Skip to content
2000
image of Potential of the β-Myrcene Rich Essential Oil from Astronium Urundeuva (M.Allemão) Engl. (Anacardiaceae) to Potentiate Fluconazole Activity and Inhibit Morphological Transition in Candida Species

Abstract

Background

In view of the increasing resistance of species, it is necessary to explore alternative strategies. In this context, essential oils have emerged as promising options, among which the essential oil of (M. Allemão) Engl. has shown potential, as it is traditionally used in folk medicine for the treatment of inflammation and multiple infections. Thus, the aim of this study was to evaluate the chemical profile, anti- activity, and Fluconazole (FCZ) potentiating effect of the essential oil extracted from the leaves of (EOAU) and its ability to inhibit the virulence mechanism in species.

Methods

The essential oil was obtained via hydrodistillation and characterized using gas chromatography-mass spectrometry. To evaluate the antifungal effects and the modulating activity of Fluconazole (FCZ), the essential oil was diluted in DMSO (1 mL) and SDB medium (9 mL) and tested on 3 strains using the serial microdilution method. In addition, a morphological transition assay was used to evaluate its capacity to inhibit fungal virulence.

Results

The major constituent of EOAU was the monoterpene β-myrcene (71.07%). The results indicate that the essential oil exhibits an antifungal effect, with being the most susceptible species. At subinhibitory concentrations (MC/8), the EOAU enhanced the action of fluconazole against and . The EOAU strongly inhibited the morphological transition in .

Conclusion

EOAU is rich in β-myrcene and exhibits an interesting fungistatic effect, making it a great natural candidate for inhibiting spp. virulence.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010359736250707113515
2025-07-11
2025-09-19
Loading full text...

Full text loading...

References

  1. Ahmad S. Kumar S. Rajpal K. Sinha R. Kumar R. Muni S. Kumari N. Candidemia among ICU patients: Species characterisation, resistance pattern and association with Candida score: A prospective study. Cureus 2022 14 4 e24612 10.7759/cureus.24612 35651467
    [Google Scholar]
  2. Lee Y. Puumala E. Robbins N. Cowen L.E. Antifungal drug resistance: Molecular mechanisms in Candida albicans and beyond. Chem. Rev. 2021 121 6 3390 3411 10.1021/acs.chemrev.0c00199 32441527
    [Google Scholar]
  3. Berkow E. Lockhart S. Fluconazole resistance in Candida species: A current perspective. Infect. Drug Resist. 2017 10 237 245 10.2147/IDR.S118892 28814889
    [Google Scholar]
  4. Sarma S. Upadhyay S. Current perspective on emergence, diagnosis and drug resistance in Candida auris. Infect. Drug Resist. 2017 10 155 165 10.2147/IDR.S116229 28652784
    [Google Scholar]
  5. First meeting of the WHO antifungal expert group on identifying priority fungal pathogens 2020 Available from: https://www.who.int/publications-detail-redirect/9789240006355
  6. WHO fungal priority pathogens list to guide research, development and public health action. 2022 Available from: https://www.who.int/publications-detail-redirect/9789240060241
  7. Sharma J. Rosiana S. Razzaq I. Shapiro R.S. Linking cellular morphogenesis with antifungal treatment and susceptibility in Candida pathogens. J. Fungi 2019 5 1 17 10.3390/jof5010017 30795580
    [Google Scholar]
  8. Shahabudin S. Azmi N.S. Candida, the opportunistic human pathogen. Mater. Sci. Forum 2020 981 309 315 10.4028/www.scientific.net/MSF.981.309
    [Google Scholar]
  9. Boruah T. Parashar P. Ujir C. Dey S.K. Nayik G.A. Ansari M.J. Nejad A.S. Sandalwood essential oil.Essential Oils. Academic Press 2023 121 145 10.1016/B978‑0‑323‑91740‑7.00003‑7
    [Google Scholar]
  10. Chaachouay N. Zidane L. Plant-derived natural products: A source for drug discovery and development. Drugs and Drug Candidates 2024 3 1 184 207 10.3390/ddc3010011
    [Google Scholar]
  11. Shariatifar N. Janghorban A. Rahimnia R. Mozaffari Nejad A.S. Antimicrobial, antifungal and antioxidant activities of bee glue ethanol and aqueous extracts. J. Biol. Res. Boll. Soc. Ital. Biol. Sper. 2018 90 2 77 80 10.4081/jbr.2017.6452
    [Google Scholar]
  12. Liaqat A. Ahsan S. Fayyaz M.S. Ali A. Ashfaq S.A. Khan S. Khan M.A. Mehmood T. Khaliq A. Chughtai M.F.J. Asgari S. Parzadeh M. Nejad A.S.M. Nayik G.A. Cinnamon Essential Oil.Essential Oils. Academic Press 2023 377 390 10.1016/B978‑0‑323‑91740‑7.00007‑4
    [Google Scholar]
  13. Mozaffari Nejad A.S. Bahmani M. Shah N.A. Shah S.A. Rafieian-Kopaei M. Beliefs of herbal therapies of the community of the Ilam city of Ilam province, Iran. J. Pharm. Pharmacogn. Res. 2018 6 1 299 317 10.56499/jppres17.309_6.4.299
    [Google Scholar]
  14. Nuță D.C. Limban C. Chiriță C. Chifiriuc M.C. Costea T. Ioniță P. Nicolau I. Zarafu I. Contribution of essential oils to the fight against microbial biofilms—A review. Processes 2021 9 3 537 10.3390/pr9030537
    [Google Scholar]
  15. Kowalczyk A. Essential oils against Candida auris—A promising approach for antifungal activity. Antibiotics 2024 13 6 568 10.3390/antibiotics13060568 38927234
    [Google Scholar]
  16. Tian F. Woo S.Y. Lee S.Y. Park S.B. Zheng Y. Chun H.S. Antifungal activity of essential oil and plant-derived natural compounds against Aspergillus flavus. Antibiotics 2022 11 12 1727 10.3390/antibiotics11121727 36551384
    [Google Scholar]
  17. Oliveira K.C. Franciscato L.M.S.S. Mendes S.S. Barizon F.M.A. Gonçalves D.D. Barbosa L.N. Faria M.G.I. Valle J.S. Casalvara R.F.A. Gonçalves J.E. Gazim Z.C. Ruiz S.P. Essential oil from the leaves, fruits and twigs of Schinus terebinthifolius: Chemical composition, antioxidant and antibacterial potential. Molecules 2024 29 2 469 10.3390/molecules29020469 38257382
    [Google Scholar]
  18. Marangoni J.A. da Costa Pinto J.V. Kassuya C.A.L. de Oliveira Junior P.C. dos Santos S.M. Cardoso C.A.L. Silva R.M.M.F. Espíndola da Silva M. Machado C.D. Manfron J. Formagio A.S.N. Geographical variation in the chemical composition, anti-inflammatory activity of the essential oil, micromorphology and histochemistry of Schinus terebinthifolia Raddi. J. Ethnopharmacol. 2023 301 115786 10.1016/j.jep.2022.115786 36206869
    [Google Scholar]
  19. Vanegas Andrade C. Matera S. Bayley M. Colareda G. Ruiz M.E. Prieto J. Retta D. van Baren C. Consolini A.E. Ragone M.I. Antispasmodic, antidepressant and anxiolytic effects of extracts from Schinus lentiscifolius Marchand leaves. J. Tradit. Complement. Med. 2022 12 2 141 151 10.1016/j.jtcme.2021.07.004 35528474
    [Google Scholar]
  20. Monteiro J.M. Albuquerque U.P. Lins-Neto E.M.F. Araújo E.L. Amorim E.L.C. Use patterns and knowledge of medicinal species among two rural communities in Brazil’s semi-arid northeastern region. J. Ethnopharmacol. 2006 105 1-2 173 186 10.1016/j.jep.2005.10.016 16298502
    [Google Scholar]
  21. Magalhães K.N. Guarniz W.A.S. Sá K.M. Freire A.B. Monteiro M.P. Nojosa R.T. Bieski I.G.C. Custódio J.B. Balogun S.O. Bandeira M.A.M. Medicinal plants of the Caatinga, northeastern Brazil: Ethnopharmacopeia (1980–1990) of the late professor Francisco José de Abreu Matos. J. Ethnopharmacol. 2019 237 314 353 10.1016/j.jep.2019.03.032 30885881
    [Google Scholar]
  22. Carvalho C.E.S. Sobrinho-Junior E.P.C. Brito L.M. Nicolau L.A.D. Carvalho T.P. Moura A.K.S. Rodrigues K.A.F. Carneiro S.M.P. Arcanjo D.D.R. Citó A.M.G.L. Carvalho F.A.A. Anti-Leishmania activity of essential oil of Myracrodruon urundeuva (Engl.) Fr. All.: Composition, cytotoxity and possible mechanisms of action. Exp. Parasitol. 2017 175 59 67 10.1016/j.exppara.2017.02.012 28189487
    [Google Scholar]
  23. Figueredo F.G. Lucena B.F.F. Tintino S.R. Matias E.F.F. Leite N.F. Andrade J.C. Nogueira L.F.B. Morais E.C. Costa J.G.M. Coutinho H.D.M. Rodrigues F.F.G. Chemical composition and evaluation of modulatory of the antibiotic activity from extract and essential oil of Myracrodruon urundeuva. Pharm. Biol. 2014 52 5 560 565 10.3109/13880209.2013.853810 24251788
    [Google Scholar]
  24. Costa A.R. Gonçalves da Silva T. Pereira P.S. Fernanda de Oliveira Borba E. Braga A.L. Alencar Fonseca V.J. Almeida de Menezes S. Henrique da Silva F.S. Augusta de Sousa Fernandes P. Gregorio de Oliveira M. Silva de Oliveira T.J. Tavares A.B. Sousa de Brito E. Vasconcelos Ribeiro P.R. Temoteo dos Santos L. Lucas dos Santos A.T. Morais-Braga M.F. Leite Sampaio R.S. Pereira da Cruz R. Duarte A.E. Barros L.M. Phytochemical profile and anti-Candida and cytotoxic potential of Anacardium occidentale L. (cashew tree). Biocatal. Agric. Biotechnol. 2021 37 102192 10.1016/j.bcab.2021.102192
    [Google Scholar]
  25. Pires Rodrigues de Almeida Ribeiro F. Fernandes Matos L. Brito Queiroz D. Botelho M.A. de Souza Siqueira Barreto D.R. Santana de Lima R. de Araújo Ribeiro L.A. Rose Alencar de Menezes I. Melo Coutinho H.D. Guedes da Silva Almeida J.R. Wound healing effect of Lippia sidoides and Myracrodruon urundeuva nanogel. Chem. Biodivers. 2024 21 3 e202302043 10.1002/cbdv.202302043 38190232
    [Google Scholar]
  26. Aguiar Galvão W.R. Braz Filho R. Canuto K.M. Ribeiro P.R.V. Campos A.R. Moreira A.C.O.M. Silva S.O. Mesquita Filho F.A. S A A R, S.; Melo Junior, J.M.A.; Gonçalves, N.G.G.; Fonseca, S.G.C.; Bandeira, M.A.M. Gastroprotective and anti-inflammatory activities integrated to chemical composition of Myracrodruon urundeuva Allemão - A conservationist proposal for the species. J. Ethnopharmacol. 2018 222 177 189 10.1016/j.jep.2018.04.024 29689352
    [Google Scholar]
  27. Adams R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry; Allured Publishing Corporation: Carol Stream, 2007
    [Google Scholar]
  28. Stoppa M.A. Ferreira J.C. Koga-Ito C.Y. Balducci I. Prates R.A. Jorge A.O.C. Comparative study of the recommended methodologies by CLSI and EUCAST for activity evaluation antifungal. Quim. Nova 2009 32 498 502 10.1590/S0100‑40422009000200038
    [Google Scholar]
  29. Morais-Braga M.F.B. Sales D.L. Carneiro J.N.P. Machado A.J.T. dos Santos A.T.L. de Freitas M.A. Martins G.M.A.B. Leite N.F. de Matos Y.M.L.S. Tintino S.R. Souza D.S.L. Menezes I.R.A. Ribeiro-Filho J. Costa J.G.M. Coutinho H.D.M. Psidium guajava L. and Psidium brownianum Mart ex DC.: Chemical composition and anti – Candida effect in association with fluconazole. Microb. Pathog. 2016 95 200 207 10.1016/j.micpath.2016.04.013 27085299
    [Google Scholar]
  30. Fonseca V.J.A. Braga A.L. de Almeida R.S. da Silva T.G. da Silva J.C.P. de Lima L.F. dos Santos M.H.C. dos Santos Silva R.R. Teixeira C.S. Coutinho H.D.M. Morais-Braga M.F.B. Lectins ConA and ConM extracted from Canavalia ensiformis (L.) DC and Canavalia rosea (Sw.) DC inhibit planktonic Candida albicans and Candida tropicalis. Arch. Microbiol. 2022 204 6 346 10.1007/s00203‑022‑02959‑x 35608680
    [Google Scholar]
  31. Coutinho H.D.M. Costa J.G.M. Lima E.O. Falcão-Silva V.S. Siqueira-Júnior J.P. Enhancement of the antibiotic activity against a multiresistant Escherichia coli by Mentha arvensis L. and chlorpromazine. Chemotherapy 2008 54 4 328 330 10.1159/000151267 18698137
    [Google Scholar]
  32. Carneiro J.N.P. da Cruz R.P. Campina F.F. Costa M.S. dos Santos A.T.L. Sales D.L. Bezerra C.F. da Silva L.E. de Araujo J.P. do Amaral W. Rebelo R.A. Begnini I.M. de Lima L.F. Melo Coutinho H.D. Bezerra Morais-Braga M.F. GC/MS analysis and antimicrobial activity of the Piper mikanianum (Kunth) Steud. essential oil. Food Chem. Toxicol. 2020 135 110987 10.1016/j.fct.2019.110987 31759067
    [Google Scholar]
  33. Fernandes P.A.S. Pereira R.L.S. Santos A.T.L. Coutinho H.D.M. Morais-Braga M.F.B. da Silva V.B. Costa A.R. Generino M.E.M. de Oliveira M.G. de Menezes S.A. Santos L.T. Siyadatpanah A. Wilairatana P. Portela T.M.A. Gonçalo M.A.B.F. Almeida-Bezerra J.W. Phytochemical analysis, antibacterial activity and modulating effect of essential oil from Syzygium cumini (L.) skeels. Molecules 2022 27 10 3281 10.3390/molecules27103281 35630757
    [Google Scholar]
  34. da Cruz R.P. Castro J.W.G. Leite D.O.D. de Carvalho N.K.G. Almeida-Bezerra J.W. Pereira R.L.S. Rodrigues F.F.G. Bezerra J.J.L. Costa A.R. Mori E. de Farias P.A.M. Coutinho H.D.M. Morais-Braga M.F.B. Iriti M. da Costa J.G.M. Rodrigues F.F.G. Chemical composition and antimicrobial potential of essential oil of acritopappus confertus (Gardner) R.M.King & H.Rob. (Asteraceae). Pharmaceuticals 2022 15 10 1275 10.3390/ph15101275 36297389
    [Google Scholar]
  35. Costa O.B. Del Menezzi C.H.S. Benedito L.E.C. Resck I.S. Vieira R.F. Ribeiro Bizzo H. Essential oil constituents and yields from leaves of Blepharocalyx salicifolius (Kunt) O. Berg and Myracrodruon urundeuva (Allemão) collected during daytime. Int. J. For. Res. 2014 2014 1 6 10.1155/2014/982576
    [Google Scholar]
  36. de Aquino N. Araújo R. Silveira E. Intraspecific variation of the volatile chemical composition of Myracrodruon urundeuva Fr. Allem. (“Aroeira-do-Sertão”): characterization of six chemotypes. J. Braz. Chem. Soc. 2016 28 907 912 10.21577/0103‑5053.20160243
    [Google Scholar]
  37. Rebouças de Araújo Í.D. Coriolano de Aquino N. Véras de Aguiar Guerra A.C. Ferreira de Almeida Júnior R. Mendonça Araújo R. Fernandes de Araújo Júnior R. Silva Farias K.J. Fernandes J.V. Sousa Andrade V. Chemical composition and evaluation of the antibacterial and Cytotoxic activities of the essential oil from the leaves of Myracrodruon urundeuva. BMC Complement. Altern. Med. 2017 17 1 419 10.1186/s12906‑017‑1918‑6 28830478
    [Google Scholar]
  38. Montanari R.M. Barbosa L.C.A. Demuner A.J. Silva C.J. Andrade N.J. Ismail F.M.D. Barbosa M.C.A. Exposure to Anacardiaceae volatile oils and their constituents induces lipid peroxidation within food-borne bacteria cells. Molecules 2012 17 8 9728 9740 10.3390/molecules17089728 22893019
    [Google Scholar]
  39. de Macêdo D.G. Souza M.M.A. Morais-Braga M.F.B. Coutinho H.D.M. dos Santos A.T.L. da Cruz R.P. da Costa J.G.M. Rodrigues F.F.G. Quintans-junior L.J. da Silva Almeida J.R.G. de Menezes I.R.A. Effect of seasonality on chemical profile and antifungal activity of essential oil isolated from leaves Psidium salutare (Kunth). O. Berg. PeerJ 2018 6 e5476 10.7717/peerj.5476 30402343
    [Google Scholar]
  40. Sá R.A. Argolo A.C.C. Napoleão T.H. Gomes F.S. Santos N.D.L. Melo C.M.L. Albuquerque A.C. Xavier H.S. Coelho L.C.B.B. Bieber L.W. Paiva P.M.G. Antioxidant, Fusarium growth inhibition and Nasutitermes corniger repellent activities of secondary metabolites from Myracrodruon urundeuva heartwood. Int. Biodeterior. Biodegradation 2009 63 4 470 477 10.1016/j.ibiod.2009.01.002
    [Google Scholar]
  41. Oliveira F.A.D. Rorato V.C. Almeida-Apolonio A.A. Rodrigues A.B. Barros A.L.D. Sangalli A. Arena A.C. Mota J.S. Grisolia A.B. Oliveira K.M.P.D. In vitro antifungal activity of Myracrodruon urundeuva Allemão against human vaginal Candida species. An Acad. Bras Cienc 2017 89 3 Suppl. 2423 2432 [Suppl. 10.1590/0001‑3765201720170254 28746624
    [Google Scholar]
  42. Bonifácio B.V. Vila T.V.M. Masiero I.F. da Silva P.B. da Silva I.C. de Oliveira Lopes É. dos Santos Ramos M.A. de Souza L.P. Vilegas W. Pavan F.R. Chorilli M. Lopez-Ribot J.L. Bauab T.M. Antifungal activity of a hydroethanolic extract from astronium urundeuva leaves against Candida albicans and candida glabrata. Front. Microbiol. 2019 10 2642 10.3389/fmicb.2019.02642 31803166
    [Google Scholar]
  43. Silva V.B. Almeida-Bezerra J.W. Novais M.H.G. Farias N.S. Coelho J.J. Ribeiro P.R.V. Canuto K.M. Coutinho H.D.M. Morais-Braga M.F.B. Oliveira A.F.M. Chemical composition, antifungal, and anti-virulence action of the stem bark of Hancornia speciosa Gomes (Apocynaceae) against Candida spp. J. Ethnopharmacol. 2024 321 117506 10.1016/j.jep.2023.117506 38012976
    [Google Scholar]
  44. Hammer K.A. Carson C.F. Riley T.V. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J. Appl. Microbiol. 2003 95 4 853 860 10.1046/j.1365‑2672.2003.02059.x 12969301
    [Google Scholar]
  45. Rigo G.V. Tasca T. Vaginitis: Review on drug resistance. Curr. Drug Targets 2020 21 16 1672 1686 10.2174/1389450121666200804112340 32753007
    [Google Scholar]
  46. Radwan I.T. El-Sherbiny I.M. Metwally N.H. Synergistic and potential antifungal properties of tailored, one pot multicomponent monoterpenes co-delivered with fluconazole encapsulated nanostructure lipid carrier. Sci. Rep. 2024 14 1 14382 10.1038/s41598‑024‑63149‑x 38909063
    [Google Scholar]
  47. Ahmad A. Khan A. Manzoor N. Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Eur. J. Pharm. Sci. 2013 48 1-2 80 86 10.1016/j.ejps.2012.09.016 23111348
    [Google Scholar]
  48. Adin S.N. Gupta I. Ali A. Aqil M. Mujeeb M. Sultana Y. Ahmed M. Investigation on utility of some novel terpenes on transungual delivery of fluconazole for the management of onychomycosis. J. Cosmet. Dermatol. 2022 21 10 5103 5110 10.1111/jocd.14978 35390220
    [Google Scholar]
  49. Imam M.W. Luqman S. Unveiling the mechanism of essential oil action against skin pathogens: From ancient wisdom to modern science. Arch. Microbiol. 2024 206 8 347 10.1007/s00203‑024‑03986‑6 38985339
    [Google Scholar]
  50. Talapko J. Juzbašić M. Matijević T. Pustijanac E. Bekić S. Kotris I. Škrlec I. Candida albicans—The virulence factors and clinical manifestations of infection. J. Fungi 2021 7 2 79 10.3390/jof7020079 33499276
    [Google Scholar]
  51. Ciurea C.N. Kosovski I.B. Mare A.D. Toma F. Pintea-Simon I.A. Man A. Candida and candidiasis—opportunism versus pathogenicity: A review of the virulence traits. Microorganisms 2020 8 6 857 10.3390/microorganisms8060857 32517179
    [Google Scholar]
  52. Arastehfar A. Gabaldón T. Garcia-Rubio R. Jenks J.D. Hoenigl M. Salzer H.J.F. Ilkit M. Lass-Flörl C. Perlin D.S. Perlin D.S. Drug-resistant fungi: An emerging challenge threatening our limited antifungal armamentarium. Antibiotics 2020 9 12 877 10.3390/antibiotics9120877 33302565
    [Google Scholar]
  53. Shahina Z. Yennamalli R.M. Dahms T.E.S. Key essential oil components delocalize Candida albicans Kar3p and impact microtubule structure. Microbiol. Res. 2023 272 127373 10.1016/j.micres.2023.127373 37058783
    [Google Scholar]
  54. Sharma Y. Rastogi S.K. Perwez A. Rizvi M.A. Manzoor N. β-citronellol alters cell surface properties of Candida albicans to influence pathogenicity related traits. Med. Mycol. 2020 58 1 93 106 10.1093/mmy/myz009 30843057
    [Google Scholar]
  55. Surendran S. Qassadi F. Surendran G. Lilley D. Heinrich M. Sivaperumal P. Baig M.Y. Myrcene—What are the potential health benefits of this flavouring and aroma agent? Front. Nutr. 2021 8 699666 10.3389/fnut.2021.699666 34350208
    [Google Scholar]
  56. Cardia G.F.E. Silva-Comar F.M.S. Bonetti C.I. da Rocha E.M.T. Zagoto M. do Amaral V. Bracht L. Silva-Filho S.E. Bersani-Amado C.A. Cuman R.K.N. Hepatoprotective effect of β-myrcene pretreatment against acetaminophen-induced liver injury. Avicenna J. Phytomed. 2022 12 4 388 400 10.22038/2FAJP.2022.19493 35782770
    [Google Scholar]
  57. Almarzooqi S. Venkataraman B. Raj V. Alkuwaiti S.A.A. Das K.M. Collin P.D. Adrian T.E. Subramanya S.B. β-Myrcene mitigates colon inflammation by inhibiting MAP Kinase and NF-κB signaling pathways. Molecules 2022 27 24 8744 10.3390/molecules27248744 36557879
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010359736250707113515
Loading
/content/journals/cpb/10.2174/0113892010359736250707113515
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: medicinal plants ; Myracrodruon urundeuva ; candidiasis ; fungal resistance
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test