Skip to content
2000
image of Understanding Antimicrobial Resistance: From Mechanisms to Public Health Implications

Abstract

Antimicrobial resistance (AMR) is a global public health crisis driven by the overuse and misuse of antibiotics, inadequate infection control practices, and the evolution of microbes. It compromises the effective treatment of infections, posing severe implications for morbidity, mortality, and healthcare costs. Pathogens such as extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) exemplify the growing threat of drug-resistant organisms. This review provides an in-depth analysis of the mechanisms underlying AMR, including enzymatic drug inactivation, efflux pump overexpression, target site modification, and biofilm formation. Additionally, it examines the clinical and economic implications of AMR and assesses emerging strategies for mitigation. Innovative solutions, such as bacteriophage therapy, CRISPR-based genome editing, and the One Health approach, offer promising avenues to address resistance across the human, animal, and environmental health sectors. Coordinated global efforts in surveillance, stewardship, and research are essential to curbing the spread and impact of AMR.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010406135250828050228
2025-09-12
2025-11-03
Loading full text...

Full text loading...

References

  1. Muteeb G. Rehman M.T. Shahwan M. Aatif M. Origin of antibiotics and antibiotic resistance, and their impacts on drug development: A narrative review. Pharmaceuticals 2023 16 11 1615 10.3390/ph16111615 38004480
    [Google Scholar]
  2. Mudenda S. Chabalenge B. Daka V. Jere E. Sefah I.A. Wesangula E. Yamba K. Nyamupachitu J. Mugenyi N. Mustafa Z.U. Mpundu M. Chizimu J. Chilengi R. Knowledge, awareness and practices of healthcare workers regarding antimicrobial use, resistance and stewardship in Zambia: A multi-facility cross-sectional study. JAC Antimicrob. Resist. 2024 6 3 dlae076 10.1093/jacamr/dlae076 38764535
    [Google Scholar]
  3. Hussain M.S. Singh M. Kumar B. Tewari D. Mansoor S. Ganesh N. Antimicrobial activity in ethanolic extracts of Bixa orellana L., Simarouba glauca DC, and Ocimum tenuiflorum L. collected from JNCH herbal garden. World J. Pharm. Res. 2020 9 650 663
    [Google Scholar]
  4. Salam M.A. Al-Amin M.Y. Salam M.T. Pawar J.S. Akhter N. Rabaan A.A. Antimicrobial resistance: A growing serious threat for global public health. Healthcare 2023 11 13 1946 10.3390/healthcare11131946
    [Google Scholar]
  5. Saman A. Chaudhry M. Ijaz M. Shaukat W. Zaheer M.U. Mateus A. Rehman A. Assessment of knowledge, perception, practices and drivers of antimicrobial resistance and antimicrobial usage among veterinarians in Pakistan. Prev. Vet. Med. 2023 212 105836 10.1016/j.prevetmed.2022.105836 36634489
    [Google Scholar]
  6. Njage P.M.K. van Bunnik B. Munk P. Marques A.R.P. Aarestrup F.M. Association of health, nutrition, and socioeconomic variables with global antimicrobial resistance: A modelling study. Lancet Planet. Health 2023 7 11 e888 e899 10.1016/S2542‑5196(23)00213‑9 37940209
    [Google Scholar]
  7. Chakrabarty S. Mishra M.P. Bhattacharyay D. Targeting microbial bio-film: An update on mdr gram-negative bio-film producers causing catheter-associated urinary tract infections. Appl. Biochem. Biotechnol. 2022 194 6 2796 2830 10.1007/s12010‑021‑03711‑9 35247153
    [Google Scholar]
  8. Holmes A.H. Moore L.S.P. Sundsfjord A. Steinbakk M. Regmi S. Karkey A. Guerin P.J. Piddock L.J.V. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016 387 10014 176 187 10.1016/S0140‑6736(15)00473‑0 26603922
    [Google Scholar]
  9. Anderson M. Schulze K. Cassini A. Plachouras D. Mossialos E. A governance framework for development and assessment of national action plans on antimicrobial resistance. Lancet Infect. Dis. 2019 19 11 e371 e384 10.1016/S1473‑3099(19)30415‑3 31588040
    [Google Scholar]
  10. Walsh T.R. Gales A.C. Laxminarayan R. Dodd P.C. Antimicrobial resistance: Addressing a global threat to humanity. PLoS Med. 2023 20 7 e1004264 10.1371/journal.pmed.1004264 37399216
    [Google Scholar]
  11. Bo L. Sun H. Li Y.D. Zhu J. Wurpel J.N.D. Lin H. Chen Z.S. Combating antimicrobial resistance: The silent war. Front. Pharmacol. 2024 15 1347750 10.3389/fphar.2024.1347750 38420197
    [Google Scholar]
  12. Ho C.S. Wong C.T.H. Aung T.T. Lakshminarayanan R. Mehta J.S. Rauz S. McNally A. Kintses B. Peacock S.J. de la Fuente-Nunez C. Hancock R.E.W. Ting D.S.J. Antimicrobial resistance: A concise update. Lancet Microbe 2025 6 1 100947 10.1016/j.lanmic.2024.07.010 39305919
    [Google Scholar]
  13. Okeke I.N. de Kraker M.E.A. Van Boeckel T.P. Kumar C.K. Schmitt H. Gales A.C. Bertagnolio S. Sharland M. Laxminarayan R. The scope of the antimicrobial resistance challenge. Lancet 2024 403 10442 2426 2438 10.1016/S0140‑6736(24)00876‑6 38797176
    [Google Scholar]
  14. Bertagnolio S. Dobreva Z. Centner C.M. Olaru I.D. Donà D. Burzo S. Huttner B.D. Chaillon A. Gebreselassie N. Wi T. Hasso-Agopsowicz M. Allegranzi B. Sati H. Ivanovska V. Kothari K.U. Balkhy H.H. Cassini A. Hamers R.L. Weezenbeek K.V. Aanensen D. Alanio A. Alastruey-Izquierdo A. Alemayehu T. Al-Hasan M. Allegaert K. Al-Maani A.S. Al-Salman J. Alshukairi A.N. Amir A. Applegate T. Araj G.F. Villalobos M.A. Årdal C. Ashiru-Oredope D. Ashley E.A. Babin F-X. Bachmann L.H. Bachmann T. Baker K.S. Balasegaram M. Bamford C. Baquero F. Barcelona L.I. Bassat Q. Bassetti M. Basu S. Beardsley J. Vásquez G.B. Berkley J.A. Bhatnagar A.K. Bielicki J. Bines J. Bongomin F. Bonomo R.A. Bradley J.S. Bradshaw C. Brett A. Brink A. Brown C. Brown J. Buising K. Carson C. Carvalho A.C. Castagnola E. Cavaleri M. Cecchini M. Chabala C. Chaisson R.E. Chakrabarti A. Chandler C. Chandy S.J. Charani E. Chen L. Chiara F. Chowdhary A. Chua A. Chuki P. Chun D.R. Churchyard G. Cirillo D. Clack L. Coffin S.E. Cohn J. Cole M. Conly J. Cooper B. Corso A. Cosgrove S.E. Cox H. Daley C.L. Darboe S. Darton T. Davies G. de Egea V. Dedeić-Ljubović A. Deeves M. Denkinger C. Dillon J-A.R. Dramowski A. Eley B. Roberta Esposito S.M. Essack S.Y. Farida H. Farooqi J. Feasey N. Ferreyra C. Fifer H. Finlayson H. Frick M. Gales A.C. Galli L. Gandra S. Gerber J.S. Giske C. Gordon B. Govender N. Guessennd N. Guindo I. Gurbanova E. Gwee A. Hagen F. Harbarth S. Haze J. Heim J. Hendriksen R. Heyderman R.S. Holt K.E. Hönigl M. Hook E.W. Hope W. Hopkins H. Hughes G. Ismail G. Issack M.I. Jacobs J. Jasovský D. Jehan F. Pearson A.J. Jones M. Joshi M.P. Kapil A. Kariuki S. Karkey A. Kearns G.L. Keddy K.H. Khanna N. Kitamura A. Kolho K-L. Kontoyiannis D.P. Kotwani A. Kozlov R.S. Kranzer K. Kularatne R. Lahra M.M. Langford B.J. Laniado-Laborin R. Larsson D.G.J. Lass-Flörl C. Le Doare K. Lee H. Lessa F. Levin A.S. Limmathurotsakul D. Lincopan N. Lo Vecchio A. Lodha R. Loeb M. Longtin Y. Lye D.C. Mahmud A.M. Manaia C. Manderson L. Mareković I. Marimuthu K. Martin I. Mashe T. Mei Z. Meis J.F. Lyra Tavares De Melo F.A. Mendelson M. Miranda A.E. Moore D. Morel C. Moremi N. Moro M.L. Moussy F. Mshana S. Mueller A. Ndow F.J. Nicol M. Nunn A. Obaro S. Obiero C.W. Okeke I.N. Okomo U. Okwor T.J. Oladele R. Omulo S. Ondoa P. Ortellado de Canese J.M. Ostrosky-Zeichner L. Padoveze M.C. Pai M. Park B. Parkhill J. Parry C.M. Peeling R. Sobreira Vieira Peixe L.M. Perovic O. Pettigrew M.M. Principi N. Pulcini C. Puspandari N. Rawson T. Reddy D.L. Reddy K. Redner P. Rodríguez Tudela J.L. Rodríguez-Baño J. Van Katwyk S.R. Roilides E. Rollier C. Rollock L. Ronat J-B. Ruppe E. Sadarangani M. Salisbury D. Salou M. Samison L.H. Sanguinetti M. Sartelli M. Schellack N. Schouten J. Schwaber M.J. Seni J. Senok A. Shafer W.M. Shakoor S. Sheppard D. Shin J-H. Sia S. Sievert D. Singh I. Singla R. Skov R.L. Soge O.O. Sprute R. Srinivasan A. Srinivasan S. Sundsfjord A. Tacconelli E. Tahseen S. Tangcharoensathien V. Tängdén T. Thursky K. Thwaites G. Tigulini de Souza Peral R. Tong D. Tootla H.D. Tsioutis C. Turner K.M. Turner P. Omar S.V. van de Sande W.W.J. van den Hof S. van Doorn R. Veeraraghavan B. Verweij P. Wahyuningsih R. Wang H. Warris A. Weinstock H. Wesangula E. Whiley D. White P.J. Williams P. Xiao Y. Moscoso M.Y. Yang H.L. Yoshida S. Yu Y. Żabicka D. Zignol M. Rudan I. WHO Research Agenda for AMR in Human Health Collaborators WHO global research priorities for antimicrobial resistance in human health. Lancet Microbe 2024 5 11 100902 10.1016/S2666‑5247(24)00134‑4 39146948
    [Google Scholar]
  15. Hussain S. Khan M.A. Nanorobots: The future of healthcare. AIP Conf. Proc. 2023 2800 020171 10.1063/5.0162904
    [Google Scholar]
  16. Bahl G. Pathak Y. Hussain M.S. Gupta Y. Saraswat N. Navigating Sheehan syndrome’s silent onset: A case report. J. Clin. Transl. Endocrinol. Case Rep. 2024 32 100168 10.1016/j.jecr.2024.100168
    [Google Scholar]
  17. Rolff J. Bonhoeffer S. Kloft C. Leistner R. Regoes R. Hochberg M.E. Forecasting antimicrobial resistance evolution. Trends Microbiol. 2024 32 8 736 745 10.1016/j.tim.2023.12.009 38238231
    [Google Scholar]
  18. Li T. Hao H. Hou X. Xia J. Editorial: Antimicrobial resistance: Agriculture, environment and public health within One Health framework. Front. Microbiol. 2023 14 1252134 10.3389/fmicb.2023.1252134 38029220
    [Google Scholar]
  19. Samreen A.I. Ahmad I. Malak H.A. Abulreesh H.H. Environmental antimicrobial resistance and its drivers: A potential threat to public health. J. Glob. Antimicrob. Resist. 2021 27 101 111 10.1016/j.jgar.2021.08.001 34454098
    [Google Scholar]
  20. Stanley D. Batacan R. Jr Bajagai Y.S. Rapid growth of antimicrobial resistance: The role of agriculture in the problem and the solutions. Appl. Microbiol. Biotechnol. 2022 106 21 6953 6962 10.1007/s00253‑022‑12193‑6 36197458
    [Google Scholar]
  21. Xiao X. Li Y. Wu Q. Liu X. Cao X. Li M. Liu J. Gong L. Dai X. Development and validation of a novel predictive model for dementia risk in middle-aged and elderly depression individuals: A large and longitudinal machine learning cohort study. Alzheimers Res. Ther. 2025 17 1 103 10.1186/s13195‑025‑01750‑6 40361211
    [Google Scholar]
  22. Sorinolu A.J. Tyagi N. Kumar A. Munir M. Antibiotic resistance development and human health risks during wastewater reuse and biosolids application in agriculture. Chemosphere 2021 265 129032 10.1016/j.chemosphere.2020.129032 33293048
    [Google Scholar]
  23. Zhou J. Lu H. Pan J. Association of Launch Price and Clinical Value With Reimbursement Decisions for Anticancer Drugs in China. Int. J. Health Policy Manag. 2024 13 8150 10.34172/ijhpm.2024.8150 38618837
    [Google Scholar]
  24. Horvat O. Kovačević Z. Human and Veterinary Medicine Collaboration Human and veterinary medicine collaboration: Synergistic approach to address antimicrobial resistance through the lens of planetary health. Antibiotics 2025 14 1 38 10.3390/antibiotics14010038 39858324
    [Google Scholar]
  25. Hussain M.S. Kaur G. Mohapatra C. Nutritional composition and functions of flaxseed (Linum usitatissimum linn.). Food Ther Health Care. 2021 3 88 91
    [Google Scholar]
  26. Graham D.W. Bergeron G. Bourassa M.W. Dickson J. Gomes F. Howe A. Kahn L.H. Morley P.S. Scott H.M. Simjee S. Singer R.S. Smith T.C. Storrs C. Wittum T.E. Complexities in understanding antimicrobial resistance across domesticated animal, human, and environmental systems. Ann. N. Y. Acad. Sci. 2019 1441 1 17 30 10.1111/nyas.14036 30924539
    [Google Scholar]
  27. Cheng Y. Wang L. Zhang S. Jian W. Zeng B. Liang L. Deng Z. The investigation of Nfκb inhibitors to block cell proliferation in OSCC cells lines. Curr. Med. Chem. 2024 31 10.2174/0109298673309489240816063313
    [Google Scholar]
  28. Darby E.M. Trampari E. Siasat P. Gaya M.S. Alav I. Webber M.A. Blair J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2023 21 5 280 295 10.1038/s41579‑022‑00820‑y 36411397
    [Google Scholar]
  29. Furuya E.Y. Lowy F.D. Antimicrobial-resistant bacteria in the community setting. Nat. Rev. Microbiol. 2006 4 1 36 45 10.1038/nrmicro1325 16357859
    [Google Scholar]
  30. Do N.T.T. Vu H.T.L. Nguyen C.T.K. Punpuing S. Khan W.A. Gyapong M. Asante K.P. Munguambe K. Gómez-Olivé F.X. John-Langba J. Tran T.K. Sunpuwan M. Sevene E. Nguyen H.H. Ho P.D. Matin M.A. Ahmed S. Karim M.M. Cambaco O. Afari-Asiedu S. Boamah-Kaali E. Abdulai M.A. Williams J. Asiamah S. Amankwah G. Agyekum M.P. Wagner F. Ariana P. Sigauque B. Tollman S. van Doorn H.R. Sankoh O. Kinsman J. Wertheim H.F.L. Community-based antibiotic access and use in six low-income and middle-income countries: a mixed-method approach. Lancet Glob. Health 2021 9 5 e610 e619 10.1016/S2214‑109X(21)00024‑3 33713630
    [Google Scholar]
  31. Baker S. Thomson N. Weill F.X. Holt K.E. Genomic insights into the emergence and spread of antimicrobial-resistant bacterial pathogens. Science 2018 360 6390 733 738 10.1126/science.aar3777 29773743
    [Google Scholar]
  32. Li R. Luo P. Guo Y. He Y. Wang C. Clinical features, treatment, and prognosis of SGLT2 inhibitors induced acute pancreatitis. Expert Opin. Drug Saf. 2024 ••• 1 5 10.1080/14740338.2024.2396387 39172128
    [Google Scholar]
  33. Biondo C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2023 12 1 116 10.3390/pathogens12010116 36678464
    [Google Scholar]
  34. Mancuso G. Midiri A. Gerace E. Biondo C. Bacterial antibiotic resistance: The most critical pathogens. Pathogens 2021 10 10 1310 10.3390/pathogens10101310 34684258
    [Google Scholar]
  35. Garvey M. Rowan N.J. Pathogenic drug resistant fungi: A review of mitigation strategies. Int. J. Mol. Sci. 2023 24 2 1584 10.3390/ijms24021584 36675092
    [Google Scholar]
  36. Vivas R. Barbosa A.A.T. Dolabela S.S. Jain S. Multidrug-resistant bacteria and alternative methods to control them: An overview. Microb. Drug Resist. 2019 25 6 890 908 10.1089/mdr.2018.0319 30811275
    [Google Scholar]
  37. Kanj S.S. Kanafani Z.A. Current concepts in antimicrobial therapy against resistant gram-negative organisms: Extended-spectrum beta-lactamase-producing Enterobacteriaceae, carbapenem-resistant Enterobacteriaceae, and multidrug-resistant Pseudomonas aeruginosa. Mayo Clin. Proc. 2011 86 3 250 259 10.4065/mcp.2010.0674 21364117
    [Google Scholar]
  38. Satlin MJ Walsh TJ Multidrug-resistant Enterobacteriaceae, Pseudomonas aeruginosa and vancomycin-resistant Enterococcus: Three major threats to hematopoietic stem cell transplant recipients. Transplant Infect. Dis 2017 19
    [Google Scholar]
  39. Geddes-McAlister J. Shapiro R.S. New pathogens, new tricks: Emerging, drug‐resistant fungal pathogens and future prospects for antifungal therapeutics. Ann. N. Y. Acad. Sci. 2019 1435 1 57 78 10.1111/nyas.13739 29762860
    [Google Scholar]
  40. Perlin D.S. Rautemaa-Richardson R. Alastruey-Izquierdo A. The global problem of antifungal resistance: Prevalence, mechanisms, and management. Lancet Infect. Dis. 2017 17 12 e383 e392 10.1016/S1473‑3099(17)30316‑X 28774698
    [Google Scholar]
  41. Fisher M.C. Alastruey-Izquierdo A. Berman J. Bicanic T. Bignell E.M. Bowyer P. Bromley M. Brüggemann R. Garber G. Cornely O.A. Gurr S.J. Harrison T.S. Kuijper E. Rhodes J. Sheppard D.C. Warris A. White P.L. Xu J. Zwaan B. Verweij P.E. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022 20 9 557 571 10.1038/s41579‑022‑00720‑1 35352028
    [Google Scholar]
  42. Pristov KE Ghannoum MA Resistance of Candida to azoles and echinocandins worldwide. Clinical Microbiol. Infect 2019 25 792 10.1016/j.cmi.2019.03.028
    [Google Scholar]
  43. Chowdhary A. Sharma C. Meis J.F. Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathog. 2017 13 5 e1006290 10.1371/journal.ppat.1006290 28542486
    [Google Scholar]
  44. Kang L. Gao X.H. Liu H.R. Men X. Wu H.N. Cui P.W. Oldfield E. Yan J.Y. Structure–activity relationship investigation of coumarin–chalcone hybrids with diverse side-chains as acetylcholinesterase and butyrylcholinesterase inhibitors. Mol. Divers. 2018 22 4 893 906 10.1007/s11030‑018‑9839‑y 29934672
    [Google Scholar]
  45. Taylor P.K. Yeung A.T.Y. Hancock R.E.W. Antibiotic resistance in Pseudomonas aeruginosa biofilms: Towards the development of novel anti-biofilm therapies. J. Biotechnol. 2014 191 121 130 10.1016/j.jbiotec.2014.09.003 25240440
    [Google Scholar]
  46. Alav I. Sutton J.M. Rahman K.M. Role of bacterial efflux pumps in biofilm formation. J. Antimicrob. Chemother. 2018 73 8 2003 2020 10.1093/jac/dky042 29506149
    [Google Scholar]
  47. Sen P. Vijay M. Singh S. Hameed S. Vijayaraghvan P. Understanding the environmental drivers of clinical azole resistance in Aspergillus species. Drug Target Insights 2022 16 1 25 35 10.33393/dti.2022.2476 36458152
    [Google Scholar]
  48. Wang L. Li X. Men X. Liu X. Luo J. Research progress on antioxidants and protein aggregation inhibitors in cataract prevention and therapy (Review). Mol. Med. Rep. 2025 31 1 31 [Review]. 39513587
    [Google Scholar]
  49. Belay W.Y. Getachew M. Tegegne B.A. Teffera Z.H. Dagne A. Zeleke T.K. Wondm S.A. Abebe R.B. Gedif A.A. Fenta A. Yirdaw G. Tilahun A. Aschale Y. Antimicrobial resistance with a focus on antibacterial, antifungal, antimalarial, and antiviral drugs resistance, its threat, global priority pathogens, prevention, and control strategies: A review. Ther. Adv. Infect. Dis. 2025 12 20499361251340144 10.1177/20499361251340144 40416942
    [Google Scholar]
  50. Fitzpatrick D.A. Horizontal gene transfer in fungi. FEMS Microbiol. Lett. 2012 329 1 1 8 10.1111/j.1574‑6968.2011.02465.x 22112233
    [Google Scholar]
  51. Wisecaver J.H. Slot J.C. Rokas A. The evolution of fungal metabolic pathways. PLoS Genet. 2014 10 12 e1004816 10.1371/journal.pgen.1004816 25474404
    [Google Scholar]
  52. Richards T.A. Leonard G. Soanes D.M. Talbot N.J. Gene transfer into the fungi. Fungal Biol. Rev. 2011 25 2 98 110 10.1016/j.fbr.2011.04.003
    [Google Scholar]
  53. Syvanen M. Evolutionary implications of horizontal gene transfer. Annu. Rev. Genet. 2012 46 1 341 358 10.1146/annurev‑genet‑110711‑155529 22934638
    [Google Scholar]
  54. Khaldi N. Wolfe K.H. Evolutionary origins of the fumonisin secondary metabolite gene cluster in Fusarium verticillioides and Aspergillus niger. Int. J. Evol. Biol. 2011 2011 1 7 10.4061/2011/423821 21716743
    [Google Scholar]
  55. Roze L.V. Hong S.Y. Linz J.E. Aflatoxin biosynthesis: Current frontiers. Annu. Rev. Food Sci. Technol. 2013 4 1 293 311 10.1146/annurev‑food‑083012‑123702 23244396
    [Google Scholar]
  56. Rodríguez-Beltrán J. DelaFuente J. León-Sampedro R. MacLean R.C. San Millán Á. Beyond horizontal gene transfer: The role of plasmids in bacterial evolution. Nat. Rev. Microbiol. 2021 19 6 347 359 10.1038/s41579‑020‑00497‑1 33469168
    [Google Scholar]
  57. Lorusso A.B. Carrara J.A. Barroso C.D.N. Tuon F.F. Faoro H. Role of efflux pumps on antimicrobial resistance in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2022 23 24 15779 10.3390/ijms232415779 36555423
    [Google Scholar]
  58. Kabra R. Chauhan N. Kumar A. Ingale P. Singh S. Efflux pumps and antimicrobial resistance: Paradoxical components in systems genomics. Prog. Biophys. Mol. Biol. 2019 141 15 24 10.1016/j.pbiomolbio.2018.07.008 30031023
    [Google Scholar]
  59. Du D. Wang-Kan X. Neuberger A. van Veen H.W. Pos K.M. Piddock L.J.V. Luisi B.F. Multidrug efflux pumps: Structure, function and regulation. Nat. Rev. Microbiol. 2018 16 9 523 539 10.1038/s41579‑018‑0048‑6 30002505
    [Google Scholar]
  60. Van Bambeke F. Glupczynski Y. Plésiat P. Pechère J.C. Tulkens P.M. Antibiotic efflux pumps in prokaryotic cells: Occurrence, impact on resistance and strategies for the future of antimicrobial therapy. J. Antimicrob. Chemother. 2003 51 5 1055 1065 10.1093/jac/dkg224 12697642
    [Google Scholar]
  61. Kumar A. Schweizer H. Bacterial resistance to antibiotics: Active efflux and reduced uptake. Adv. Drug Deliv. Rev. 2005 57 10 1486 1513 10.1016/j.addr.2005.04.004 15939505
    [Google Scholar]
  62. Li X.Z. Nikaido H. Efflux-mediated drug resistance in bacteria: An update. Drugs 2009 69 12 1555 1623 10.2165/11317030‑000000000‑00000 19678712
    [Google Scholar]
  63. Henderson P.J.F. Maher C. Elbourne L.D.H. Eijkelkamp B.A. Paulsen I.T. Hassan K.A. Physiological functions of bacterial “Multidrug” efflux pumps. Chem. Rev. 2021 121 9 5417 5478 10.1021/acs.chemrev.0c01226 33761243
    [Google Scholar]
  64. Crabbé A. Jensen P.Ø. Bjarnsholt T. Coenye T. Antimicrobial tolerance and metabolic adaptations in microbial biofilms. Trends Microbiol. 2019 27 10 850 863 10.1016/j.tim.2019.05.003 31178124
    [Google Scholar]
  65. Sarkar S. Release mechanisms and molecular interactions of Pseudomonas aeruginosa extracellular DNA. Appl. Microbiol. Biotechnol. 2020 104 15 6549 6564 10.1007/s00253‑020‑10687‑9 32500267
    [Google Scholar]
  66. Thanabalasuriar A. Scott B.N.V. Peiseler M. Willson M.E. Zeng Z. Warrener P. Keller A.E. Surewaard B.G.J. Dozier E.A. Korhonen J.T. Cheng L.I. Gadjeva M. Stover C.K. DiGiandomenico A. Kubes P. Neutrophil extracellular traps confine pseudomonas Aeruginosa ocular biofilms and restrict brain invasion. Cell Host Microbe 2019 25 4 526 536.e4 10.1016/j.chom.2019.02.007 30930127
    [Google Scholar]
  67. Bowen W.H. Burne R.A. Wu H. Koo H. Oral biofilms: Pathogens, matrix, and polymicrobial interactions in microenvironments. Trends Microbiol. 2018 26 3 229 242 10.1016/j.tim.2017.09.008 29097091
    [Google Scholar]
  68. Li Y. Huang S. Du J. Wu M. Huang X. Current and prospective therapeutic strategies: tackling Candida albicans and Streptococcus mutans cross-kingdom biofilm. Front. Cell. Infect. Microbiol. 2023 13 1106231 10.3389/fcimb.2023.1106231 37249973
    [Google Scholar]
  69. Dalal V. Golemi-Kotra D. Kumar P. Quantum mechanics/molecular mechanics studies on the catalytic mechanism of a novel esterase (FmtA) of Staphylococcus aureus. J. Chem. Inf. Model. 2022 62 10 2409 2420 10.1021/acs.jcim.2c00057 35475370
    [Google Scholar]
  70. Bassetti M. Poulakou G. Ruppe E. Bouza E. Van Hal S.J. Brink A. Antimicrobial resistance in the next 30 years, humankind, bugs and drugs: a visionary approach. Intensive Care Med. 2017 43 10 1464 1475 10.1007/s00134‑017‑4878‑x 28733718
    [Google Scholar]
  71. Wekesa Y.N. Namusoke F. Sekikubo M. Mango D.W. Bwanga F. Ceftriaxone- and ceftazidime-resistant Klebsiella species, Escherichia coli, and methicillin-resistant Staphylococcus aureus dominate caesarean surgical site infections at Mulago Hospital, Kampala, Uganda. SAGE Open Med. 2020 8 2050312120970719 10.1177/2050312120970719 35154757
    [Google Scholar]
  72. El-Sokkary R Uysal S Erdem H Kullar R Pekok AU Amer F Profiles of multidrug-resistant organisms among patients with bacteremia in intensive care units: An international ID-IRI survey. European J. Clin. Microbiol. Infect. Dis. 2021 40 2323 10.1007/s10096‑021‑04288‑1
    [Google Scholar]
  73. Paramythiotou E. Routsi C. Association between infections caused by multidrug-resistant gram-negative bacteria and mortality in critically ill patients. World J. Crit. Care Med. 2016 5 2 111 120 10.5492/wjccm.v5.i2.111 27152254
    [Google Scholar]
  74. Dalal V. Dhankhar P. Singh V. Singh V. Rakhaminov G. Golemi-Kotra D. Kumar P. Structure-based identification of potential drugs against FMTA of Staphylococcus aureus: Virtual screening, molecular dynamics, MM-GBSA, and QM/MM. Protein J. 2021 40 2 148 165 10.1007/s10930‑020‑09953‑6 33421024
    [Google Scholar]
  75. Kumari R. Dalal V. Identification of potential inhibitors for LLM of Staphylococcus aureus : Structure-based pharmacophore modeling, molecular dynamics, and binding free energy studies. J. Biomol. Struct. Dyn. 2022 40 20 9833 9847 10.1080/07391102.2021.1936179 34096457
    [Google Scholar]
  76. Kumari R. Rathi R. Pathak S.R. Dalal V. Structural-based virtual screening and identification of novel potent antimicrobial compounds against YsxC of Staphylococcus aureus. J. Mol. Struct. 2022 1255 132476 10.1016/j.molstruc.2022.132476
    [Google Scholar]
  77. Dalal V. Kumari R. Screening and identification of natural product‐like compounds as potential antibacterial agents targeting femc of staphylococcus aureus: An in‐Silico Approach. ChemistrySelect 2022 7 42 e202201728 10.1002/slct.202201728
    [Google Scholar]
  78. Yee R. Simner P.J. Next-generation sequencing approaches to predicting antimicrobial susceptibility testing results. Clin. Lab. Med. 2022 42 4 557 572 10.1016/j.cll.2022.09.011 36368782
    [Google Scholar]
  79. Tan B. Ng C. Nshimyimana J.P. Loh L.L. Gin K.Y.H. Thompson J.R. Next-generation sequencing (NGS) for assessment of microbial water quality: current progress, challenges, and future opportunities. Front. Microbiol. 2015 6 1027 10.3389/fmicb.2015.01027 26441948
    [Google Scholar]
  80. Gajic I. Kabic J. Kekic D. Jovicevic M. Milenkovic M. Mitic Culafic D. Trudic A. Ranin L. Opavski N. Antimicrobial susceptibility testing: A comprehensive review of currently used methods. Antibiotics 2022 11 4 427 10.3390/antibiotics11040427 35453179
    [Google Scholar]
  81. van Belkum A. Burnham C.A.D. Rossen J.W.A. Mallard F. Rochas O. Dunne W.M. Jr Innovative and rapid antimicrobial susceptibility testing systems. Nat. Rev. Microbiol. 2020 18 5 299 311 10.1038/s41579‑020‑0327‑x 32055026
    [Google Scholar]
  82. Salam M.A. Al-Amin M.Y. Pawar J.S. Akhter N. Lucy I.B. Conventional methods and future trends in antimicrobial susceptibility testing. Saudi J. Biol. Sci. 2023 30 3 103582 10.1016/j.sjbs.2023.103582 36852413
    [Google Scholar]
  83. Brlek P. Bulić L. Bračić M. Projić P. Škaro V. Shah N. Shah P. Primorac D. Implementing Whole Genome Sequencing (WGS) in clinical practice: Advantages, challenges, and future perspectives. Cells 2024 13 6 504 10.3390/cells13060504 38534348
    [Google Scholar]
  84. Shanmugakani R.K. Srinivasan B. Glesby M.J. Westblade L.F. Cárdenas W.B. Raj T. Erickson D. Mehta S. Current state of the art in rapid diagnostics for antimicrobial resistance. Lab Chip 2020 20 15 2607 2625 10.1039/D0LC00034E 32644060
    [Google Scholar]
  85. Singh S. Numan A. Cinti S. Point-of-care for evaluating antimicrobial resistance through the adoption of functional materials. Anal. Chem. 2022 94 1 26 40 10.1021/acs.analchem.1c03856 34802244
    [Google Scholar]
  86. Fuller W. Kapona O. Aboderin A.O. Adeyemo A.T. Olatunbosun O.I. Gahimbare L. Ahmed Y.A. Education and awareness on antimicrobial resistance in the who african region: A systematic review. Antibiotics 2023 12 11 1613 10.3390/antibiotics12111613 37998815
    [Google Scholar]
  87. Bertagnolio S. Suthar A.B. Tosas O. Van Weezenbeek K. Antimicrobial resistance: Strengthening surveillance for public health action. PLoS Med. 2023 20 7 e1004265 10.1371/journal.pmed.1004265 37436833
    [Google Scholar]
  88. Do P.C. Assefa Y.A. Batikawai S.M. Reid S.A. Strengthening antimicrobial resistance surveillance systems: A scoping review. BMC Infect. Dis. 2023 23 1 593 10.1186/s12879‑023‑08585‑2 37697310
    [Google Scholar]
  89. Saliba R. Zahar J.R. Dabar G. Riachy M. Karam-Sarkis D. Husni R. Limiting the spread of multidrug-resistant bacteria in low-to-middle-income countries: One size does not fit all. Pathogens 2023 12 1 144 10.3390/pathogens12010144 36678492
    [Google Scholar]
  90. Rahman M.M. Alam Tumpa M.A. Zehravi M. Sarker M.T. Yamin M. Islam M.R. Harun-Or-Rashid M. Ahmed M. Ramproshad S. Mondal B. Dey A. Damiri F. Berrada M. Rahman M.H. Cavalu S. An overview of antimicrobial stewardship optimization: The use of antibiotics in humans and animals to prevent resistance. Antibiotics 2022 11 5 667 10.3390/antibiotics11050667 35625311
    [Google Scholar]
  91. Laxminarayan R. Impalli I. Rangarajan R. Cohn J. Ramjeet K. Trainor B.W. Strathdee S. Sumpradit N. Berman D. Wertheim H. Outterson K. Srikantiah P. Theuretzbacher U. Expanding antibiotic, vaccine, and diagnostics development and access to tackle antimicrobial resistance. Lancet 2024 403 10443 2534 2550 10.1016/S0140‑6736(24)00878‑X 38797178
    [Google Scholar]
  92. Danasekaran R. One Health: A Holistic Approach to Tackling Global Health Issues. Indian journal of community medicine: Official citation of Indian Association of Preventive &. Soc. Med. (Soc. Med. Publ. Group) 2024 49 260 263
    [Google Scholar]
  93. Kaczmarek P. Wiszniewska M. Słomka S. Walusiak-Skorupa J. The One Health concept: A holistic approach to protect human and environmental health – how does it work in Total Worker Health strategy. Med. Pr. 2024 75 5 433 444 10.13075/mp.5893.01561 39513561
    [Google Scholar]
  94. Lorusso V. Parasitology and one health—perspectives on Africa and beyond. Pathogens 2021 10 11 1437 10.3390/pathogens10111437 34832594
    [Google Scholar]
  95. Fasina F.O. Fasanmi O.G. Makonnen Y.J. Bebay C. Bett B. Roesel K. The one health landscape in Sub-Saharan African countries. One Health 2021 13 100325 10.1016/j.onehlt.2021.100325
    [Google Scholar]
  96. Hernando-Amado S. Coque T.M. Baquero F. Martínez J.L. Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 2019 4 9 1432 1442 10.1038/s41564‑019‑0503‑9 31439928
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010406135250828050228
Loading
/content/journals/cpb/10.2174/0113892010406135250828050228
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test