 161 1-2 288 296 10.1016/j.sna.2010.05.002
    [Google Scholar]
  45. Anliker U. Ward J.A. Lukowicz P. Tröster G. Dolveck F. Baer M. Keita F. Schenker E.B. Catarsi F. Coluccini L. Belardinelli A. Shklarski D. Alon M. Hirt E. Schmid R. Vuskovic M. AMON: A wearable multiparameter medical monitoring and alert system. IEEE Trans. Inf. Technol. Biomed. 2004 8 4 415 427 10.1109/TITB.2004.837888 15615032
    [Google Scholar]
  46. Ma Z. Materials science. An electronic second skin. Science 2011 333 6044 830 831 10.1126/science.1209094 21836004
    [Google Scholar]
  47. Lanatà A. Scilingo E.P. De Rossi D. A multimodal transducer for cardiopulmonary activity monitoring in emergency. IEEE Trans. Inf. Technol. Biomed. 2010 14 3 817 825 10.1109/TITB.2009.2024414 19527961
    [Google Scholar]
  48. Bamberg S. Benbasat A.Y. Scarborough D.M. Krebs D.E. Paradiso J.A. Gait analysis using a shoe-integrated wireless sensor system. IEEE Trans. Inf. Technol. Biomed. 2008 12 4 413 423 10.1109/TITB.2007.899493 18632321
    [Google Scholar]
  49. Simone L.K. Sundarrajan N. Luo X. Jia Y. Kamper D.G. A low cost instrumented glove for extended monitoring and functional hand assessment. J. Neurosci. Methods 2007 160 2 335 348 10.1016/j.jneumeth.2006.09.021 17069892
    [Google Scholar]
  50. Beach R.D. Moussy F. Totally implantable real-time in vivo video telemetry monitoring system for implant biocompatibility studies. IEEE Trans. Instrum. Meas. 2001 50 3 716 723 10.1109/19.930445
    [Google Scholar]
  51. Maqbool S. Parkman H.P. Friedenberg F.K. Wireless capsule motility: Comparison of the SmartPill GI monitoring system with scintigraphy for measuring whole gut transit. Dig. Dis. Sci. 2009 54 10 2167 2174 10.1007/s10620‑009‑0899‑9 19655250
    [Google Scholar]
  52. Chaudhary A. McShane M.J. Srivastava R. Glucose response of dissolved-core alginate microspheres: Towards a continuous glucose biosensor. Analyst 2010 135 10 2620 2628 10.1039/c0an00109k 20689896
    [Google Scholar]
  53. Sung M. Marci C. Pentland A. Wearable feedback systems for rehabilitation. J. Neuroeng. Rehabil. 2005 2 1 17 10.1186/1743‑0003‑2‑17 15987514
    [Google Scholar]
  54. Chien J-R.C. Tai C.C. A new wireless-type physiological signal measuring system using a PDA and the Bluetooth technology. Yixue Gongcheng Appl. Basis Commun. 2005 17 5 229 235 10.4015/S1016237205000342
    [Google Scholar]
  55. Riva G. Gorini A. Gaggioli A. The Intrepid project - biosensor-enhanced virtual therapy for the treatment of generalized anxiety disorders. Stud. Health Technol. Inform. 2009 142 271 276 10.3233/978‑1‑58603‑964‑6‑271 19377166
    [Google Scholar]
  56. Knight J.F. Schwirtz A. Psomadelis F. Baber C. Bristow H.W. Arvanitis T.N. The design of the SensVest. Pers. Ubiquitous Comput. 2005 9 1 6 19 10.1007/s00779‑004‑0269‑8
    [Google Scholar]
  57. Pandian P.S. Mohanavelu K. Safeer K.P. Kotresh T.M. Shakunthala D.T. Gopal P. Padaki V.C. Smart Vest: Wearable multi-parameter remote physiological monitoring system. Med. Eng. Phys. 2008 30 4 466 477 10.1016/j.medengphy.2007.05.014 17869159
    [Google Scholar]
  58. Sullivan F. Wyatt J.C. Why is this patient here today? BMJ 2005 331 7518 678 680 10.1136/bmj.331.7518.678 16179703
    [Google Scholar]
  59. Schneider A. Stieglitz T. Implantable flexible electrodes for functional electrical stimulation. Med. Device Technol. 2004 15 1 16 18 14994633
    [Google Scholar]
  60. Valdastri P. Menciassi A. Arena A. Caccamo C. Dario P. An implantable telemetry platform system for in vivo monitoring of physiological parameters. IEEE Trans. Inf. Technol. Biomed. 2004 8 3 271 278 10.1109/TITB.2004.834389 15484432
    [Google Scholar]
  61. Sieg A. Guy R.H. Delgado-Charro M.B. Simultaneous extraction of urea and glucose by reverse iontophoresis in vivo. Pharm. Res. 2004 21 10 1805 1810 10.1023/B:PHAM.0000045233.54878.f6 15553226
    [Google Scholar]
  62. Jiang L.C. Zhang W.D. A highly sensitive nonenzymatic glucose sensor based on CuO nanoparticles-modified carbon nanotube electrode. Biosens. Bioelectron. 2010 25 6 1402 1407 10.1016/j.bios.2009.10.038 19942424
    [Google Scholar]
  63. Bhattacharya M. Hong S. Lee D. Cui T. Goyal S.M. Carbon nanotube based sensors for the detection of viruses. Sens. Actuators B Chem. 2011 155 1 67 74 10.1016/j.snb.2010.11.025
    [Google Scholar]
  64. Cherevko S. Chung C.H. Gold nanowire array electrode for non-enzymatic voltammetric and amperometric glucose detection. Sens. Actuators B Chem. 2009 142 1 216 223 10.1016/j.snb.2009.07.023
    [Google Scholar]
  65. Morgan D.R. Zierdt M.G. Novel signal processing techniques for Doppler radar cardiopulmonary sensing. Signal Processing 2009 89 1 45 66 10.1016/j.sigpro.2008.07.008
    [Google Scholar]
  66. Yazicioglu R.F. Torfs T. Merken P. Penders J. Leonov V. Puers R. Gyselinckx B. Van Hoof C. Ultra-low-power biopotential interfaces and their applications in wearable and implantable systems. Microelectronics J. 2009 40 9 1313 1321 10.1016/j.mejo.2008.08.015
    [Google Scholar]
  67. Lee B.K. Olgin J.E. Role of wearable and automatic external defibrillators in improving survival in patients at risk for sudden cardiac death. Curr. Treat. Options Cardiovasc. Med. 2009 11 5 360 365 10.1007/s11936‑009‑0036‑2 19846033
    [Google Scholar]
  68. Poscia A. Mascini M. Moscone D. Luzzana M. Caramenti G. Cremonesi P. Valgimigli F. Bongiovanni C. Varalli M. A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part 1). Biosens. Bioelectron. 2003 18 7 891 898 10.1016/S0956‑5663(02)00216‑6 12713912
    [Google Scholar]
  69. Varalli M. Marelli G. Maran A. Bistoni S. Luzzana M. Cremonesi P. Caramenti G. Valgimigli F. Poscia A. A microdialysis technique for continuous subcutaneous glucose monitoring in diabetic patients (part 2). Biosens. Bioelectron. 2003 18 7 899 905 10.1016/S0956‑5663(02)00215‑4 12713913
    [Google Scholar]
  70. Stahl S.T. Insana S.P. Caloric expenditure assessment among older adults: Criterion validity of a novel accelerometry device. J. Health Psychol. 2014 19 11 1382 1387 10.1177/1359105313490771 23818504
    [Google Scholar]
  71. Paul S.S. Tiedemann A. Hassett L.M. Ramsay E. Kirkham C. Chagpar S. Sherrington C. Validity of the Fitbit activity tracker for measuring steps in community-dwelling older adults. BMJ Open Sport Exerc. Med. 2015 1 1 000013 10.1136/bmjsem‑2015‑000013 27900119
    [Google Scholar]
  72. Krehbiel L.M. Layne A.S. Sandesara B. Manini T.M. Anton S.D. Buford T.W. Wearable technology to reduce sedentary behavior and CVD risk in older adults: Design of a randomized controlled trial. Contemp. Clin. Trials Commun. 2017 6 122 126 10.1016/j.conctc.2017.04.003 28944304
    [Google Scholar]
  73. Falck R.S. Davis J.C. Best J.R. Li L.C. Chan P.C.Y. Wyrough A.B. Landry G.J. Liu-Ambrose T. Buying time: A proof-of-concept randomized controlled trial to improve sleep quality and cognitive function among older adults with mild cognitive impairment. Trials 2018 19 1 445 10.1186/s13063‑018‑2837‑7 30119694
    [Google Scholar]
  74. Tirkel T. Edan Y. Khvorostianov N. Bar-Haim S. SIT LESS: A prototype home-based system for monitoring older adults sedentary behavior. Assist. Technol. 2020 32 2 79 91 10.1080/10400435.2018.1493707 29944466
    [Google Scholar]
  75. Batsis J.A. Petersen C.L. Clark M.M. Cook S.B. Lopez-Jimenez F. Al-Nimr R.I. Pidgeon D. Kotz D. Mackenzie T.A. Bartels S.J. A weight loss intervention augmented by a wearable device in rural older adults with obesity: A feasibility study. J. Gerontol. A Biol. Sci. Med. Sci. 2021 76 1 95 100 10.1093/gerona/glaa115 32384144
    [Google Scholar]
  76. Silveira S.L. Baird J.F. Motl R.W. Rates, patterns, and correlates of fitness tracker use among older adults with multiple sclerosis. Disabil. Health J. 2021 14 1 100966 10.1016/j.dhjo.2020.100966 32811785
    [Google Scholar]
  77. Batsis J.A. Petersen C.L. Clark M.M. Cook S.B. Kotz D. Gooding T.L. Roderka M.N. Al-Nimr R.I. Pidgeon D. Haedrich A. Wright K.C. Aquila C. Mackenzie T.A. Feasibility and acceptability of a technology-based, rural weight management intervention in older adults with obesity. BMC Geriatr. 2021 21 1 44 10.1186/s12877‑020‑01978‑x 33435877
    [Google Scholar]
  78. Jiwani R. Dennis B. Bess C. Monk S. Meyer K. Wang J. Espinoza S. Assessing acceptability and patient experience of a behavioral lifestyle intervention using fitbit technology in older adults to manage type 2 diabetes amid COVID-19 pandemic: A focus group study. Geriatr. Nurs. 2021 42 1 57 64 10.1016/j.gerinurse.2020.11.007 33248357
    [Google Scholar]
  79. Doorley J.D. Mace R.A. Popok P.J. Grunberg V.A. Ragnhildstveit A. Vranceanu A.M. Feasibility randomized controlled trial of a mind–body activity program for older adults with chronic pain and cognitive decline: The virtual “active brains” study. Gerontologist 2022 62 7 1082 1094 10.1093/geront/gnab135 34487167
    [Google Scholar]
  80. VandeBunte A. Gontrum E. Goldberger L. Fonseca C. Djukic N. You M. Kramer J.H. Casaletto K.B. Physical activity measurement in older adults: Wearables versus self-report. Front Digit. Health. 2022 4 869790 10.3389/fdgth.2022.869790 36120711
    [Google Scholar]
  81. Hofbauer L.M. Rodriguez F.S. How is the usability of commercial activity monitors perceived by older adults and by researchers? A cross-sectional evaluation of community-living individuals. BMJ Open 2022 12 11 063135 10.1136/bmjopen‑2022‑063135 36323474
    [Google Scholar]
  82. Torrado J.C. Husebo B.S. Allore H.G. Erdal A. Fæø S.E. Reithe H. Førsund E. Tzoulis C. Patrascu M. Digital phenotyping by wearable-driven artificial intelligence in older adults and people with Parkinson’s disease: Protocol of the mixed method, cyclic ActiveAgeing study. PLoS One 2022 17 10 0275747 10.1371/journal.pone.0275747 36240173
    [Google Scholar]
  83. Zhang Z. Giordani B. Margulis A. Chen W. Efficacy and acceptability of using wearable activity trackers in older adults living in retirement communities: A mixed method study. BMC Geriatr. 2022 22 1 231 10.1186/s12877‑022‑02931‑w 35313819
    [Google Scholar]
  84. Paolillo E.W. Lee S.Y. VandeBunte A. Saloner R. Gaynor L.S. Djukic N. Tsuei T. Cobigo Y. Kramer J.H. Casaletto K.B. Data-driven physical actigraphy patterns relate to cognitive and vascular health in older adults. Exp. Gerontol. 2023 178 112231 10.1016/j.exger.2023.112231 37286062
    [Google Scholar]
  85. Satariano W.A. Guralnik J.M. Jackson R.J. Marottoli R.A. Phelan E.A. Prohaska T.R. Mobility and aging: New directions for public health action. Am. J. Public Health 2012 102 8 1508 1515 10.2105/AJPH.2011.300631 22698013
    [Google Scholar]
  86. O’Sullivan L. Power V. Virk G. Masud N. Haider U. Christensen S. Bai S. Cuypers L. D’Havé M. Vonck K. End user needs elicitation for a full-body exoskeleton to assist the elderly. Procedia Manuf. 2015 3 1403 1409 10.1016/j.promfg.2015.07.302
    [Google Scholar]
  87. Fomiatti R. Moir L. Richmond J. Millsteed J. The experience of being a motorised mobility scooter user. Disabil. Rehabil. Assist. Technol. 2014 9 3 183 187 10.3109/17483107.2013.814171 23802129
    [Google Scholar]
  88. Mundt M. Batista J.P. Markert B. Bollheimer C. Laurentius T. Walking with rollator: A systematic review of gait parameters in older persons. Eur. Rev. Aging Phys. Act. 2019 16 1 15 10.1186/s11556‑019‑0222‑5 31528238
    [Google Scholar]
  89. Suica Z. Romkes J. Tal A. Maguire C. Walking with a four wheeled walker (rollator) significantly reduces EMG lower-limb muscle activity in healthy subjects. J. Bodyw. Mov. Ther. 2016 20 1 65 73 10.1016/j.jbmt.2015.06.002 26891639
    [Google Scholar]
  90. Ben Mortenson W. Kim J. Scoping review of mobility scooter-related research studies. J. Rehabil. Res. Dev. 2016 53 5 531 540 10.1682/JRRD.2015.05.0084 27898156
    [Google Scholar]
  91. Rizzo J.R. Conti K. Thomas T. Hudson T.E. Wall Emerson R. Kim D.S. A new primary mobility tool for the visually impaired: A white cane—adaptive mobility device hybrid. Assist. Technol. 2018 30 5 219 225 10.1080/10400435.2017.1312634 28506151
    [Google Scholar]
  92. Jung M.M. Ludden G.D.S. What do older adults and clinicians think about traditional mobility aids and exoskeleton technology? ACM Trans. Hum. Robot Interact. 2019 8 2 1 17 10.1145/3311789
    [Google Scholar]
  93. Boerema S.T. van Velsen L. Vollenbroek-Hutten M.M.R. Hermens H.J. Value-based design for the elderly: An application in the field of mobility aids. Assist. Technol. 2017 29 2 76 84 10.1080/10400435.2016.1208303 27532436
    [Google Scholar]
  94. Mecklenburger J. Growth T. Wireless technologies and hearing aid connectivity. In: Hearing Aids Springer Handbook of Auditory Research; Popelka, G.R.; Moore, B.C.J.; Fay, R.R.; Popper, A.N., Eds.; Springer Cham: Switzerland 2016 56 131 149 10.1007/978‑3‑319‑33036‑5_5
    [Google Scholar]
  95. Christensen J.H. Saunders G.H. Havtorn L. Pontoppidan N.H. Real-world hearing aid usage patterns and smartphone connectivity. Front Digit. Health. 2021 3 722186 10.3389/fdgth.2021.722186 34713187
    [Google Scholar]
  96. Windle R. Dillon H. Heinrich A. A review of auditory processing and cognitive change during normal ageing, and the implications for setting hearing aids for older adults. Front. Neurol. 2023 14 1122420 10.3389/fneur.2023.1122420 37409017
    [Google Scholar]
  97. Zhou C. Huang T. Luo X. Kaner J. Reorganisation and construction of an age-friendly smart recreational home system: Based on function–capability match methodology. Appl. Sci. 2023 13 17 9783 10.3390/app13179783
    [Google Scholar]
  98. Aclan R. George S. Laver K. Common home hazards among healthy older aged adults and potential modifications required for age‐friendly housing. Aust. Occup. Ther. J. 2024 71 2 213 225 10.1111/1440‑1630.12918 38016761
    [Google Scholar]
  99. Ehrlich J.R. Ojeda L.V. Wicker D. Day S. Howson A. Lakshminarayanan V. Moroi S.E. Head-mounted display technology for low-vision rehabilitation and vision enhancement. Am. J. Ophthalmol. 2017 176 26 32 10.1016/j.ajo.2016.12.021 28048975
    [Google Scholar]
  100. Bowers A.R. Keeney K. Peli E. Randomized crossover clinical trial of real and sham peripheral prism glasses for hemianopia. JAMA Ophthalmol. 2014 132 2 214 222 10.1001/jamaophthalmol.2013.5636 24201760
    [Google Scholar]
  101. Jung J.H. Peli E. Field expansion for acquired monocular vision using a multiplexing prism. Optom. Vis. Sci. 2018 95 9 814 828 10.1097/OPX.0000000000001277 30169357
    [Google Scholar]
  102. Apfelbaum H. Peli E. Tunnel vision prismatic field expansion: challenges and requirements. Transl. Vis. Sci. Technol. 2015 4 6 8 10.1167/tvst.4.6.8 26740910
    [Google Scholar]
  103. Lee S. Jeon H. Moon W. Jung M. Hahn J. Wide viewing angle holographic augmented reality near-eye display with holo ¬graphic optical element Proceedings of the Digital Optical technologies 2023, SPIE Digital Optical Technologies, Munich, Germany 2023 43 46
    [Google Scholar]
  104. Qin X. Sang X. Li H. Xiao R. Zhong C. Yan B. Sun Z. Dong Y. High resolution multiview holographic display based on the holographic optical element. Micromachines 2023 14 1 147 10.3390/mi14010147 36677208
    [Google Scholar]
  105. Lv Z. Li J. Yang Y. Liu J. 3D head-up display with a multiple extended depth of field based on integral imaging and holographic optical elements. Opt. Express 2023 31 2 964 975 10.1364/OE.477479 36785143
    [Google Scholar]
  106. Qiu Y. Zhao Z. Yang J. Cheng Y. Liu Y. Yang B.R. Qin Z. Light field displays with computational vision correction for astigmatism and high-order aberrations with real-time implementation. Opt. Express 2023 31 4 6262 6280 10.1364/OE.485547 36823887
    [Google Scholar]
  107. Huang H. Hua H. High-performance integral-imaging-based light field augmented reality display using freeform optics. Opt. Express 2018 26 13 17578 17590 10.1364/OE.26.017578 30119569
    [Google Scholar]
  108. Cheng D. Duan J. Chen H. Wang H. Li D. Wang Q. Hou Q. Yang T. Hou W. Wang D. Chi X. Jiang B. Wang Y. Freeform OST-HMD system with large exit pupil diameter and vision correction capability. Photon. Res. 2022 10 1 21 32 10.1364/PRJ.440018
    [Google Scholar]
  109. Wei L. Li Y. Jing J. Feng L. Zhou J. Design and fabrication of a compact off-axis see-through head-mounted display using a freeform surface. Opt. Express 2018 26 7 8550 8565 10.1364/OE.26.008550 29715821
    [Google Scholar]
  110. Bauer A. Rolland J.P. Visual space assessment of two all-reflective, freeform, optical see-through head-worn displays. Opt. Express 2014 22 11 13155 13163 10.1364/OE.22.013155 24921511
    [Google Scholar]
  111. Yang J. Twardowski P. Gérard P. Fontaine J. Design of a large field-of-view see-through near to eye display with two geometrical waveguides. Opt. Lett. 2016 41 23 5426 5429 10.1364/OL.41.005426 27906204
    [Google Scholar]
  112. Wang Q. Cheng D. Hou Q. Gu L. Wang Y. Design of an ultra-thin, wide-angle, stray-light-free near-eye display with a dual-layer geometrical waveguide. Opt. Express 2020 28 23 35376 35394 10.1364/OE.409006 33182985
    [Google Scholar]
  113. Xu M. Hua H. Methods of optimizing and evaluating geometrical lightguides with microstructure mirrors for augmented reality displays. Opt. Express 2019 27 4 5523 5543 10.1364/OE.27.005523 30876154
    [Google Scholar]
  114. Xiao J. Liu J. Lv Z. Shi X. Han J. On-axis near-eye display system based on directional scattering holographic waveguide and curved goggle. Opt. Express 2019 27 2 1683 1692 10.1364/OE.27.001683 30696230
    [Google Scholar]
  115. Shen Z. Zhang Y. Liu A. Weng Y. Li X. Volume holographic waveguide display with large field of view using a Au-NPs dispersed acrylate-based photopolymer. Opt. Mater. Express 2020 10 2 312 322 10.1364/OME.380826
    [Google Scholar]
  116. Ni D. Cheng D. Wang Y. Yang T. Wang X. Chi C. Wang Y. Design and fabrication method of holographic waveguide near-eye display with 2D eye box expansion. Opt. Express 2023 31 7 11019 11040 10.1364/OE.481889 37155747
    [Google Scholar]
  117. Muhsin Z.J. Qahwaji R. Ghanchi F. Al-Taee M. Review of substitutive assistive tools and technologies for people with visual impairments: Recent advancements and prospects. J. Multimodal User Interfaces 2024 18 1 135 156 10.1007/s12193‑023‑00427‑4
    [Google Scholar]
  118. Moos R.H. Lemke S. The multiphasic environmental assessment procedure. In: Community Mental Health. and Behavioral-Ecology. Jeger A.M. Slotnick R.S. Boston Springer 1982 357 371 10.1007/978‑1‑4613‑3356‑2_26
    [Google Scholar]
  119. Grant L.A. Assessing environments in alzheimer special care units. Res. Aging 1996 18 3 275 291 10.1177/0164027596183001
    [Google Scholar]
  120. Norris-Baker C. Weisman G.D. Lawton M.P. Sloane P. Kaup M. Assessing special care units for dementia. In: Enabling Environments Plenum Series in Rehabilitation and Health. Steinfeld E. Danford G.S. Boston Springer 1999 165 181 10.1007/978‑1‑4615‑4841‑6_8
    [Google Scholar]
  121. Fleming R. An environmental audit tool suitable for use in homelike facilities for people with dementia. Australas. J. Ageing 2011 30 3 108 112 10.1111/j.1741‑6612.2010.00444.x 21923702
    [Google Scholar]
  122. Cho M.E. Kim M.J. Characterizing the interaction design in healthy smart home devices for the elderly. Indoor Built Environ. 2014 23 1 141 149 10.1177/1420326X14521229
    [Google Scholar]
  123. Mshali H. Lemlouma T. Magoni D. Adaptive monitoring system for e-health smart homes. Pervasive Mobile Comput. 2018 43 1 19 10.1016/j.pmcj.2017.11.001
    [Google Scholar]
  124. Chen C. Ding S. Wang J. Digital health for aging populations. Nat. Med. 2023 29 7 1623 1630 10.1038/s41591‑023‑02391‑8 37464029
    [Google Scholar]
  125. Andrews J.A. Brown L.J.E. Hawley M.S. Astell A.J. Older adults’ perspectives on using digital technology to maintain good mental health: Interactive group study. J. Med. Internet Res. 2019 21 2 11694 10.2196/11694 30758292
    [Google Scholar]
  126. Betts L.R. Hill R. Gardner S.E. “There’s not enough knowledge out there”: Examining older adults’ perceptions of digital technology use and digital inclusion classes. J. Appl. Gerontol. 2019 38 8 1147 1166 10.1177/0733464817737621 29165038
    [Google Scholar]
  127. Erickson J. Johnson G.M. Internet use and psychological wellness during late adulthood. Can. J. Aging 2011 30 2 197 209 10.1017/S0714980811000109 24650669
    [Google Scholar]
  128. Hall A.K. Bernhardt J.M. Dodd V. Vollrath M.W. The digital health divide: Evaluating online health information access and use among older adults. Health Educ. Behav. 2015 42 2 202 209 10.1177/1090198114547815 25156311
    [Google Scholar]
  129. Brito D.V.C. Gulmez Karaca K. Kupke J. Mudlaff F. Zeuch B. Gomes R. Lopes L.V. Oliveira A.M.M. Modeling human age-associated increase in Gadd45γ expression leads to spatial recognition memory impairments in young adult mice. Neurobiol. Aging 2020 94 281 286 10.1016/j.neurobiolaging.2020.06.021 32711258
    [Google Scholar]
  130. Gulmez Karaca K. Brito D.V.C. Kupke J. Zeuch B. Oliveira A.M.M. Engram reactivation during memory retrieval predicts long-term memory performance in aged mice. Neurobiol. Aging 2021 101 256 261 10.1016/j.neurobiolaging.2021.01.019 33647524
    [Google Scholar]
  131. Brito D.V.C. Esteves F. Rajado A.T. Silva N. Andrade R. Apolónio J. Calado S. Faleiro L. Matos C. Marques N. Marreiros A. Nzwalo H. Pais S. Palmeirim I. Roberto V. Simão S. Joaquim N. Miranda R. Pêgas A. Raposo D.M. Sardo A. Araújo I. Bragança J. Castelo-Branco P. Nóbrega C. Assessing cognitive decline in the aging brain: Lessons from rodent and human studies. NPJ Aging 2023 9 1 23 10.1038/s41514‑023‑00120‑6 37857723
    [Google Scholar]
  132. Berchtold N.C. Cotman C.W. Normal and pathological aging: From animals to humans. In: Animal Models of Human Cognitive Aging. Bizon J.L. Woods A.G. New York Humana Press 2009 1 28 10.1007/978‑1‑59745‑422‑3_1
    [Google Scholar]
  133. Casagrande M. Marselli G. Agostini F. Forte G. Favieri F. Guarino A. The complex burden of determining prevalence rates of mild cognitive impairment: A systematic review. Front. Psychiatry 2022 13 960648 10.3389/fpsyt.2022.960648 36213927
    [Google Scholar]
  134. Lee T.M.H. Over-the-counter biosensors: Past, present, and future. Sensors 2008 8 9 5535 5559 10.3390/s8095535 27873829
    [Google Scholar]
  135. Kirstein T. Tröster G. Lukowicz P. Wearable systems for health care applications. Methods Inf. Med. 2004 43 3 232 238 10.1055/s‑0038‑1633863 15227552
    [Google Scholar]
  136. Konstantas D. An overview of wearable and implantable medical sensors. Yearb. Med. Inform. 2007 16 1 66 69 10.1055/s‑0038‑1638527 17700906
    [Google Scholar]
  137. Schalk G. Brunner P. Gerhardt L.A. Bischof H. Wolpaw J.R. Brain–computer interfaces (BCIs): Detection instead of classification. J. Neurosci. Methods 2008 167 1 51 62 10.1016/j.jneumeth.2007.08.010 17920134
    [Google Scholar]
  138. Belkacem A.N. Saetia S. Zintus-art K. Shin D. Kambara H. Yoshimura N. Berrached N. Koike Y. Real-time control of a video game using eye movements and two temporal EEG sensors. Comput. Intell. Neurosci. 2015 2015 1 10 10.1155/2015/653639 26690500
    [Google Scholar]
  139. Belkacem A.N. Nishio S. Suzuki T. Ishiguro H. Hirata M. Neuromagnetic decoding of simultaneous bilateral hand movements for multidimensional brain–machine interfaces. IEEE Trans. Neural Syst. Rehabil. Eng. 2018 26 6 1301 1310 10.1109/TNSRE.2018.2837003 29877855
    [Google Scholar]
  140. Gao Q. Dou L. Belkacem A.N. Chen C. Noninvasive electroencephalogram based control of a robotic arm for writing task using hybrid BCI system. BioMed Res. Int. 2017 2017 1 8 10.1155/2017/8316485 28660211
    [Google Scholar]
  141. Chen C. Zhou P. Belkacem A.N. Lu L. Xu R. Wang X. Tan W. Qiao Z. Li P. Gao Q. Shin D. Quadcopter robot control based on hybrid brain–computer interface system. Sens. Mater. 2020 32 3 991 1004 10.18494/SAM.2020.2517
    [Google Scholar]
  142. Shao L. Zhang L. Belkacem A.N. Zhang Y. Chen X. Li J. Liu H. EEG-controlled wall-crawling cleaning robot using SSVEP-based brain-computer interface. J. Healthc. Eng. 2020 2020 1 11 10.1155/2020/6968713 32399166
    [Google Scholar]
  143. Xu T. Huang J. Pei Z. Chen J. Li J. Bezerianos A. Thakor N. Wang H. The effect of multiple factors on working memory capacities: Aging, task difficulty, and training. IEEE Trans. Biomed. Eng. 2023 70 6 1967 1978 10.1109/TBME.2022.3232849 37015624
    [Google Scholar]
  144. Rezaii N. Wolff P. Price B.H. Natural language processing in psychiatry: The promises and perils of a transformative approach. Br. J. Psychiatry 2022 220 5 251 253 10.1192/bjp.2021.188 35048814
    [Google Scholar]
  145. Zhang T. Schoene A.M. Ji S. Ananiadou S. Natural language processing applied to mental illness detection: A narrative review. NPJ Digit. Med. 2022 5 1 46 10.1038/s41746‑022‑00589‑7 35396451
    [Google Scholar]
  146. Belkacem A.N. Jamil N. Palmer J.A. Ouhbi S. Chen C. Brain computer interfaces for improving the quality of life of older adults and elderly patients. Front. Neurosci. 2020 14 692 10.3389/fnins.2020.00692 32694979
    [Google Scholar]
  147. Lee T.S. Goh S.J.A. Quek S.Y. Phillips R. Guan C. Cheung Y.B. Feng L. Teng S.S.W. Wang C.C. Chin Z.Y. Zhang H. Ng T.P. Lee J. Keefe R. Krishnan K.R.R. A brain-computer interface based cognitive training system for healthy elderly: A randomized control pilot study for usability and preliminary efficacy. PLoS One 2013 8 11 79419 10.1371/journal.pone.0079419 24260218
    [Google Scholar]
  148. Gomez-Pilar J. Corralejo R. Nicolas-Alonso L.F. Álvarez D. Hornero R. Neurofeedback training with a motor imagery-based BCI: Neurocognitive improvements and EEG changes in the elderly. Med. Biol. Eng. Comput. 2016 54 11 1655 1666 10.1007/s11517‑016‑1454‑4 26906278
    [Google Scholar]
  149. Chen C. Li Z. Wan F. Xu L. Bezerianos A. Wang H. Fusing frequency-domain features and brain connectivity features for cross-subject emotion recognition. IEEE Trans. Instrum. Meas. 2022 71 1 15 10.1109/TIM.2022.3168927
    [Google Scholar]
  150. Ji Z. Xu T. Chen C. Yin H. Wan F. Wang H. Subject-specific CNN model with parameter-based transfer learning for SSVEP detection. Biomed. Signal Process. Control 2025 103 107404 10.1016/j.bspc.2024.107404
    [Google Scholar]
  151. Stauss M. Htay H. Kooman J.P. Lindsay T. Woywodt A. Wearables in nephrology: Fanciful gadgetry or prêt-à-porter? Sensors 2023 23 3 1361 10.3390/s23031361 36772401
    [Google Scholar]
  152. Mace R.A. Doorley J.D. Popok P.J. Vranceanu A.M. Live video adaptations to a mind-body activity program for chronic pain and cognitive decline: Protocol for the virtual active brains study. JMIR Res. Protoc. 2021 10 1 25351 10.2196/25351 33208301
    [Google Scholar]
  153. Shim G.Y. Kim E.H. Baek Y.J. Chang W.K. Kim B.R. Oh J.H. Lee J.I. Hwang J.H. Lim J.Y. A randomized controlled trial of postoperative rehabilitation using digital healthcare system after rotator cuff repair. NPJ Digit. Med. 2023 6 1 95 10.1038/s41746‑023‑00842‑7 37221303
    [Google Scholar]
  154. Bonello M. Buhagiar N. Farrugia P. Mercieca J. Unveiling the impact of the SMARTCLAP project on habilitation. Comput. Struct. Biotechnol. J. 2024 24 451 463 10.1016/j.csbj.2024.06.001 38975288
    [Google Scholar]
  155. De Marsico M. Palermo A. User gait biometrics in smart ambient applications through wearable accelerometer signals: An analysis of the influence of training setup on recognition accuracy. J. Ambient Intell. Humaniz. Comput. 2024 15 7 2967 2979 10.1007/s12652‑024‑04790‑2
    [Google Scholar]
  156. Stauffer J. Zhang Q. s2Cloud: A novel cloud-based precision health system for smart and secure IoT big data harnessing. Discover Internet of Things 2024 4 1 3 10.1007/s43926‑024‑00055‑8
    [Google Scholar]
  157. Greenberg J. Popok P.J. Lin A. Kulich R.J. James P. Macklin E.A. Millstein R.A. Edwards R.R. Vranceanu A.M. A mind-body physical activity program for chronic pain with or without a digital monitoring device: Proof-of-concept feasibility randomized controlled trial. JMIR Form. Res. 2020 4 6 18703 10.2196/18703 32348281
    [Google Scholar]
  158. Lian Z. Xu T. Yuan Z. Li J. Thakor N. Wang H. Driving fatigue detection based on hybrid electroencephalography and eye tracking. IEEE J. Biomed. Health Inform. 2024 28 11 6568 6580 10.1109/JBHI.2024.3446952 39167519
    [Google Scholar]
  159. Seiferth C. Vogel L. Aas B. Brandhorst I. Carlbring P. Conzelmann A. Esfandiari N. Finkbeiner M. Hollmann K. Lautenbacher H. Meinzinger E. Newbold A. Opitz A. Renner T.J. Sander L.B. Santangelo P.S. Schoedel R. Schuller B. Stachl C. Terhorst Y. Torous J. Wac K. Werner-Seidler A. Wolf S. Löchner J. Löchner J. How to e-mental health: A guideline for researchers and practitioners using digital technology in the context of mental health. Nat. Ment. Health. 2023 1 8 542 554 10.1038/s44220‑023‑00085‑1
    [Google Scholar]
  160. Humane AI Pin. Available from: https://hu.ma.ne/
/content/journals/cpb/10.2174/0113892010390500250911104231
Loading
/content/journals/cpb/10.2174/0113892010390500250911104231
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: ActiGraphTM ; Healthy aging ; Fitbit® ; Telemedicine ; Fitness tracker ; Humane AI Pin ; Smart wearable
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test