Skip to content
2000
image of Exploring Immunogenetic Mechanisms in Parkinson’s Disease Using Single-cell Transcriptomics and Mendelian Randomization

Abstract

Introduction

Parkinson’s disease (PD) is a prevalent neurodegenerative disorder characterized by the progressive loss of dopaminergic neuron. Although the role of immunity in PD has been increasingly recognized, the immunogenetic mechanisms underpinning its progression remain largely unresolved.

Methods

We employed an integrative approach combining Mendelian randomization (MR), expression quantitative trait loci analysis, and single-cell RNA sequencing to investigate immune cell infiltration and transcriptional regulation in PD. Immune cell composition, pathway activation, and gene regulatory networks were assessed through single-cell gene set enrichment analysis and transcriptional correlation analyses.

Results

Immune profiling revealed significant increases in naive B cells (1.22-fold), plasma cells (3.00-fold), switched memory B cells (2.85-fold), and unswitched memory B cells (6.70-fold) in PD patients compared to controls (p < 0.001). MR analysis identified five causal genes- CYTH4, FGR, LRRK2, RIN3, and SAT1- associated with monocyte, neutrophil, and B cell infiltration. SAT1 (OR: 1.529; 95% CI: 1.018–2.297) and RIN3 (OR: 1.222; 95% CI: 1.039–1.437) showed strong associations with PD risk (p < 0.01). SAT1 positively correlated with PARK7 and regulated reactive oxygen species signaling, while FGR negatively correlated with ABCA4, influencing lipid metabolism and immune responses.

Discussion

These findings highlight distinct immunogenetic mechanisms driving PD progression. The SAT1-PARK7 axis appears to modulate oxidative stress and neuroinflammation, whereas the FGR-ABCA4 interaction may affect metabolic and immune pathways. While the study is limited by population heterogeneity and the challenges of inferring causality, it provides mechanistic insights into immune contributions to PD.

Conclusion

Our integrative genomic analysis identified novel regulatory networks involving immune-related genes in PD, offering potential targets for mechanistic understanding and therapeutic development.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010378080250711022253
2025-07-21
2025-09-14
Loading full text...

Full text loading...

References

  1. Samii A. Nutt J.G. Ransom B.R. Parkinson’s disease. Lancet 2004 363 9423 1783 1793 10.1016/S0140‑6736(04)16305‑8 15172778
    [Google Scholar]
  2. Armstrong M.J. Okun M.S. Diagnosis and treatment of parkinson disease. JAMA 2020 323 6 548 560 10.1001/jama.2019.22360 32044947
    [Google Scholar]
  3. Blauwendraat C. Nalls M.A. Singleton A.B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020 19 2 170 178 10.1016/S1474‑4422(19)30287‑X 31521533
    [Google Scholar]
  4. Martirosyan A. Ansari R. Pestana F. Hebestreit K. Gasparyan H. Aleksanyan R. Hnatova S. Poovathingal S. Marneffe C. Thal D.R. Kottick A. Hanson-Smith V.J. Guelfi S. Plumbly W. Belgard T.G. Metzakopian E. Holt M.G. Unravelling cell type-specific responses to Parkinson’s Disease at single cell resolution. Mol. Neurodegener. 2024 19 1 7 10.1186/s13024‑023‑00699‑0 38245794
    [Google Scholar]
  5. Ma S.X. Lim S.B. Single-cell RNA sequencing in Parkinson’s disease. Biomedicines 2021 9 4 368 10.3390/biomedicines9040368 33916045
    [Google Scholar]
  6. Krokidis M.G. Identification of biomarkers associated with Parkinson’s disease by gene expression profiling studies and bioinformatics analysis. AIMS Neurosci. 2019 6 4 333 345 10.3934/Neuroscience.2019.4.333 32341987
    [Google Scholar]
  7. Jia F. Fellner A. Kumar K.R. Monogenic Parkinson’s disease: Genotype, phenotype, pathophysiology, and genetic testing. Genes 2022 13 3 471 10.3390/genes13030471 35328025
    [Google Scholar]
  8. Grenn F.P. Kim J.J. Makarious M.B. Iwaki H. Illarionova A. Brolin K. Kluss J.H. Schumacher-Schuh A.F. Leonard H. Faghri F. Billingsley K. Krohn L. Hall A. Diez-Fairen M. Periñán M.T. Foo J.N. Sandor C. Webber C. Fiske B.K. Gibbs J.R. Nalls M.A. Singleton A.B. Bandres-Ciga S. Reed X. Blauwendraat C. The Parkinson’s disease Genome‐Wide Association Study locus browser. Mov. Disord. 2020 35 11 2056 2067 10.1002/mds.28197 32864809
    [Google Scholar]
  9. Kim J.J. Vitale D. Otani D.V. Lian M.M. Heilbron K. Aslibekyan S. Auton A. Babalola E. Bell R.K. Bielenberg J. Bryc K. Bullis E. Cannon P. Coker D. Partida G.C. Dhamija D. Das S. Elson S.L. Eriksson N. Filshtein T. Fitch A. Fletez-Brant K. Fontanillas P. Freyman W. Granka J.M. Hernandez A. Hicks B. Hinds D.A. Jewett E.M. Jiang Y. Kukar K. Kwong A. Lin K-H. Llamas B.A. Lowe M. McCreight J.C. McIntyre M.H. Micheletti S.J. Moreno M.E. Nandakumar P. Nguyen D.T. Noblin E.S. O’Connell J. Petrakovitz A.A. Poznik G.D. Reynoso A. Schloetter M. Schumacher M. Shastri A.J. Shelton J.F. Shi J. Shringarpure S. Su Q.J. Tat S.A. Tchakouté C.T. Tran V. Tung J.Y. Wang X. Wang W. Weldon C.H. Wilton P. Wong C.D. Iwaki H. Lake J. Solsberg C.W. Leonard H. Makarious M.B. Tan E-K. Singleton A.B. Bandres-Ciga S. Noyce A.J. Gatto E.M. Kauffman M. Khachatryan S. Tavadyan Z. Shepherd C.E. Hunter J. Kumar K. Ellis M. Rentería M.E. Koks S. Zimprich A. Schumacher-Schuh A.F. Rieder C. Awad P.S. Tumas V. Camargos S. Fon E.A. Monchi O. Fon T. Galleguillos B.P. Miranda M. Bustamante M.L. Olguin P. Chana P. Tang B. Shang H. Guo J. Chan P. Luo W. Arboleda G. Orozc J. del Rio M.J. Hernandez A. Salama M. Kamel W.A. Zewde Y.Z. Brice A. Corvol J-C. Westenberger A. Illarionova A. Mollenhauer B. Klein C. Vollstedt E-J. Hopfner F. Höglinger G. Madoev H. Trinh J. Junker J. Lohmann K. Lange L.M. Sharma M. Groppa S. Gasser T. Fang Z-H. Akpalu A. Xiromerisiou G. Hadjigorgiou G. Dagklis I. Tarnanas I. Stefanis L. Stamelou M. Dadiotis E. Medina A. Chan G.H-F. Ip N. Cheung N.Y-F. Chan P. Zhou X. Kishore A. Divya K.P. Pal P. Kukkle P.L. Rajan R. Borgohain R. Salari M. Quattrone A. Valente E.M. Parnetti L. Avenali M. Schirinzi T. Funayama M. Hattori N. Shiraishi T. Karimova A. Kaishibayeva G. Shambetova C. Krüger R. Tan A.H. Ahmad-Annuar A. Norlinah M.I. Murad N.A.A. Azmin S. Lim S-Y. Mohamed W. Tay Y.W. Martinez-Ramirez D. Rodriguez-Violante M. Reyes-Pérez P. Tserensodnom B. Ojha R. Anderson T.J. Pitcher T.L. Sanyaolu A. Okubadejo N. Ojo O. Aasly J.O. Pihlstrøm L. Tan M. Ur-Rehman S. Veliz-Otani D. Cornejo-Olivas M. Doquenia M.L. Rosales R. Vinuela A. Iakovenko E. Mubarak B.A. Umair M. Amod F. Carr J. Bardien S. Jeon B. Kim Y.J. Cubo E. Alvarez I. Hoenicka J. Beyer K. Periñan M.T. Pastor P. El-Sadig S. Brolin K. Zweier C. Tinkhauser G. Krack P. Lin C-H. Wu H-C. Kung P-J. Wu R-M. Wu Y. Amouri R. Sassi S.B. Başak A.N. Genc G. Çakmak Ö.Ö. Ertan S. Martínez-Carrasco A. Schrag A. Schapira A. Carroll C. Bale C. Grosset D. Stafford E.J. Houlden H. Morris H.R. Hardy J. Mok K.Y. Rizig M. Wood N. Williams N. Okunoye O. Lewis P.A. Kaiyrzhanov R. Weil R. Love S. Stott S. Jasaityte S. Dey S. Obese V. Espay A. O’Grady A. Sobering A.K. Siddiqi B. Casey B. Fiske B. Jonas C. Cruchaga C. Pantazis C.B. Comart C. Wegel C. Hall D. Hernandez D. Shiamim E. Riley E. Faghri F. Serrano G.E. Chen H. Mata I.F. Sarmiento I.J.K. Williamson J. Jankovic J. Shulman J. Solle J.C. Murphy K. Nuytemans K. Kieburtz K. Markopoulou K. Marek K. Levine K.S. Chahine L.M. Ibanez L. Screven L. Ruffrage L. Shulman L. Marsili L. Kuhl M. Dean M. Koretsky M. Puckelwartz M.J. Inca-Martinez M. Louie N. Mencacci N.E. Albin R. Alcalay R. Walker R. Chowdhury S. Dumanis S. Lubbe S. Xie T. Foroud T. Beach T. Sherer T. Song Y. Nguyen D. Nguyen T. Atadzhanov M. Blauwendraat C. Nalls M.A. Foo J.N. Mata I. Multi-ancestry genome-wide association meta-analysis of Parkinson’s disease. Nat. Genet. 2024 56 1 27 36 10.1038/s41588‑023‑01584‑8 38155330
    [Google Scholar]
  10. Nalls M.A. Blauwendraat C. Vallerga C.L. Heilbron K. Bandres-Ciga S. Chang D. Tan M. Kia D.A. Noyce A.J. Xue A. Bras J. Young E. von Coelln R. Simón-Sánchez J. Schulte C. Sharma M. Krohn L. Pihlstrøm L. Siitonen A. Iwaki H. Leonard H. Faghri F. Gibbs J.R. Hernandez D.G. Scholz S.W. Botia J.A. Martinez M. Corvol J.C. Lesage S. Jankovic J. Shulman L.M. Sutherland M. Tienari P. Majamaa K. Toft M. Andreassen O.A. Bangale T. Brice A. Yang J. Gan-Or Z. Gasser T. Heutink P. Shulman J.M. Wood N.W. Hinds D.A. Hardy J.A. Morris H.R. Gratten J. Visscher P.M. Graham R.R. Singleton A.B. Adarmes-Gómez A.D. Aguilar M. Aitkulova A. Akhmetzhanov V. Alcalay R.N. Alvarez I. Alvarez V. Bandres-Ciga S. Barrero F.J. Bergareche Yarza J.A. Bernal-Bernal I. Billingsley K. Blauwendraat C. Blazquez M. Bonilla-Toribio M. Botía J.A. Boungiorno M.T. Bras J. Brice A. Brockmann K. Bubb V. Buiza-Rueda D. Cámara A. Carrillo F. Carrión-Claro M. Cerdan D. Chelban V. Clarimón J. Clarke C. Compta Y. Cookson M.R. Corvol J-C. Craig D.W. Danjou F. Diez-Fairen M. Dols-Icardo O. Duarte J. Duran R. Escamilla-Sevilla F. Escott-Price V. Ezquerra M. Faghri F. Feliz C. Fernández M. Fernández-Santiago R. Finkbeiner S. Foltynie T. Gan-Or Z. Garcia C. García-Ruiz P. Gasser T. Gibbs J.R. Gomez Heredia M.J. Gómez-Garre P. González M.M. Gonzalez-Aramburu I. Guelfi S. Guerreiro R. Hardy J. Hassin-Baer S. Hernandez D.G. Heutink P. Hoenicka J. Holmans P. Houlden H. Infante J. Iwaki H. Jesús S. Jimenez-Escrig A. Kaishybayeva G. Kaiyrzhanov R. Karimova A. Kia D.A. Kinghorn K.J. Koks S. Krohn L. Kulisevsky J. Labrador-Espinosa M.A. Leonard H.L. Lesage S. Lewis P. Lopez-Sendon J.L. Lovering R. Lubbe S. Lungu C. Macias D. Majamaa K. Manzoni C. Marín J. Marinus J. Marti M.J. Martinez M. Martínez Torres I. Martínez-Castrillo J.C. Mata M. Mencacci N.E. Méndez-del-Barrio C. Middlehurst B. Mínguez A. Mir P. Mok K.Y. Morris H.R. Muñoz E. Nalls M.A. Narendra D. Noyce A.J. Ojo O.O. Okubadejo N.U. Pagola A.G. Pastor P. Perez Errazquin F. Periñán-Tocino T. Pihlstrom L. Plun-Favreau H. Quinn J. R’Bibo, L.; Reed, X.; Rezola, E.M.; Rizig, M.; Rizzu, P.; Robak, L.; Rodriguez, A.S.; Rouleau, G.A.; Ruiz-Martínez, J.; Ruz, C.; Ryten, M.; Sadykova, D.; Scholz, S.W.; Schreglmann, S.; Schulte, C.; Sharma, M.; Shashkin, C.; Shulman, J.M.; Sierra, M.; Siitonen, A.; Simón-Sánchez, J.; Singleton, A.B.; Suarez-Sanmartin, E.; Taba, P.; Tabernero, C.; Tan, M.X.; Tartari, J.P.; Tejera-Parrado, C.; Toft, M.; Tolosa, E.; Trabzuni, D.; Valldeoriola, F.; van Hilten, J.J.; Van Keuren-Jensen, K.; Vargas-González, L.; Vela, L.; Vives, F.; Williams, N.; Wood, N.W.; Zharkinbekova, N.; Zharmukhanov, Z.; Zholdybayeva, E.; Zimprich, A.; Ylikotila, P.; Shulman, L.M.; von Coelln, R.; Reich, S.; Savitt, J.; Agee, M.; Alipanahi, B.; Auton, A.; Bell, R.K.; Bryc, K.; Elson, S.L.; Fontanillas, P.; Furlotte, N.A.; Huber, K.E.; Hicks, B.; Jewett, E.M.; Jiang, Y.; Kleinman, A.; Lin, K-H.; Litterman, N.K.; McCreight, J.C.; McIntyre, M.H.; McManus, K.F.; Mountain, J.L.; Noblin, E.S.; Northover, C.A.M.; Pitts, S.J.; Poznik, G.D.; Sathirapongsasuti, J.F.; Shelton, J.F.; Shringarpure, S.; Tian, C.; Tung, J.; Vacic, V.; Wang, X.; Wilson, C.H.; Anderson, T.; Bentley, S.; Dalrymple-Alford, J.; Fowdar, J.; Gratten, J.; Halliday, G.; Henders, A.K.; Hickie, I.; Kassam, I.; Kennedy, M.; Kwok, J.; Lewis, S.; Mellick, G.; Montgomery, G.; Pearson, J.; Pitcher, T.; Sidorenko, J.; Silburn, P.A.; Vallerga, C.L.; Visscher, P.M.; Wallace, L.; Wray, N.R.; Xue, A.; Yang, J.; Zhang, F. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019 18 12 1091 1102 10.1016/S1474‑4422(19)30320‑5 31701892
    [Google Scholar]
  11. Emdin C.A. Khera A.V. Kathiresan S. Mendelian Randomization. JAMA 2017 318 19 1925 1926 10.1001/jama.2017.17219 29164242
    [Google Scholar]
  12. BaHammam A.; Jahrami, H. Navigating mendelian randomization in sleep medicine: Challenges, Opportunities, and best practices. Nat. Sci. Sleep 2024 16 1811 1825 10.2147/NSS.S495411 39600493
    [Google Scholar]
  13. Kappen S. Bottigliengo D. Caliebe A. Del Greco M. F.; König, I.R. Systematic review of Mendelian randomization studies on Parkinson’s disease. Med. Genetik 2022 34 2 143 150 10.1515/medgen‑2022‑2139 38835916
    [Google Scholar]
  14. Ritz B.R. Kusters C.D.J. The promise of mendelian randomization in Parkinson’s disease: Has the smoke cleared yet for smoking and Parkinson’s disease risk? J. Parkinsons Dis. 2022 12 3 807 812 10.3233/JPD‑223188 35213390
    [Google Scholar]
  15. Tang L. GWAS and eQTL disparity. Nat. Methods 2023 20 12 1873 10.1038/s41592‑023‑02133‑1 38057524
    [Google Scholar]
  16. Zhu Z. Zhang F. Hu H. Bakshi A. Robinson M.R. Powell J.E. Montgomery G.W. Goddard M.E. Wray N.R. Visscher P.M. Yang J. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 2016 48 5 481 487 10.1038/ng.3538 27019110
    [Google Scholar]
  17. Potashkin J.A. Santiago J.A. Ravina B.M. Watts A. Leontovich A.A. Biosignatures for Parkinson’s disease and atypical parkinsonian disorders patients. PLoS One 2012 7 8 e43595 10.1371/journal.pone.0043595 22952715
    [Google Scholar]
  18. Wang P. Luo M. Zhou W. Jin X. Xu Z. Yan S. Li Y. Xu C. Cheng R. Huang Y. Lin X. Yao L. Nie H. Jiang Q. Global characterization of peripheral B cells in Parkinson’s disease by single-cell RNA and BCR sequencing. Front. Immunol. 2022 13 814239 10.3389/fimmu.2022.814239 35250991
    [Google Scholar]
  19. Võsa U. Claringbould A. Westra H.J. Bonder M.J. Deelen P. Zeng B. Kirsten H. Saha A. Kreuzhuber R. Yazar S. Brugge H. Oelen R. de Vries D.H. van der Wijst M.G.P. Kasela S. Pervjakova N. Alves I. Favé M.J. Agbessi M. Christiansen M.W. Jansen R. Seppälä I. Tong L. Teumer A. Schramm K. Hemani G. Verlouw J. Yaghootkar H. Sönmez Flitman R. Brown A. Kukushkina V. Kalnapenkis A. Rüeger S. Porcu E. Kronberg J. Kettunen J. Lee B. Zhang F. Qi T. Hernandez J.A. Arindrarto W. Beutner F. ‘t Hoen, P.A.C.; van Meurs, J.; van Dongen, J.; van Iterson, M.; Swertz, M.A.; Jan Bonder, M.; Dmitrieva, J.; Elansary, M.; Fairfax, B.P.; Georges, M.; Heijmans, B.T.; Hewitt, A.W.; Kähönen, M.; Kim, Y.; Knight, J.C.; Kovacs, P.; Krohn, K.; Li, S.; Loeffler, M.; Marigorta, U.M.; Mei, H.; Momozawa, Y.; Müller-Nurasyid, M.; Nauck, M.; Nivard, M.G.; Penninx, B.W.J.H.; Pritchard, J.K.; Raitakari, O.T.; Rotzschke, O.; Slagboom, E.P.; Stehouwer, C.D.A.; Stumvoll, M.; Sullivan, P.; ’t Hoen, P.A.C.; Thiery, J.; Tönjes, A.; van Dongen, J.; van Iterson, M.; Veldink, J.H.; Völker, U.; Warmerdam, R.; Wijmenga, C.; Swertz, M.; Andiappan, A.; Montgomery, G.W.; Ripatti, S.; Perola, M.; Kutalik, Z.; Dermitzakis, E.; Bergmann, S.; Frayling, T.; van Meurs, J.; Prokisch, H.; Ahsan, H.; Pierce, B.L.; Lehtimäki, T.; Boomsma, D.I.; Psaty, B.M.; Gharib, S.A.; Awadalla, P.; Milani, L.; Ouwehand, W.H.; Downes, K.; Stegle, O.; Battle, A.; Visscher, P.M.; Yang, J.; Scholz, M.; Powell, J.; Gibson, G.; Esko, T.; Franke, L. Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 2021 53 9 1300 1310 10.1038/s41588‑021‑00913‑z 34475573
    [Google Scholar]
  20. Sakaue S. Kanai M. Tanigawa Y. Karjalainen J. Kurki M. Koshiba S. Narita A. Konuma T. Yamamoto K. Akiyama M. Ishigaki K. Suzuki A. Suzuki K. Obara W. Yamaji K. Takahashi K. Asai S. Takahashi Y. Suzuki T. Shinozaki N. Yamaguchi H. Minami S. Murayama S. Yoshimori K. Nagayama S. Obata D. Higashiyama M. Masumoto A. Koretsune Y. Ito K. Terao C. Yamauchi T. Komuro I. Kadowaki T. Tamiya G. Yamamoto M. Nakamura Y. Kubo M. Murakami Y. Yamamoto K. Kamatani Y. Palotie A. Rivas M.A. Daly M.J. Matsuda K. Okada Y. A cross-population atlas of genetic associations for 220 human phenotypes. Nat. Genet. 2021 53 10 1415 1424 10.1038/s41588‑021‑00931‑x 34594039
    [Google Scholar]
  21. Heumos L. Schaar A.C. Lance C. Litinetskaya A. Drost F. Zappia L. Lücken M.D. Strobl D.C. Henao J. Curion F. Aliee H. Ansari M. Badia-i-Mompel P. Büttner M. Dann E. Dimitrov D. Dony L. Frishberg A. He D. Hediyeh-zadeh S. Hetzel L. Ibarra I.L. Jones M.G. Lotfollahi M. Martens L.D. Müller C.L. Nitzan M. Ostner J. Palla G. Patro R. Piran Z. Ramírez-Suástegui C. Saez-Rodriguez J. Sarkar H. Schubert B. Sikkema L. Srivastava A. Tanevski J. Virshup I. Weiler P. Schiller H.B. Theis F.J. Best practices for single-cell analysis across modalities. Nat. Rev. Genet. 2023 24 8 550 572 10.1038/s41576‑023‑00586‑w 37002403
    [Google Scholar]
  22. Hafemeister C. Satija R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 2019 20 1 296 10.1186/s13059‑019‑1874‑1 31870423
    [Google Scholar]
  23. Stuart T. Butler A. Hoffman P. Hafemeister C. Papalexi E. Mauck W.M. Hao Y. Stoeckius M. Smibert P. Satija R. Comprehensive integration of single-cell data. Cell 2019 177 7 1888 1902.e21 10.1016/j.cell.2019.05.031 31178118
    [Google Scholar]
  24. Sanderson E. Glymour M.M. Holmes M.V. Kang H. Morrison J. Munafò M.R. Palmer T. Schooling C.M. Wallace C. Zhao Q. Davey Smith G. Mendelian randomization. Nat. Rev. Methods Primers 2022 2 1 6 10.1038/s43586‑021‑00092‑5 37325194
    [Google Scholar]
  25. Chen B. Khodadoust M.S. Liu C.L. Newman A.M. Alizadeh A.A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol. Biol. 2018 1711 243 259 10.1007/978‑1‑4939‑7493‑1_12 29344893
    [Google Scholar]
  26. Hu C. Li T. Xu Y. Zhang X. Li F. Bai J. Chen J. Jiang W. Yang K. Ou Q. Li X. Wang P. Zhang Y. CellMarker 2.0: An updated database of manually curated cell markers in human/mouse and web tools based on scRNA-seq data. Nucleic Acids Res. 2023 51 D1 D870 D876 10.1093/nar/gkac947 36300619
    [Google Scholar]
  27. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  28. Subramanian A. Tamayo P. Mootha V.K. Mukherjee S. Ebert B.L. Gillette M.A. Paulovich A. Pomeroy S.L. Golub T.R. Lander E.S. Mesirov J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005 102 43 15545 15550 10.1073/pnas.0506580102 16199517
    [Google Scholar]
  29. Brochard V. Combadière B. Prigent A. Laouar Y. Perrin A. Beray-Berthat V. Bonduelle O. Alvarez-Fischer D. Callebert J. Launay J.M. Duyckaerts C. Flavell R.A. Hirsch E.C. Hunot S. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J. Clin. Invest. 2009 119 1 182 192 [PMID: 19104149
    [Google Scholar]
  30. Tansey M.G. Wallings R.L. Houser M.C. Herrick M.K. Keating C.E. Joers V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 2022 22 11 657 673 10.1038/s41577‑022‑00684‑6 35246670
    [Google Scholar]
  31. Tan E.K. Chao Y.X. West A. Chan L.L. Poewe W. Jankovic J. Parkinson disease and the immune system — associations, mechanisms and therapeutics. Nat. Rev. Neurol. 2020 16 6 303 318 10.1038/s41582‑020‑0344‑4 32332985
    [Google Scholar]
  32. Block M.L. Zecca L. Hong J.S. Microglia-mediated neurotoxicity: Uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007 8 1 57 69 10.1038/nrn2038 17180163
    [Google Scholar]
  33. Cheng C. Chen W. Jin H. Chen X. A review of single-cell RNA-Seq annotation, integration, and cell-cell communication. Cells 2023 12 15 1970 [PMID: 37566049
    [Google Scholar]
  34. Bottigliengo D. Foco L. Seibler P. Klein C. König I.R. Del Greco M. F. A Mendelian randomization study investigating the causal role of inflammation on Parkinson’s disease. Brain 2022 145 10 3444 3453 10.1093/brain/awac193 35656776
    [Google Scholar]
  35. Mihajlović K. Ceddia G. Malod-Dognin N. Novak G. Kyriakis D. Skupin A. Pržulj N. Multi-omics integration of scRNA-seq time series data predicts new intervention points for Parkinson’s disease. Sci. Rep. 2024 14 1 10983 [PMID: 38744869
    [Google Scholar]
  36. Scott K.M. B lymphocytes in Parkinson’s disease. J. Parkinsons Dis. 2022 12 s1 S75 S81 10.3233/JPD‑223418 35938259
    [Google Scholar]
  37. Zhang Z. Xie X. Cai Y. Liu P. Liu S. Chen R. Wang J. Wang Y. Zhao Y. Zhu Z. Zhang X. Wu J. Abnormal immune function of B lymphocyte in peripheral blood of Parkinson’s disease. Parkinsonism Relat. Disord. 2023 116 105890 10.1016/j.parkreldis.2023.105890 37839276
    [Google Scholar]
  38. Pike S.C. Havrda M. Gilli F. Zhang Z. Salas L.A. Immunological shifts during early-stage Parkinson’s disease identified with DNA methylation data on longitudinally collected blood samples. NPJ Parkinsons Dis. 2024 10 1 21 10.1038/s41531‑023‑00626‑6 38212355
    [Google Scholar]
  39. Watanabe R. Buschauer R. Böhning J. Audagnotto M. Lasker K. Lu T.W. Boassa D. Taylor S. Villa E. The in situ structure of Parkinson’s disease-linked LRRK2. Cell 2020 182 6 1508 1518.e16 10.1016/j.cell.2020.08.004 32783917
    [Google Scholar]
  40. Ye H. Robak L.A. Yu M. Cykowski M. Shulman J.M. Genetics and pathogenesis of Parkinson’s Syndrome. Annu. Rev. Pathol. 2023 18 1 95 121 10.1146/annurev‑pathmechdis‑031521‑034145 36100231
    [Google Scholar]
  41. Shani S. Goldstein O. Gana-Weisz M. Bar-Shira A. Thaler A. Gurevich T. Mirelman A. Giladi N. Alcalay R.N. Orr-Urtreger A. Variants in PSMB9 and FGR differentially affect Parkinson’s disease risk in GBA and LRRK2 mutation carriers. Parkinsonism Relat. Disord. 2023 111 105398 10.1016/j.parkreldis.2023.105398 37116292
    [Google Scholar]
  42. Lewandowski N.M. Ju S. Verbitsky M. Ross B. Geddie M.L. Rockenstein E. Adame A. Muhammad A. Vonsattel J.P. Ringe D. Cote L. Lindquist S. Masliah E. Petsko G.A. Marder K. Clark L.N. Small S.A. Polyamine pathway contributes to the pathogenesis of Parkinson disease. Proc. Natl. Acad. Sci. USA 2010 107 39 16970 16975 10.1073/pnas.1011751107 20837543
    [Google Scholar]
  43. Goldstrohm A.C. Hall T.M.T. McKenney K.M. Post-transcriptional regulatory functions of mammalian pumilio proteins. Trends Genet. 2018 34 12 972 990 10.1016/j.tig.2018.09.006 30316580
    [Google Scholar]
  44. Ogasawara M. Kim S.C. Adamik R. Togawa A. Ferrans V.J. Takeda K. Kirby M. Moss J. Vaughan M. Similarities in function and gene structure of cytohesin-4 and cytohesin-1, guanine nucleotide-exchange proteins for ADP-ribosylation factors. J. Biol. Chem. 2000 275 5 3221 3230 10.1074/jbc.275.5.3221 10652308
    [Google Scholar]
  45. Donaldson J.G. Jackson C.L. ARF family G proteins and their regulators: Roles in membrane transport, development and disease. Nat. Rev. Mol. Cell Biol. 2011 12 6 362 375 10.1038/nrm3117 21587297
    [Google Scholar]
  46. Santiago J.A. Quinn J.P. Potashkin J.A. Co-expression network analysis identifies molecular determinants of loneliness associated with neuropsychiatric and neurodegenerative diseases. Int. J. Mol. Sci. 2023 24 6 5909 10.3390/ijms24065909 36982982
    [Google Scholar]
  47. Kempuraj D. Thangavel R. Selvakumar G.P. Zaheer S. Ahmed M.E. Raikwar S.P. Zahoor H. Saeed D. Natteru P.A. Iyer S. Zaheer A. Brain and peripheral atypical inflammatory mediators potentiate neuroinflammation and neurodegeneration. Front. Cell. Neurosci. 2017 11 216 10.3389/fncel.2017.00216 28790893
    [Google Scholar]
  48. Mizushima N. Komatsu M. Autophagy: Renovation of cells and tissues. Cell 2011 147 4 728 741 10.1016/j.cell.2011.10.026 22078875
    [Google Scholar]
  49. McKinnon C. Tabrizi S.J. The ubiquitin-proteasome system in neurodegeneration. Antioxid. Redox Signal. 2014 21 17 2302 2321 10.1089/ars.2013.5802 24437518
    [Google Scholar]
  50. Kloske C.M. Dugan A.J. Weekman E.M. Winder Z. Patel E. Nelson P.T. Fardo D.W. Wilcock D.M. Inflammatory pathways are impaired in alzheimer disease and differentially associated with apolipoprotein E status. J. Neuropathol. Exp. Neurol. 2021 80 10 922 932 10.1093/jnen/nlab085 34486652
    [Google Scholar]
  51. Rezazadeh M. Gharesouran J. Movafagh A. Taheri M. Darvish H. Emamalizadeh B. Shahmohammadibeni N. Khorram Khorshid H.R. Behmanesh M. Sahraian M.A. Ohadi M. Dominant and protective role of the CYTH4 Primate-specific GTTT-repeat longer alleles against neurodegeneration. J. Mol. Neurosci. 2015 56 3 593 596 10.1007/s12031‑015‑0542‑5 25823437
    [Google Scholar]
  52. Zhang R. Engler A. Taylor V. Notch: An interactive player in neurogenesis and disease. Cell Tissue Res. 2018 371 1 73 89 10.1007/s00441‑017‑2641‑9 28620760
    [Google Scholar]
  53. Park I. Goddard M.E. Cole J.E. Zanin N. Lyytikäinen L.P. Lehtimäki T. Andreakos E. Feldmann M. Udalova I. Drozdov I. Monaco C. C-type lectin receptor CLEC4A2 promotes tissue adaptation of macrophages and protects against atherosclerosis. Nat. Commun. 2022 13 1 215 10.1038/s41467‑021‑27862‑9 35017526
    [Google Scholar]
  54. Shen R. Zhao X. He L. Ding Y. Xu W. Lin S. Fang S. Yang W. Sung K. Spencer B. Rissman R.A. Lei M. Ding J. Wu C. Upregulation of RIN3 induces endosomal dysfunction in Alzheimer’s disease. Transl. Neurodegener. 2020 9 1 26 10.1186/s40035‑020‑00206‑1 32552912
    [Google Scholar]
  55. Holstege H. Hulsman M. Charbonnier C. Grenier-Boley B. Quenez O. Grozeva D. van Rooij J.G.J. Sims R. Ahmad S. Amin N. Norsworthy P.J. Dols-Icardo O. Hummerich H. Kawalia A. Amouyel P. Beecham G.W. Berr C. Bis J.C. Boland A. Bossù P. Bouwman F. Bras J. Campion D. Cochran J.N. Daniele A. Dartigues J.F. Debette S. Deleuze J.F. Denning N. DeStefano A.L. Farrer L.A. Fernández M.V. Fox N.C. Galimberti D. Genin E. Gille J.J.P. Le Guen Y. Guerreiro R. Haines J.L. Holmes C. Ikram M.A. Ikram M.K. Jansen I.E. Kraaij R. Lathrop M. Lemstra A.W. Lleó A. Luckcuck L. Mannens M.M.A.M. Marshall R. Martin E.R. Masullo C. Mayeux R. Mecocci P. Meggy A. Mol M.O. Morgan K. Myers R.M. Nacmias B. Naj A.C. Napolioni V. Pasquier F. Pastor P. Pericak-Vance M.A. Raybould R. Redon R. Reinders M.J.T. Richard A.C. Riedel-Heller S.G. Rivadeneira F. Rousseau S. Ryan N.S. Saad S. Sanchez-Juan P. Schellenberg G.D. Scheltens P. Schott J.M. Seripa D. Seshadri S. Sie D. Sistermans E.A. Sorbi S. van Spaendonk R. Spalletta G. Tesi N. Tijms B. Uitterlinden A.G. van der Lee S.J. Visser P.J. Wagner M. Wallon D. Wang L.S. Zarea A. Clarimon J. van Swieten J.C. Greicius M.D. Yokoyama J.S. Cruchaga C. Hardy J. Ramirez A. Mead S. van der Flier W.M. van Duijn C.M. Williams J. Nicolas G. Bellenguez C. Lambert J.C. Exome sequencing identifies rare damaging variants in ATP8B4 and ABCA1 as risk factors for Alzheimer’s disease. Nat. Genet. 2022 54 12 1786 1794 10.1038/s41588‑022‑01208‑7 36411364
    [Google Scholar]
  56. Meshref M. Ghaith H.S. Hammad M.A. Shalaby M.M.M. Ayasra F. Monib F.A. The role of RIN3 gene in Alzheimer’s disease pathogenesis: A comprehensive review. Mol. Neurobiol. 2023 [PMID: 37995081
    [Google Scholar]
  57. Meredith G.E. Sonsalla P.K. Chesselet M.F. Animal models of Parkinson’s disease progression. Acta Neuropathol. 2008 115 4 385 398 10.1007/s00401‑008‑0350‑x 18273623
    [Google Scholar]
  58. Dong-Chen X. Yong C. Yang X. Chen-Yu S. Li-Hua P. Signaling pathways in Parkinson’s disease: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2023 8 1 73 10.1038/s41392‑023‑01353‑3 36810524
    [Google Scholar]
  59. Sen P. Orešič M. Integrating omics data in genome-scale metabolic modeling: A methodological perspective for precision medicine. Metabolites 2023 13 7 855 10.3390/metabo13070855 37512562
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010378080250711022253
Loading
/content/journals/cpb/10.2174/0113892010378080250711022253
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test