Skip to content
2000
image of Taxifolin: Approaches to Increase Water Solubility and Bioavailability

Abstract

Taxifolin (TAX) (5,7,3',4'-tetrahydroxyflavanol, dihydroquercetin) belongs to the flavonoid family. TAX elicits a wide range of pharmacological effects, and for this reason, it is of high commercial interest as a flavonoid. The widespread use of TAX in medical practice is limited by the physicochemical properties of the compound and, in part, the related features of its pharmacokinetics: absorption, distribution, metabolism, and excretion. The purpose of this review is to provide an overview of technological methods that can be utilized to enhance the solubility of TAX, potentially increasing its bioavailability. The review describes various technological approaches: micronization, crystal engineering, self-microemulsifying systems, liposomes and their modifications, microemulsifying systems, phospholipid nanoparticles, inclusion complexes (clathrate generation), and chemical modification. Most of the approaches described in the review for improving the solubility and bioavailability of TAX have proven to be successful. Nanotechnologies are the most efficient means for improving the solubility and bioavailability of TAX. Developing new TAX substances with improved solubility and bioavailability holds promise as a basis for the development of innovative drugs.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010375999250805002016
2025-08-08
2025-11-01
Loading full text...

Full text loading...

References

  1. Patil K.K. Meshram R.J. Barage S.H. Gacche R.N. Dietary flavonoids inhibit the glycation of lens proteins: Implications in the management of diabetic cataract. 3 Biotech 2019 9 2 47 10.1007/s13205‑019‑1581‑3 30729071
    [Google Scholar]
  2. Bayer J. Högger P. Review of the pharmacokinetics of French maritime pine bark extract (Pycnogenol®) in humans. Front. Nutr. 2024 11 1389422 10.3389/fnut.2024.1389422 38757126
    [Google Scholar]
  3. Wallace S.N. Carrier D.J. Clausen E.C. Batch solvent extraction of flavanolignans from milk thistle (Silybum marianum L. Gaertner). Phytochem. Anal. 2005 16 1 7 16 10.1002/pca.803 15688950
    [Google Scholar]
  4. Weidmann A.E. Dihydroquercetin: More than just an impurity? Eur. J. Pharmacol. 2012 684 1-3 19 26 10.1016/j.ejphar.2012.03.035 22513183
    [Google Scholar]
  5. Schauss A.G. Tselyico S.S. Kuznetsova V.A. Yegorova I. Toxicological and genotoxicity assessment of a dihydroquercetin-rich dahurian larch tree (Larix gmelinii Rupr) extract (Lavitol). Int. J. Toxicol. 2015 34 2 162 181 10.1177/1091581815576975 25850419
    [Google Scholar]
  6. Vrhovsek U. Masuero D. Gasperotti M. Franceschi P. Caputi L. Viola R. Mattivi F. A versatile targeted metabolomics method for the rapid quantification of multiple classes of phenolics in fruits and beverages. J. Agric. Food. Chem. 2012 60 36 8831 8840 10.1021/jf2051569 22468648
    [Google Scholar]
  7. Terekhov R.P. Savina A.D. Pankov D.I. Korochkina M.D. Taldaev A. Yakubovich L.M. Zavadskiy S.P. Zhevlakova A.K. Selivanova I.A. Insights into the stereoisomerism of dihydroquercetin: Analytical and pharmacological aspects. Front Chem. 2024 12 1439167 10.3389/fchem.2024.1439167 39050369
    [Google Scholar]
  8. Nifant’ev E.E. Koroteev M.P. Kaziev G.Z. Uminskii A.A. Grachev A.A. Men’shov V.M. Tsvetkov Y.E. Nifant’ev N.E. Bel’skii V.K. Stash A.I. On the problem of identification of the dihydroquercetin flavonoid. Russ. J. Gen. Chem. 2006 76 1 161 163 10.1134/S1070363206010324
    [Google Scholar]
  9. Gaffield W. Circular dichroism, optical rotatory dispersion and absolute configuration of flavanones, 3-hydroxyflavanones and their glycosides. Tetrahedron 1970 26 17 4093 4108 10.1016/S0040‑4020(01)93050‑9
    [Google Scholar]
  10. Vega-Villa K.R. Remsberg C.M. Takemoto J.K. Ohgami Y. Yáñez J.A. Andrews P.K. Davies N.M. Stereospecific pharmacokinetics of racemic homoeriodictyol, isosakuranetin, and taxifolin in rats and their disposition in fruit. Chirality 2011 23 4 339 348 10.1002/chir.20926 21384439
    [Google Scholar]
  11. Teselkin Y.O. Babenkova I.V. Kolhir V.K. Baginskaya A.I. Tjukavkina N.A. Kolesnik Y.A. Selivanova I.A. Eichholz A.A. Dihydroquercetin as a means of antioxidative defence in rats with tetrachloromethane hepatitis. Phytother. Res. 2000 14 3 160 162 10.1002/(SICI)1099‑1573(200005)14:3<160::AID‑PTR555>3.0.CO;2‑Y 10815007
    [Google Scholar]
  12. Il’iuchenok T.Iu. Khomenko A.I. Frigidova L.M. Lepekhin V.P. Verkhovskiĭ IuG. Pharmacological and radioprotective properties of some gamma-pyrone derivatives (flavanones and flavanols). Farmakol. Toksikol. 1975 38 5 607 612 241663
    [Google Scholar]
  13. Wang Y.H. Wang W.Y. Chang C.C. Liou K.T. Sung Y.J. Liao J.F. Chen C.F. Chang S. Hou Y.C. Chou Y.C. Shen Y.C. Taxifolin ameliorates cerebral ischemia-reperfusion injury in rats through its anti-oxidative effect and modulation of NF-kappa B activation. J. Biomed. Sci. 2006 13 1 127 141 10.1007/s11373‑005‑9031‑0 16283433
    [Google Scholar]
  14. Zhang X. Lian X. Li H. Zhao W. Li X. Zhou F. Zhou Y. Cui T. Wang Y. Liu C. Taxifolin attenuates inflammation via suppressing MAPK signal pathway in vitro and in silico analysis. Chin. Herb. Med. 2022 14 4 554 562 10.1016/j.chmed.2021.03.002 36405054
    [Google Scholar]
  15. Das A. Baidya R. Chakraborty T. Samanta A.K. Roy S. Pharmacological basis and new insights of taxifolin: A comprehensive review. Biomed. Pharmacother. 2021 142 112004 10.1016/j.biopha.2021.112004 34388527
    [Google Scholar]
  16. Tatarinov VV Orlova SV Nikitina EA Dihydroquercetin as potential immunonutrient in treatment of COVID-19. Medical alphabet 2021 21 28 32 10.33667/2078‑5631‑2021‑21‑28‑32
    [Google Scholar]
  17. Hou X. Sheng Q. Zhang J. Du R. Wang N. Zhu H. Deng X. Wen Z. Wang J. Zhou Y. Li D. The application of cinnamon twig extract as an inhibitor of listeriolysin O against Listeria monocytogenes infection. Molecules 2023 28 4 1625 10.3390/molecules28041625 36838612
    [Google Scholar]
  18. Kozhikkadan Davis C. Nasla K. Anjana A.K. Rajanikant G.K. Taxifolin as dual inhibitor of Mtb DNA gyrase and isoleucyl-tRNA synthetase: In silico molecular docking, dynamics simulation and in vitro assays. In Silico Pharmacol. 2018 6 1 8 10.1007/s40203‑018‑0045‑5 30607321
    [Google Scholar]
  19. Qi C. Xing H. Ding N. Feng W. Wu Y. Zhang X. Yu Y. Nanometerizing taxifolin into selenized liposomes to ameliorate its hypoglycemic effect by optimizing drug release and bioavailability. Int. J. Nanomedicine 2025 20 2225 2240 10.2147/IJN.S510378 40007903
    [Google Scholar]
  20. Sun X. Chen R. Yang Z. Sun G. Wang M. Ma X. Yang L. Sun X. Taxifolin prevents diabetic cardiomyopathy in vivo and in vitro by inhibition of oxidative stress and cell apoptosis. Food. Chem. Toxicol. 2014 63 221 232 10.1016/j.fct.2013.11.013 24269735
    [Google Scholar]
  21. Oi N. Chen H. Ok Kim M. Lubet R.A. Bode A.M. Dong Z. Taxifolin suppresses UV-induced skin carcinogenesis by targeting EGFR and PI3K. Cancer Prev. Res. 2012 5 9 1103 1114 10.1158/1940‑6207.CAPR‑11‑0397 22805054
    [Google Scholar]
  22. Sarg N.H. Hersi F.H. Zaher D.M. Hamouda A.O. Ibrahim S.I. El-Seedi H.R. Omar H.A. Unveiling the therapeutic potential of Taxifolin in Cancer: From molecular mechanisms to immune modulation and synergistic combinations. Phytomedicine 2024 133 155934 10.1016/j.phymed.2024.155934 39128306
    [Google Scholar]
  23. Arutyunyan T.V. Korystova A.F. Kublik L.N. Levitman M.K. Shaposhnikova V.V. Korystov Y.N. Effects of taxifolin on the activity of angiotensin-converting enzyme and reactive oxygen and nitrogen species in the aorta of aging rats and rats treated with the nitric oxide synthase inhibitor and dexamethasone. Age 2013 35 6 2089 2097 10.1007/s11357‑012‑9497‑4 23271616
    [Google Scholar]
  24. Tukhovskaya E.A. Ismailova A.M. Perepechenova N.A. Slashcheva G.A. Palikov V.A. Palikova Y.A. Rzhevsky D.I. Rykov V.A. Novikova N.I. Dyachenko I.A. Murashev A.N. Development and worsening of hypertension with age in male wistar rats as a physiological model of age-related hypertension: Correction of hypertension with taxifolin. Int. J. Mol. Sci. 2024 25 20 11216 10.3390/ijms252011216 39456996
    [Google Scholar]
  25. Plotnikov M.B. Aliev O.I. Sidekhmenova A.V. Dihydroquercetin improves cerebral cortical microvascularization and microcirculation in SHR rats during the development of arterial hypertension. Bull. Exp. Biol. Med. 2017 163 57 60 10.1007/s10517‑017‑3737‑7 28577102
    [Google Scholar]
  26. Plotnikov M.B. Aliev O.I. Sidekhmenova A.V. Shamanaev A.Y. Anishchenko A.M. Nosarev A.V. Pushkina E.A. Modes of Hypotensive action of dihydroquercetin in arterial hypertension. Bull. Exp. Biol. Med. 2017 162 3 353 356 10.1007/s10517‑017‑3614‑4 28091909
    [Google Scholar]
  27. Shu Z. Yang Y. Yang L. Jiang H. Yu X. Wang Y. Cardioprotective effects of dihydroquercetin against ischemia reperfusion injury by inhibiting oxidative stress and endoplasmic reticulum stress-induced apoptosis via the PI3K/Akt pathway. Food Funct. 2019 10 1 203 215 10.1039/C8FO01256C 30525169
    [Google Scholar]
  28. Obeidat H.M. Althunibat O.Y. Alfwuaires M.A. Aladaileh S.H. Algefare A.I. Almuqati A.F. Alasmari F. Aldal’in H.K. Alanezi A.A. Alsuwayt B. Abukhalil M.H. Cardioprotective effect of taxifolin against isoproterenol-induced cardiac injury through decreasing oxidative stress, inflammation, and cell death, and activating Nrf2/HO-1 in mice. Biomolecules 2022 12 11 1546 10.3390/biom12111546 36358896
    [Google Scholar]
  29. Haraguchi H. Mochida Y. Sakai S. Masuda H. Tamura Y. Mizutani K. Tanaka O. Chou W.H. Protection against oxidative damage by dihydroflavonols in Engelhardtia chrysolepis. Biosci. Biotechnol. Biochem. 1996 60 6 945 948 10.1271/bbb.60.945 8695910
    [Google Scholar]
  30. Plotnikov M.B. Aliev O.I. Maslov M.J. Vasiliev A.S. Tjukavkina N.A. Correction of the high blood viscosity syndrome by a mixture of diquertin and ascorbic acid in vitro and in vivo. Phytother. Res. 2003 17 3 276 278 10.1002/ptr.1113 12672161
    [Google Scholar]
  31. Chen J. Sun X. Xia T. Mao Q. Zhong L. Pretreatment with dihydroquercetin, a dietary flavonoid, protected against concanavalin A-induced immunological hepatic injury in mice and TNF-α/ActD-induced apoptosis in HepG2 cells. Food Funct. 2018 9 4 2341 2352 10.1039/C7FO01073G 29589006
    [Google Scholar]
  32. Ahn J.Y. Choi S.E. Jeong M.S. Park K.H. Moon N.J. Joo S.S. Lee C.S. Choi Y.W. Li K. Lee M.K. Lee M.W. Seo S.J. Effect of taxifolin glycoside on atopic dermatitis‐like skin lesions in NC/Nga mice. Phytother. Res. 2010 24 7 1071 1077 10.1002/ptr.3084 20041431
    [Google Scholar]
  33. Hofmann J. Ginex T. Espargaró A. Scheiner M. Gunesch S. Aragó M. Stigloher C. Sabaté R. Luque F.J. Decker M. Azobioisosteres of curcumin with pronounced activity against amyloid aggregation, intracellular oxidative stress, and neuroinflammation. Chemistry 2021 27 19 6015 6027 10.1002/chem.202005263 33666306
    [Google Scholar]
  34. Mir M. Khan A. Khan A. Pharmacological investigation of taxifolin for its therapeutic potential in depression. Heliyon 2024 10 9 e30467 10.1016/j.heliyon.2024.e30467 38694040
    [Google Scholar]
  35. Plotnikov M.B. Logvinov S.V. Suslov N.I. The Neuroprotective effect of antioxidant complex comprising dihydroquercetin and ascorbic acid in cerebral ischemia. New Trends in Brain Hypoxia Ischemia Research. Hämäläinen E. New York Nova 2008 93 133
    [Google Scholar]
  36. Saito S. Yamamoto Y. Maki T. Hattori Y. Ito H. Mizuno K. Harada-Shiba M. Kalaria R.N. Fukushima M. Takahashi R. Ihara M. Taxifolin inhibits amyloid-β oligomer formation and fully restores vascular integrity and memory in cerebral amyloid angiopathy. Acta Neuropathol. Commun. 2017 5 1 26 10.1186/s40478‑017‑0429‑5 28376923
    [Google Scholar]
  37. Sato M. Murakami K. Uno M. Nakagawa Y. Katayama S. Akagi K. Masuda Y. Takegoshi K. Irie K. Site-specific inhibitory mechanism for amyloid β42 aggregation by catechol-type flavonoids targeting the Lys residues. J. Biol. Chem. 2013 288 32 23212 23224 10.1074/jbc.M113.464222 23792961
    [Google Scholar]
  38. Satué M. Arriero M.M. Monjo M. Ramis J.M. Quercitrin and Taxifolin stimulate osteoblast differentiation in MC3T3-E1 cells and inhibit osteoclastogenesis in RAW 264.7 cells. Biochem. Pharmacol. 2013 86 10 1476 1486 10.1016/j.bcp.2013.09.009 24060614
    [Google Scholar]
  39. Terekhov R.P. Selivanova I.A. Anurova M.N. Zhevlakova A.K. Nikitin I.D. Cong Z. Ma S. Yang F. Dong Z. Liao Y. Comparative study of wound-healing activity of dihydroquercetin pseudopolymorphic modifications. Bull. Exp. Biol. Med. 2021 170 4 444 447 10.1007/s10517‑021‑05083‑w 33713223
    [Google Scholar]
  40. Haque M.W. Pattanayak S.P. Taxifolin inhibits 7,12-Dimethylbenz(a)anthracene-induced breast carcinogenesis by regulating AhR/CYP1A1 signaling pathway. Pharmacogn Mag 2018 13 S749 S755 (Suppl. 4) 10.4103/pm.pm_315_17 29491628
    [Google Scholar]
  41. Mishra S. Singh S. Misra K. Restraining pathogenicity in Candida albicans by taxifolin as an inhibitor of Ras1-pka pathway. Mycopathologia 2017 182 11-12 953 965 10.1007/s11046‑017‑0170‑4 28681317
    [Google Scholar]
  42. Sun J. Ge F. Wang Y. Dong Y. Shan Y. Zhu Q. Wu X. Wu C. Ge R-S. Taxifolin is a rat and human 11β-hydroxysteroid dehydrogenase 1 inhibitor as a possible drug to treat the metabolic syndrome. J. Funct. Foods 2018 49 181 187 10.1016/j.jff.2018.08.022
    [Google Scholar]
  43. Taldaev A. Terekhov R. Nikitin I. Zhevlakova A. Selivanova I. Insights into the pharmacological effects of flavonoids: The systematic review of computer modeling. Int. J. Mol. Sci. 2022 23 11 6023 10.3390/ijms23116023 35682702
    [Google Scholar]
  44. Terekhov R.P. Selivanova I.A. Molecular modeling of the interaction of the dihydroquercetin and its metabolites with cyclooxygenase-2. Bulletin of Siberian Medicine 2019 18 3 101 106 10.20538/1682‑0363‑2019‑3‑101‑106
    [Google Scholar]
  45. Terekhov R.P. Selivanova I.A. Zhevlakova A.K. Porozov Y.B. Dzuban A.V. Analysis of dihydroquercetin physical modification via in vitro and in silico methods. Biomed. Khim. 2019 65 2 152 158 10.18097/PBMC20196502152 30950819
    [Google Scholar]
  46. Shinozaki F. Kamei A. Shimada K. Matsuura H. Shibata T. Ikeuchi M. Yasuda K. Oroguchi T. Kishimoto N. Takashimizu S. Nishizaki Y. Abe K. Ingestion of taxifolin-rich foods affects brain activity, mental fatigue, and the whole blood transcriptome in healthy young adults: A randomized, double-blind, placebo-controlled, crossover study. Food Funct. 2023 14 8 3600 3612 10.1039/D2FO03151E 36946764
    [Google Scholar]
  47. Booth A.N. DeEds F. The toxicity and metabolism of dihydroquercetin. J. Am. Pharm. Assoc. 1958 47 3 183 184 10.1002/jps.3030470310 13525216
    [Google Scholar]
  48. Turck D. Bresson J.L. Burlingame B. Dean T. Fairweather-Tait S. Heinonen M. Hirsch-Ernst K.I. Mangelsdorf I. McArdle H.J. Naska A. Neuhäuser-Berthold M. Nowicka G. Pentieva K. Sanz Y. Siani A. Sjödin A. Stern M. Tomé D. Vinceti M. Willatts P. Engel K.H. Marchelli R. Pöting A. Poulsen M. Schlatter J. Gelbmann W. van Loveren H. Statement on the safety of taxifolin‐rich extract from Dahurian Larch (Larix gmelinii). EFSA J. 2017 15 11 e05059 10.2903/j.efsa.2017.5059 32625351
    [Google Scholar]
  49. Orlova S.V. Tatarinov V.V. Nikitina E.A. Sheremeta A.V. Ivlev V.A. Vasil’ev V.G. Paliy K.V. Goryainov S.V. Bioavailability and safety of dihydroquercetin. Pharm. Chem. J. 2022 55 11 1133 1137 10.1007/s11094‑022‑02548‑8 35194263
    [Google Scholar]
  50. Turck D. Bresson J.L. Burlingame B. Dean T. Fairweather-Tait S. Heinonen M. Hirsch-Ernst K.I. Mangelsdorf I. McArdle H.J. Naska A. Neuhäuser-Berthold M. Nowicka G. Pentieva K. Sanz Y. Siani A. Sjödin A. Stern M. Tomé D. Vinceti M. Willatts P. Engel K.H. Marchelli R. Pöting A. Poulsen M. Schlatter J. Gelbmann W. Van Loveren H. Scientific Opinion on taxifolin‐rich extract from Dahurian Larch (Larix gmelinii). EFSA J. 2017 15 2 e04682 10.2903/j.efsa.2017.4682 32625400
    [Google Scholar]
  51. Micek I. Nawrot J. Seraszek-Jaros A. Jenerowicz D. Schroeder G. Spiżewski T. Suchan A. Pawlaczyk M. Gornowicz-Porowska J. Taxifolin as a promising ingredient of cosmetics for adult skin. Antioxidants 2021 10 10 1625 10.3390/antiox10101625 34679758
    [Google Scholar]
  52. Tiukavkina N.A. Rulenko I.A. Kolesnik IuA. Dihydroquercetin-A new antioxidant and biologically active food additive. Vopr. Pitan. 1997 6 6 12 15 9541995
    [Google Scholar]
  53. Mülek M. Seefried L. Genest F. Högger P. Distribution of constituents and metabolites of maritime pine dark extract (Pycnogenol®) into serum, blood cells, and synovial fluid of patients with severe osteoarthritis: A randomized controlled trial. Nutrients 2017 9 5 443 10.3390/nu9050443 28452960
    [Google Scholar]
  54. Sunil C. Xu B. An insight into the health-promoting effects of taxifolin (dihydroquercetin). Phytochemistry 2019 166 112066 10.1016/j.phytochem.2019.112066 31325613
    [Google Scholar]
  55. Kolhir V.K. Bykov V.A. Teselkin Y.O. Babenkova I.V. Tjukavkina N.A. Rulenko I.A. Kolesnik Y.A. Eichholz A.A. Use of a new antioxidant diquertin as an adjuvant in the therapy of patients with acute pneumonia. Phytother. Res. 1998 12 8 606 608 10.1002/(SICI)1099‑1573(199812)12:8<606::AID‑PTR367>3.0.CO;2‑U
    [Google Scholar]
  56. Zu S. Yang L. Huang J. Ma C. Wang W. Zhao C. Zu Y. Micronization of taxifolin by supercritical antisolvent process and evaluation of radical scavenging activity. Int. J. Mol. Sci. 2012 13 7 8869 8881 10.3390/ijms13078869 22942740
    [Google Scholar]
  57. Wang X. Xia H. Xing F. Deng G. Shen Q. Zeng S. A highly sensitive and robust UPLC–MS with electrospray ionization method for quantitation of taxifolin in rat plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009 877 18-19 1778 1786 10.1016/j.jchromb.2009.04.037 19464238
    [Google Scholar]
  58. Yang C.J. Wang Z.B. Mi Y.Y. Gao M.J. Lv J.N. Meng Y.H. Yang B.Y. Kuang H.X. UHPLC-MS/MS determination, pharmacokinetic, and bioavailability study of taxifolin in rat plasma after oral administration of its nanodispersion. Molecules 2016 21 4 494 10.3390/molecules21040494 27089318
    [Google Scholar]
  59. Voskoboinikova I.V. Tjukavkina N.A. Geodakyan S.V. Kolesnik Y.A. Kolhir V.K. Zjuzin V.A. Sokolov S.J. Experimental pharmacokinetics of biologically active plant phenolic compounds III. Pharmacokinetics of dihydroquercetin. Phytother. Res. 1993 7 2 208 210 10.1002/ptr.2650070225
    [Google Scholar]
  60. Yanovskaya E.A. Frelikh G.A. Lakeev A.P. Yanovsky V.A. Pharmacokinetics of Dihydroquercetin after Single and Repeated Administration to Rats. Bull. Exp. Biol. Med. 2024 176 6 743 746 10.1007/s10517‑024‑06100‑4 38888649
    [Google Scholar]
  61. Water soluble and activable phenolics derivatives with dermocosmetic and therapeutic applications and process for preparing said derivatives. Patent CA2654480C 2016
  62. Shikov A.N. Pozharitskaya O.N. Miroshnyk I. Mirza S. Urakova I.N. Hirsjärvi S. Makarov V.G. Heinämäki J. Yliruusi J. Hiltunen R. Nanodispersions of taxifolin: Impact of solid-state properties on dissolution behavior. Int. J. Pharm. 2009 377 1-2 148 152 10.1016/j.ijpharm.2009.04.044 19426789
    [Google Scholar]
  63. Stenger Moura F.C. dos Santos Machado C.L. Reisdorfer Paula F. Garcia Couto A. Ricci M. Cechinel-Filho V. Bonomini T.J. Sandjo L.P. Bellé Bresolin T.M. Taxifolin stability: In silico prediction and in vitro degradation with HPLC-UV/UPLC–ESI-MS monitoring. J. Pharm. Anal. 2021 11 2 232 240 10.1016/j.jpha.2020.06.008 34012699
    [Google Scholar]
  64. Ding Q. Chen K. Liu X. Ding C. Zhao Y. Sun S. Zhang Y. Zhang J. Liu S. Liu W. Modification of taxifolin particles with an enteric coating material promotes repair of acute liver injury in mice through modulation of inflammation and autophagy signaling pathway. Biomed. Pharmacother. 2022 152 113242 10.1016/j.biopha.2022.113242 35691160
    [Google Scholar]
  65. Fang Y. Cao W. Xia M. Pan S. Xu X. Study of structure and permeability relationship of flavonoids in Caco-2 cells. Nutrients 2017 9 12 1301 10.3390/nu9121301 29186068
    [Google Scholar]
  66. Winter J. Popoff M.R. Grimont P. Bokkenheuser V.D. Clostridium orbiscindens sp. nov., a human intestinal bacterium capable of cleaving the flavonoid C-ring. Int. J. Syst. Bacteriol. 1991 41 3 355 357 10.1099/00207713‑41‑3‑355 1883711
    [Google Scholar]
  67. Braune A. Gütschow M. Engst W. Blaut M. Degradation of quercetin and luteolin by Eubacterium ramulus. Appl. Environ. Microbiol. 2001 67 12 5558 5567 10.1128/AEM.67.12.5558‑5567.2001 11722907
    [Google Scholar]
  68. Li Y. Su H. Yin Z.P. Li J.E. Yuan E. Zhang Q.F. Metabolism, tissue distribution and excretion of taxifolin in rat. Biomed. Pharmacother. 2022 150 112959 10.1016/j.biopha.2022.112959 35430392
    [Google Scholar]
  69. Tarakhovskiĭ IuS. Kuznetsova S.M. Vasil’eva N.A. Egorochkin M.A. Kim IuA. Interaction of taxifolin (dihydroquercetin) with dimyristoylphosphatidylcholine multilamellar liposomes. Biofizika 2008 53 1 78 83 18488505
    [Google Scholar]
  70. Wang X. Meng M. Gao L. Liu T. Xu Q. Zeng S. Permeation of astilbin and taxifolin in Caco-2 cell and their effects on the P-gp. Int. J. Pharm. 2009 378 1-2 1 8 10.1016/j.ijpharm.2009.05.022 19465099
    [Google Scholar]
  71. Roubalová L. Purchartová K. Papoušková B. Vacek J. Křen V. Ulrichová J. Vrba J. Sulfation modulates the cell uptake, antiradical activity and biological effects of flavonoids in vitro: An examination of quercetin, isoquercitrin and taxifolin. Bioorg. Med. Chem. 2015 23 17 5402 5409 10.1016/j.bmc.2015.07.055 26260337
    [Google Scholar]
  72. Manach C. Donovan J.L. Pharmacokinetics and metabolism of dietary flavonoids in humans. Free Radic. Res. 2004 38 8 771 785 10.1080/10715760410001727858 15493450
    [Google Scholar]
  73. Jin M.J. Kim I.S. Park J.S. Dong M.S. Na C.S. Yoo H.H. Pharmacokinetic profile of eight phenolic compounds and their conjugated metabolites after oral administration of rhus verniciflua extracts in rats. J. Agric. Food Chem. 2015 63 22 5410 5416 10.1021/acs.jafc.5b01724 25998231
    [Google Scholar]
  74. Wang X. Zhou H. Zeng S. Identification and assay of 3′-O-methyltaxifolin by UPLC–MS in rat plasma. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2012 911 34 42 10.1016/j.jchromb.2012.09.006 23217303
    [Google Scholar]
  75. Alves M.C. de Almeida P.A. Polonini H.C. Bhering C.A.P. de O Ferreira, A.; Brandao, M.A.F.; Raposo, N.R.B. Taxifolin: evaluation through ex vivo permeations on human skin and porcine vaginal mucosa. Curr. Drug Deliv. 2018 15 8 1123 1134 10.2174/1567201815666180116090258 29336264
    [Google Scholar]
  76. Čižinauskas V. Elie N. Brunelle A. Briedis V. Skin penetration enhancement by natural oils for dihydroquercetin delivery. Molecules 2017 22 9 1536 10.3390/molecules22091536 28895890
    [Google Scholar]
  77. Subramaniyan Parimalam S. Badilescu S. Sonenberg N. Bhat R. Packirisamy M. Lab-On-A-Chip for the development of pro-/anti-angiogenic nanomedicines to treat brain diseases. Int. J. Mol. Sci. 2019 20 24 6126 10.3390/ijms20246126 31817343
    [Google Scholar]
  78. Shilo M. Sharon A. Baranes K. Motiei M. Lellouche J.P.M. Popovtzer R. The effect of nanoparticle size on the probability to cross the blood-brain barrier: An in-vitro endothelial cell model. J. Nanobiotechnology 2015 13 1 19 10.1186/s12951‑015‑0075‑7 25880565
    [Google Scholar]
  79. Trickler W.J. Lantz-McPeak S.M. Robinson B.L. Paule M.G. Slikker W. Biris A.S. Schlager J.J. Hussain S.M. Kanungo J. Gonzalez C. Ali S.F. Porcine brain microvessel endothelial cells show pro-inflammatory response to the size and composition of metallic nanoparticles. Drug Metab. Rev. 2014 46 2 224 231 10.3109/03602532.2013.873450 24378227
    [Google Scholar]
  80. Arman S. Hadavi M. Rezvani-Noghani A. Bakhtparvar A. Fotouhi M. Farhang A. Mokaberi P. Taheri R. Chamani J. Cellulose nanocrystals from celery stalk as quercetin scaffolds: A novel perspective of human holo‐transferrin adsorption and digestion behaviours. Luminescence 2024 39 1 e4634 10.1002/bio.4634 38286605
    [Google Scholar]
  81. Rasenack N. Müller B.W. Micron-size drug particles: Common and novel micronization techniques. Pharm. Dev. Technol. 2004 9 1 1 13 10.1081/PDT‑120027417 15000462
    [Google Scholar]
  82. Potoroko I. Kalinina I. Naumenko N. Fatkullin R. Nenasheva A. Uskova D. Sonawane S. Ivanova D. Velyamov M. Sonochemical micronization of taxifolin aimed at improving its bioavailability in drinks for athletes. Human Sport. Medicine 2018 18 3 90 100 10.14529/hsm180309
    [Google Scholar]
  83. Fatkullin R. Kalinina I. Naumenko N. Naumenko E. Use of micronization and complex coacervation to preserve antioxidant properties of flavonoids. Int. J. Food Sci. 2023 2023 1 13 10.1155/2023/9456931 37745180
    [Google Scholar]
  84. Wu W. Wang L. Wang L. Zu Y. Wang L. Zhang Y. Zhao X. Preparation and characterization of taxifolin form II by antisolvent recrystallization. Chem. Eng. Technol. 2019 42 2 414 421 10.1002/ceat.201800339
    [Google Scholar]
  85. Terekhov R. Selivanova I. Fractal aggregation of dihydroquercetin after lyophilization. J. Pharm. Innov. 2018 13 4 313 320 10.1007/s12247‑018‑9322‑4
    [Google Scholar]
  86. Taldaev A. Terekhov R.P. Selivanova I.A. Pankov D.I. Anurova M.N. Markovina I.Y. Cong Z. Ma S. Dong Z. Yang F. Liao Y. Modification of taxifolin properties by spray drying. Sci. Pharm. 2022 90 4 67 10.3390/scipharm90040067
    [Google Scholar]
  87. Li Y. Su H. Wang W. Yin Z. Li J. Yuan E. Zhang Q. Fabrication of taxifolin loaded zein-caseinate nanoparticles and its bioavailability in rat. Food Sci. Hum. Wellness 2023 12 6 2306 2313 10.1016/j.fshw.2023.03.034
    [Google Scholar]
  88. Li W. Pi J. Zhang Y. Ma X. Zhang B. Wang S. Qi D. Li N. Guo P. Liu Z. A strategy to improve the oral availability of baicalein: The baicalein-theophylline cocrystal. Fitoterapia 2018 129 85 93 10.1016/j.fitote.2018.06.018 29936192
    [Google Scholar]
  89. Chen Y. Li L. Yao J. Ma Y-Y. Chen J-M. Lu T-B. Improving the solubility and bioavailability of apixaban via apixaban–oxalic acid cocrystal. Cryst. Growth Des. 2016 16 5 2923 2930 10.1021/acs.cgd.6b00266
    [Google Scholar]
  90. Smith A.J. Kavuru P. Arora K.K. Kesani S. Tan J. Zaworotko M.J. Shytle R.D. Crystal engineering of green tea epigallocatechin-3-gallate (EGCg) cocrystals and pharmacokinetic modulation in rats. Mol. Pharm. 2013 10 8 2948 2961 10.1021/mp4000794 23730870
    [Google Scholar]
  91. Thakuria R. Delori A. Jones W. Lipert M.P. Roy L. Rodríguez-Hornedo N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm. 2013 453 1 101 125 10.1016/j.ijpharm.2012.10.043 23207015
    [Google Scholar]
  92. Xu J. Shi Q. Wang Y. Wang Y. Xin J. Cheng J. Li F. Recent advances in pharmaceutical cocrystals: A focused review of flavonoid cocrystals. Molecules 2023 28 2 613 10.3390/molecules28020613 36677670
    [Google Scholar]
  93. Chadha R. Bhalla Y. Vashisht M.K. Chadha K. Cocrystallization in Nutraceuticals. Recrystallization in Materials Processing. Glebovsky V. London IntechOpen 2015 10.5772/59365
    [Google Scholar]
  94. Selivanova I.A. Terekhov R.P. Crystal engineering as a scientific basis for modification of physicochemical properties of bioflavonoids. Russ. Chem. Bull. 2019 68 12 2155 2162 10.1007/s11172‑019‑2684‑z
    [Google Scholar]
  95. Composition with increased pharmacological activity based on dihydroquercetin and plant polysaccharides. Patent RU 2421215 2010
  96. Terekhov R.P. Selivanova I.A. Tyukavkina N.A. Shylov G.V. Utenishev A.N. Porozov Y.B. Taxifolin tubes: crystal engineering and characteristics. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2019 75 2 175 182 10.1107/S2052520619000969 32830742
    [Google Scholar]
  97. Method for obtaining dihydroquercetin microtubs. Patent RU 2640413 2017
  98. Zu Y. Wu W. Zhao X. Li Y. Wang W. Zhong C. Zhang Y. Zhao X. Enhancement of solubility, antioxidant ability and bioavailability of taxifolin nanoparticles by liquid antisolvent precipitation technique. Int. J. Pharm. 2014 471 1-2 366 376 10.1016/j.ijpharm.2014.05.049 24882039
    [Google Scholar]
  99. Murdande S.B. Pikal M.J. Shanker R.M. Bogner R.H. Solubility advantage of amorphous pharmaceuticals: I. A thermodynamic analysis. J. Pharm. Sci. 2010 99 3 1254 1264 10.1002/jps.21903 19697391
    [Google Scholar]
  100. Gao Y. Liao J. Qi X. Zhang J. Coamorphous repaglinide–saccharin with enhanced dissolution. Int. J. Pharm. 2013 450 1-2 290 295 10.1016/j.ijpharm.2013.04.032 23612357
    [Google Scholar]
  101. Heng W. Su M. Cheng H. Shen P. Liang S. Zhang L. Wei Y. Gao Y. Zhang J. Qian S. Incorporation of complexation into a coamorphous system dramatically enhances dissolution and eliminates gelation of amorphous lurasidone hydrochloride. Mol. Pharm. 2020 17 1 84 97 10.1021/acs.molpharmaceut.9b00772 31794225
    [Google Scholar]
  102. Pu F. Wang S. Yang J. Yang J. Hong Y. Guo Y. He J. Lu S. Study on co-amorphous emerging solubilization behavior after gelation during dissolution: The importance of complexation and anti-crystallization. Int. J. Pharm. 2024 664 124592 10.1016/j.ijpharm.2024.124592 39159855
    [Google Scholar]
  103. Kallay N. Žalac S. Stability of nanodispersions: A model for kinetics of aggregation of nanoparticles. J. Colloid Interface Sci. 2002 253 1 70 76 10.1006/jcis.2002.8476 16290832
    [Google Scholar]
  104. Tam J.M. McConville J.T. Williams R.O. Johnston K.P. Amorphous cyclosporin nanodispersions for enhanced pulmonary deposition and dissolution. J. Pharm. Sci. 2008 97 11 4915 4933 10.1002/jps.21367 18351641
    [Google Scholar]
  105. Constantinides P.P. Chaubal M.V. Shorr R. Advances in lipid nanodispersions for parenteral drug delivery and targeting. Adv. Drug Deliv. Rev. 2008 60 6 757 767 10.1016/j.addr.2007.10.013 18096269
    [Google Scholar]
  106. Patil M.S. Shirkhedkar A.A. Self-microemulsifying drug delivery system for solubility and bioavailability enhancement of eprosartan mesylate: Preparation, in-vitro, and in-vivo evaluation. Pharm. Nanotechnol. 2023 11 1 56 69 10.2174/2211738510666220915100150 36111774
    [Google Scholar]
  107. Karlina M. Pozharitskaya O. Shikov A. Self-microemulsifying drug delivery systems as nanosystems for bioavailability enhancement of taxifolin in vitro. Planta Med. 2007 73 9 905 906 10.1055/s‑2007‑987044
    [Google Scholar]
  108. Lakeev A.P. Yanovskaya E.A. Yanovsky V.A. Frelikh G.A. Andropov M.O. Novel aspects of taxifolin pharmacokinetics: Dose proportionality, cumulative effect, metabolism, microemulsion dosage forms. J. Pharm. Biomed. Anal. 2023 236 115744 10.1016/j.jpba.2023.115744 37797493
    [Google Scholar]
  109. Akhavan S. Assadpour E. Katouzian I. Jafari S.M. Lipid nano scale cargos for the protection and delivery of food bioactive ingredients and nutraceuticals. Trends Food Sci. Technol. 2018 74 132 146 10.1016/j.tifs.2018.02.001
    [Google Scholar]
  110. Caviglia C. Garbarino F. Canali C. Melander F. Raiteri R. Ferrari G. Sampietro M. Heiskanen A. Andresen T.L. Zór K. Emnéus J. Monitoring cell endocytosis of liposomes by real-time electrical impedance spectroscopy. Anal. Bioanal. Chem. 2020 412 24 6371 6380 10.1007/s00216‑020‑02592‑x 32451643
    [Google Scholar]
  111. He H. Lu Y. Qi J. Zhu Q. Chen Z. Wu W. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B 2019 9 1 36 48 10.1016/j.apsb.2018.06.005 30766776
    [Google Scholar]
  112. Wang X. Wang Q. Liu Z. Zheng X. Preparation, pharmacokinetics and tumour-suppressive activity of berberine liposomes. J. Pharm. Pharmacol. 2017 69 6 625 632 10.1111/jphp.12692 28295319
    [Google Scholar]
  113. Stenger Moura F.C. Perioli L. Pagano C. Vivani R. Ambrogi V. Bresolin T.M. Ricci M. Schoubben A. Chitosan composite microparticles: A promising gastroadhesive system for taxifolin. Carbohydr. Polym. 2019 218 343 354 10.1016/j.carbpol.2019.04.075 31221339
    [Google Scholar]
  114. Steffes V.M. Zhang Z. MacDonald S. Crowe J. Ewert K.K. Carragher B. Potter C.S. Safinya C.R. PEGylation of paclitaxel-loaded cationic liposomes drives steric stabilization of bicelles and vesicles thereby enhancing delivery and cytotoxicity to human cancer cells. ACS Appl. Mater. Interfaces 2020 12 1 151 162 10.1021/acsami.9b16150 31820904
    [Google Scholar]
  115. Ota A. Istenič K. Skrt M. Šegatin N. Žnidaršič N. Kogej K. Ulrih N.P. Encapsulation of pantothenic acid into liposomes and into alginate or alginate–pectin microparticles loaded with liposomes. J. Food Eng. 2018 229 21 31 10.1016/j.jfoodeng.2017.06.036
    [Google Scholar]
  116. Gurturk Z. Tezcaner A. Dalgic A.D. Korkmaz S. Keskin D. Maltodextrin modified liposomes for drug delivery through the blood–brain barrier. MedChemComm 2017 8 6 1337 1345 10.1039/C7MD00045F 30108846
    [Google Scholar]
  117. Ding Q. Liu W. Liu X. Ding C. Zhao Y. Dong L. Chen H. Sun S. Zhang Y. Zhang J. Wu M. Polyvinylpyrrolidone-modified taxifolin liposomes promote liver repair by modulating autophagy to inhibit activation of the TLR4/NF-κB signaling pathway. Front. Bioeng. Biotechnol. 2022 10 860515 10.3389/fbioe.2022.860515 35721857
    [Google Scholar]
  118. Liu Y. Luo X. Xu X. Gao N. Liu X. Preparation, characterization and in vivo pharmacokinetic study of PVP-modified oleanolic acid liposomes. Int. J. Pharm. 2017 517 1-2 1 7 10.1016/j.ijpharm.2016.11.056 27899320
    [Google Scholar]
  119. Ueda H. Hirakawa Y. Tanaka H. Miyano T. Sugita K. Applicability of an experimental grade of hydroxypropyl methylcellulose acetate succinate as a carrier for formation of solid dispersion with indomethacin. Pharmaceutics 2021 13 3 353 10.3390/pharmaceutics13030353 33800229
    [Google Scholar]
  120. Hasibi F. Nasirpour A. Varshosaz J. García-Manrique P. Blanco-López M.C. Gutiérrez G. Matos M. Formulation and characterization of taxifolin-loaded lipid nanovesicles (liposomes, niosomes, and transfersomes) for beverage fortification. Eur. J. Lipid Sci. Technol. 2020 122 2 1900105 10.1002/ejlt.201900105
    [Google Scholar]
  121. Zherdev V.P. Kolyvanov G.B. Litvin A.A. Sariev A.K. Viglinskaia A.O. Gekkiev B.I. Grigor’ev A.M. Gorlov V.V. Comparative pharmacokinetics of dihydroquercetin in rats upon peroral administration of a parent compound and liposomal flamen D. Eksp. Klin. Farmakol. 2010 73 1 23 25 20184284
    [Google Scholar]
  122. Zhao Y. Ding Q. He Q. Zu T. Rong Z. Wu Y. Shmanai V.V. Jiao J. Zheng R. Reno protective potential of taxifolin liposomes modified by chitosan in diabetic mice. Int. J. Biol. Macromol. 2025 306 Pt 2 141464 10.1016/j.ijbiomac.2025.141464 40015419
    [Google Scholar]
  123. Guseva D.A. Khudoklinova Y.Y. Medvedeva N.V. Baranova V.S. Zakharova T.S. Artyushkova E.B. Torkhovskaya T.I. Ipatova O.M. Influence of resveratrol and dihydroquercetin inclusion into phospholipid nanoparticles on their bioavailability and specific activity. Biomed. Khim. 2015 61 5 598 605 10.18097/PBMC20156105598 26539866
    [Google Scholar]
  124. Archontaki H.A. Vertzoni M.V. Athanassiou-Malaki M.H. Study on the inclusion complexes of bromazepam with β- and β-hydroxypropyl-cyclodextrins. J. Pharm. Biomed. Anal. 2002 28 3-4 761 769 10.1016/S0731‑7085(01)00679‑3 12008156
    [Google Scholar]
  125. Loftsson T. Duchêne D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007 329 1-2 1 11 10.1016/j.ijpharm.2006.10.044 17137734
    [Google Scholar]
  126. Yang L.J. Chen W. Ma S.X. Gao Y-T. Huang R. Yan S-J. Lin J. Host–guest system of taxifolin and native cyclodextrin or its derivative: Preparation, characterization, inclusion mode, and solubilization. Carbohydr. Polym. 2011 85 3 629 637 10.1016/j.carbpol.2011.03.029
    [Google Scholar]
  127. Zu Y. Wu W. Zhao X. Li Y. Zhong C. Zhang Y. The high water solubility of inclusion complex of taxifolin-γ-CD prepared and characterized by the emulsion solvent evaporation and the freeze drying combination method. Int. J. Pharm. 2014 477 1-2 148 158 10.1016/j.ijpharm.2014.10.027 25455767
    [Google Scholar]
  128. Zinchenko V.P. Kim IuA. Tarakhovskiĭ IuS. Bronnikov G.E. Biological activity of water-soluble nanostructures of dihydroquercetin with cyclodextrins. Biofizika 2011 56 3 433 438 21786696
    [Google Scholar]
  129. Li J. Dong J. Ouyang J. Cui J. Chen Y. Wang F. Wang J. Synthesis, characterization, solubilization, cytotoxicity and antioxidant activity of aminomethylated dihydroquercetin. MedChemComm 2017 8 2 353 363 10.1039/C6MD00496B 30108751
    [Google Scholar]
  130. Donracheva L.G. Mel’nikova N.B. Pegova I.A. Volkov A.A. Domrachev G.A. Kol’chik O.V. Complexes of dihydroquercetin with chromium (III) and zinc (II) asparaginates in water and their effects on the state of lecithin membranes. Pharm. Chem. J. 2008 42 10 564 570 10.1007/s11094‑009‑0186‑2
    [Google Scholar]
  131. Gunesch S. Hoffmann M. Kiermeier C. Fischer W. Pinto A.F.M. Maurice T. Maher P. Decker M. 7-O-Esters of taxifolin with pronounced and overadditive effects in neuroprotection, anti-neuroinflammation, and amelioration of short-term memory impairment in vivo. Redox Biol. 2020 29 101378 10.1016/j.redox.2019.101378 31926632
    [Google Scholar]
  132. Nifantev É.E. Koroteev A.M. Pozdeev A.O. Koroteev M.P. Vasyanina L.K. Kaziev G.Z. Rogovskii V.S. Knyazev V.V. Shirokikh K.E. Semeikin A.V. Fedotcheva T.A. Matyushin A.I. Shimanovskii N.L. Synthesis and cytotoxic activity of dihydroquercetin aryl derivatives. Pharm. Chem. J. 2015 49 2 78 81 10.1007/s11094‑015‑1225‑9
    [Google Scholar]
  133. Rogovskiĭ V.S. Matiushin A.I. Shimanovskiĭ N.L. Semeĭkin A.V. Kukhareva T.S. Koroteev A.M. Koroteev M.P. Nifant’ev E.E. Antiproliferative and antioxidant activity of new dihydroquercetin derivatives. Eksp. Klin. Farmakol. 2010 73 9 39 42 21086652
    [Google Scholar]
  134. Vrba J. Gažák R. Kuzma M. Papoušková B. Vacek J. Weiszenstein M. Křen V. Ulrichová J. A novel semisynthetic flavonoid 7-O-galloyltaxifolin upregulates heme oxygenase-1 in RAW264.7 cells via MAPK/Nrf2 pathway. J. Med. Chem. 2013 56 3 856 866 10.1021/jm3013344 23294286
    [Google Scholar]
  135. Terekhov R.P. Ilyasov I.R. Beloborodov V.L. Zhevlakova A.K. Pankov D.I. Dzuban A.V. Bogdanov A.G. Davidovich G.N. Shilov G.V. Utenyshev A.N. Saverina E.A. Selivanova I.A. Solubility enhancement of dihydroquercetin via “green” phase modification. Int. J. Mol. Sci. 2022 23 24 15965 10.3390/ijms232415965 36555607
    [Google Scholar]
  136. Choi Y.H. Han H.K. Nanomedicines: Current status and future perspectives in aspect of drug delivery and pharmacokinetics. J. Pharm. Investig. 2018 48 1 43 60 10.1007/s40005‑017‑0370‑4 30546919
    [Google Scholar]
  137. Thapa R.K. Kim J.O. Nanomedicine-based commercial formulations: Current developments and future prospects. J. Pharm. Investig. 2023 53 1 19 33 10.1007/s40005‑022‑00607‑6 36568502
    [Google Scholar]
  138. Abou-Taleb B.A. El-Hadidy W.F. Masoud I.M. Matar N.A. Hussein H.S. Dihydroquercetin nanoparticles nasal gel is a promising formulation for amelioration of Alzheimer’s disease. Int. J. Pharm. 2024 666 124814 10.1016/j.ijpharm.2024.124814 39384026
    [Google Scholar]
  139. Kundrapu D.B. Rao P.A. Malla R.R. Enhanced efficacy of quercetin and taxifolin encapsulated with pH-responsive injectable BSA hydrogel for targeting triple-negative breast cancer cells. Int. J. Biol. Macromol. 2025 287 138477 10.1016/j.ijbiomac.2024.138477 39667444
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010375999250805002016
Loading
/content/journals/cpb/10.2174/0113892010375999250805002016
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: technological approaches ; nanotechnologies ; bioavailability ; solubility ; Taxifolin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test