Skip to content
2000
image of Pubescine as a Novel Antibacterial Agent Against Vancomycin-Resistant Enterococcus: Growth Inhibition, Antibiotic Synergy, and Anti-Biofilm Activity

Abstract

Introduction

The rise of Vancomycin-Resistant (VRE) has become a major public health concern due to its resistance to conventional antibiotics and ability to form biofilms. The urgent need for novel therapeutic strategies has led to increased interest in natural compounds with antimicrobial potential. Pubescine (PBN), a steroidal alkaloid isolated from , has demonstrated antimicrobial properties, but its efficacy against VRE remains unexplored.

Methods

PBN was isolated and purified from using chromatographic techniques and identified through spectroscopic analysis. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were determined via broth microdilution assays. Time-kill assays assessed the bacteriostatic or bactericidal nature of PBN. Resistance development was evaluated through prolonged bacterial exposure to subinhibitory concentrations. Synergistic interactions with vancomycin and cefoxitin were analyzed using checkerboard microdilution assays. Biofilm formation and eradication were assessed via crystal violet staining and fluorescence imaging. Metabolic activity and oxidative stress induction were measured using the Alamar Blue assay and Reactive Oxygen Species (ROS) quantification, respectively.

Results

PBN exhibited concentration-dependent inhibition of VRE growth, primarily exerting a bacteriostatic effect without promoting the development of resistance. Checkerboard assays revealed strong synergy between PBN and vancomycin (FICI = 0.1875) and cefoxitin (FICI = 0.3125), suggesting that PBN enhances the efficacy of these antibiotics.

Discussion

PBN significantly reduced biofilm formation and facilitated biofilm disruption at concentrations as low as 4 µg/mL. Metabolic assays demonstrated that PBN suppresses bacterial metabolic activity, while ROS quantification indicated a substantial increase in oxidative stress, suggesting a multi-targeted mechanism of action.

Conclusion

These findings establish PBN as a promising antimicrobial agent with potent activity against vancomycin-resistant . Its ability to enhance antibiotic efficacy, inhibit biofilm formation, and induce oxidative stress underscores its potential as a novel therapeutic strategy against multidrug-resistant infections. Further studies and pharmacokinetic evaluations are warranted to assess its clinical applicability.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010399006250923063945
2025-09-26
2025-12-15
Loading full text...

Full text loading...

References

  1. Munita J.M. Arias C.A. Mechanisms of antibiotic resistance. Microbiol. Spectr. 2016 4 2 10.128/microbiolspec.VMBF‑0016‑2015
    [Google Scholar]
  2. MacLean R.C. San Millan A. The evolution of antibiotic resistance. Science 2019 365 6458 1082 1083 10.1126/science.aax3879 31515374
    [Google Scholar]
  3. Darby E.M. Trampari E. Siasat P. Gaya M.S. Alav I. Webber M.A. Blair J.M.A. Molecular mechanisms of antibiotic resistance revisited. Nat. Rev. Microbiol. 2023 21 5 280 295 10.1038/s41579‑022‑00820‑y 36411397
    [Google Scholar]
  4. Ahmed M.O. Baptiste K.E. Vancomycin-resistant enterococci: A review of antimicrobial resistance mechanisms and perspectives of human and animal health. Microb. Drug Resist. 2018 24 5 590 606 10.1089/mdr.2017.0147 29058560
    [Google Scholar]
  5. Cimen C. Berends M.S. Bathoorn E. Lokate M. Voss A. Friedrich A.W. Glasner C. Hamprecht A. Vancomycin-resistant enterococci (VRE) in hospital settings across European borders: A scoping review comparing the epidemiology in the Netherlands and Germany. Antimicrob. Resist. Infect. Control 2023 12 1 78 10.1186/s13756‑023‑01278‑0 37568229
    [Google Scholar]
  6. Eichel V.M. Last K. Brühwasser C. von Baum H. Dettenkofer M. Götting T. Grundmann H. Güldenhöven H. Liese J. Martin M. Papan C. Sadaghiani C. Wendt C. Werner G. Mutters N.T. Epidemiology and outcomes of vancomycin-resistant enterococcus infections: A systematic review and meta-analysis. J. Hosp. Infect. 2023 141 119 128 10.1016/j.jhin.2023.09.008 37734679
    [Google Scholar]
  7. Eskandari F. Mofidi H. Asheghi B. Mohammadi F. Gholami A. Bringing resistance modulation to methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) strains using a quaternary ammonium compound coupled with zinc oxide nanoparticles. World J. Microbiol. Biotechnol. 2023 39 7 193 10.1007/s11274‑023‑03639‑8 37166585
    [Google Scholar]
  8. Rubaye A.L. M.; Janice, J.; Bjørnholt, J.V.; Kacelnik, O.; Haldorsen, B.C.; Nygaard, R.M.; Hegstad, J.; Sundsfjord, A.; Hegstad, K. The population structure of vancomycin-resistant and -susceptible Enterococcus faecium in a low-prevalence antimicrobial resistance setting is highly influenced by circulating global hospital-associated clones. Microb. Genom. 2023 9 12 001160 10.1099/mgen.0.001160 38112685
    [Google Scholar]
  9. Shaker A.A. Samir A. Zaher H.M. Abdel-Moein K.A. Emergence of virulent extensively drug-resistant vancomycin-resistant enterococci among diarrheic pet animals: A possible public health threat on the move. Vector Borne Zoonotic Dis. 2024 24 9 600 606 10.1089/vbz.2023.0167 38800841
    [Google Scholar]
  10. Yan M.Y. He Y.H. Ruan G.J. Xue F. Zheng B. Lv Y. The prevalence and molecular epidemiology of vancomycin-resistant Enterococcus (VRE) carriage in patients admitted to intensive care units in Beijing, China. J. Microbiol. Immunol. Infect. 2023 56 2 351 357 10.1016/j.jmii.2022.07.001 35922268
    [Google Scholar]
  11. Zhang L. Deng M. Liu J. Zhang J. Wang F. Yu W. The pathogenicity of vancomycin-resistant Enterococcus faecalis to colon cancer cells. BMC Infect. Dis. 2024 24 1 230 10.1186/s12879‑024‑09133‑2 38378500
    [Google Scholar]
  12. Wada Y. Irekeola, A.A.; e A R, E.N.S.; Yusof, W.; Lih Huey, L.; Ladan Muhammad, S.; Harun, A.; Yean, C.Y.; Zaidah, A.R. Prevalence of vancomycin-resistant Enterococcus (VRE) in companion animals: The first meta-analysis and systematic review. Antibiotics 2021 10 2 138 10.3390/antibiotics10020138 33572528
    [Google Scholar]
  13. Ahmed J. Yadav R.K. Sood S. Das B.K. Dhawan B. Vancomycin-resistant Enterococcus faecium: A high priority pathogen. J. Appl. Sci. Clin. Pract 2023 4 3 168 176 10.4103/jascp.jascp_17_23
    [Google Scholar]
  14. Brandl K. Plitas G. Mihu C.N. Ubeda C. Jia T. Fleisher M. Schnabl B. DeMatteo R.P. Pamer E.G. Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 2008 455 7214 804 807 10.1038/nature07250 18724361
    [Google Scholar]
  15. Guffey A.A. Loll P.J. Regulation of resistance in vancomycin-resistant enterococci: the VanRS two-component system. Microorganisms 2021 9 10 2026 10.3390/microorganisms9102026 34683347
    [Google Scholar]
  16. Telli N. Telli A.E. Biçer Y. Turkal G. Uçar G. Isolation and antimicrobial resistance of vancomycin resistant Enterococcus spp. (VRE) and methicillin-resistant S. aureus (MRSA) on beef and chicken meat, and workers hands from slaughterhouses and retail shops in Turkey. J. Hell. Vet. Med. Soc. 2022 72 4 3345 3354 10.12681/jhvms.29373
    [Google Scholar]
  17. Shrestha S. Kharel S. Homagain S. Aryal R. Mishra S.K. Prevalence of vancomycin‐resistant enterococci in Asia—A systematic review and meta‐analysis. J. Clin. Pharm. Ther. 2021 46 5 1226 1237 10.1111/jcpt.13383 33630382
    [Google Scholar]
  18. Smout E. Palanisamy N. Valappil S.P. Prevalence of vancomycin-resistant Enterococci in India between 2000 and 2022: a systematic review and meta-analysis. Antimicrob. Resist. Infect. Control 2023 12 1 79 10.1186/s13756‑023‑01287‑z 37605268
    [Google Scholar]
  19. Hards K. Cook G.M. Targeting bacterial energetics to produce new antimicrobials. Drug Resist. Updat. 2018 36 1 12 10.1016/j.drup.2017.11.001 29499834
    [Google Scholar]
  20. Kleyman R. Cupril-Nilson S. Robinson K. Thakore S. Haq F. Chen L. Oyesanmi O. Browning K. Pino J. Mhaskar R. Does the removal of contact precautions for MRSA and VRE infected patients change health care-associated infection rate?: A systematic review and meta-analysis. Am. J. Infect. Control 2021 49 6 784 791 10.1016/j.ajic.2020.11.020 33276000
    [Google Scholar]
  21. Patel A. Vaghasiya H. Vancomycin resistant enterococci (VRE): A challenge to researchers and clinicians. J. Cell. Tissue Res. 2021 2021 21
    [Google Scholar]
  22. Joshi S. Shallal A. Zervos M. Vancomycin-resistant enterococci: Epidemiology, infection prevention, and control. Infectious Disease Clinics 2021 35 4 953 968 34752227
    [Google Scholar]
  23. Zhao Y.C. Sun Z.H. Li J.K. Liu H. Cai H.L. Cao W. Yu F. Zhang B-K. Yan M. Exploring the causes of the prevalence of vancomycin-resistant Enterococcus faecalis. Environ. Sci. Eur. 2024 36 1 92 10.1186/s12302‑024‑00923‑8
    [Google Scholar]
  24. Sripahco T. Tovaranonte J. Pripdeevech P. Chemical composition and antimicrobial activity of essential oil of Holarrhena pubescens flowers. Chem. Nat. Compd. 2021 57 4 781 783 10.1007/s10600‑021‑03477‑w
    [Google Scholar]
  25. Gupta N. Choudhary S.K. Bhagat N. Karthikeyan M. Chaturvedi A. In silico prediction, molecular docking and dynamics studies of steroidal alkaloids of holarrhena pubescens wall. ex G. don to guanylyl cyclase C: Implications in designing of novel antidiarrheal therapeutic strategies. Molecules 2021 26 14 4147 10.3390/molecules26144147 34299422
    [Google Scholar]
  26. Zheng S. Bellere A.D. Oh S. Yu D. Fang M. Yi T.H. Antibiofilm effect of Siegesbeckia pubescens against S. mutans According to environmental factors. Appl. Sci. 2023 13 10 6179 10.3390/app13106179
    [Google Scholar]
  27. Rajeswari M. Screening of selected Medicinal plants for its potential to inhibit biofilm formation and virulence factor production by Pseudomonas aeruginosa PAO1. Research J. Pharm. Technol 2023 16 11 5218 5224
    [Google Scholar]
  28. Restuati M. Diningrat D.S. Antimicrobial profile of premna pubescens. Blume and centella asiatica extracts against bacteria and fungi pathogens. Int. J. Pharmacol. 2018 14 2 271 275 10.3923/ijp.2018.271.275
    [Google Scholar]
  29. Feroze F. Sher M. Hussain M.A. Abbas A. Haseeb M.T. Fatima A. Naeem-Ul-Hassan M. Amin H.M.A. Gastro retentive floating drug delivery system of levofloxacin based on Aloe vera hydrogel: In vitro and in vivo assays. Int. J. Biol. Macromol. 2025 284 Pt 1 138156 10.1016/j.ijbiomac.2024.138156 39613082
    [Google Scholar]
  30. Konaté K. Mavoungou J. Lepengué A. Aworet-Samseny R.R.R. Hilou A. Souza A. Dicko M.H. M’Batchi B. Antibacterial activity against β- lactamase producing Methicillin and Ampicillin-resistants Staphylococcus aureus: Fractional Inhibitory Concentration Index (FICI) determination. Ann. Clin. Microbiol. Antimicrob. 2012 11 1 18 10.1186/1476‑0711‑11‑18 22716026
    [Google Scholar]
  31. Iqbal F. Alocious A. Joy S.C. Stanly E.A.R. Rajesh V. Unnikrishnan M.K. Steinke D. Chandra P. Vancomycin-resistant enterococci: A rising challenge to global health. Clin. Epidemiol. Glob. Health 2024 28 101663 10.1016/j.cegh.2024.101663
    [Google Scholar]
  32. Berkson J.D. Wate C.E. Allen G.B. Schubert A.M. Dunbar K.E. Coryell M.P. Sava R.L. Gao Y. Hastie J.L. Smith E.M. Kenneally C.R. Zimmermann S.K. Carlson P.E. Phage-specific immunity impairs efficacy of bacteriophage targeting Vancomycin Resistant Enterococcus in a murine model. Nat. Commun. 2024 15 1 2993 10.1038/s41467‑024‑47192‑w 38582763
    [Google Scholar]
  33. Wada Y. Ibrahim A.B. Umar Y.A. Afolabi H.A. Wada M. Alissa M. Al Amri K.A.S. Ibrahim A.L. A.A.; Al Fares, M.A.; Albayat, H.; AlKhathlan, M.K.; Al Kaabi, N.A.; Al-Subaie, M.F.; Alfaresi, M.; Alrasheed, H.A.; Rabaan, A.A.; Yean, C.Y.; Zaidah, A.R. Status of vancomycin-resistant Enterococcus in species of wild birds: A systematic review and meta-analysis. J. Infect. Public Health 2024 17 6 1023 1036 10.1016/j.jiph.2024.04.004 38657438
    [Google Scholar]
  34. Wu T. Fu Y. Guo S. Shi Y. Zhang Y. Fan Z. Yang B. Ding B. Liao Y. Self‐assembly multifunctional DNA tetrahedron for efficient elimination of antibiotic‐resistant bacteria. Aggregate 2024 5 1 e402 10.1002/agt2.402
    [Google Scholar]
  35. Chopjitt P. Boueroy P. Jenjaroenpun P. Wongsurawat T. Hatrongjit R. Kerdsin A. Sunthamala N. Genomic characterization of vancomycin-resistant Enterococcus faecium clonal complex 17 isolated from urine in tertiary hospitals in Northeastern Thailand. Front. Microbiol. 2024 14 1278835 10.3389/fmicb.2023.1278835 38312503
    [Google Scholar]
  36. Zhang Y. Liu X. Luo J. Liu H. Li Y. Liu J. Zhu L. Wang J. Zeng H. Dual recombinase polymerase amplification system combined with lateral flow immunoassay for simultaneous detection of Staphylococcus aureus and Vibrio parahaemolyticus. J. Pharm. Biomed. Anal. 2025 255 116621 10.1016/j.jpba.2024.116621 39644678
    [Google Scholar]
  37. Hofkens N. Gestels Z. Abdellati S. Gabant P. Rodriguez-Villalobos H. Martin A. Kenyon C. Manoharan-Basil S.S. Protective effect of microbisporicin (NAI-107) against vancomycin resistant Enterococcus faecium infection in a Galleria mellonella model. Sci. Rep. 2024 14 1 4786 10.1038/s41598‑024‑55262‑8 38413672
    [Google Scholar]
  38. Jochim-Vukosavic A. Schwab F. Knegendorf L. Schlüter D. Bange F.C. Ebadi E. Baier C. Epidemiology and infection control of vancomycin-resistant enterococci at a German university hospital: A three-year retrospective cohort study. PLoS One 2024 19 2 e0297866 10.1371/journal.pone.0297866 38408053
    [Google Scholar]
  39. Li Y. He X. Sun B. Hu N. Li J. You R. Tao F. Fang L. Li Y. Zhai Q. Combined exposure of beta-cypermethrin and emamectin benzoate interferes with the HPO axis through oxidative stress, causing an imbalance of hormone homeostasis in female rats. Reprod. Toxicol. 2024 123 108502 10.1016/j.reprotox.2023.108502 37984602
    [Google Scholar]
  40. Ben Yahia H. Trabelsi I. Arous F. García-Vela S. Torres C. Ben Slama K. Detection of linezolid and vancomycin resistant Enterococcus isolates collected from healthy chicken caecum. J. Appl. Microbiol. 2024 135 2 lxae027 10.1093/jambio/lxae027 38317636
    [Google Scholar]
  41. Wang W. Wang J. Hu Z. Yan X. Gao Q. Li X. Liao Y. Advancing aggregation‐induced emission‐derived biomaterials in viral, tuberculosis, and fungal infectious diseases. Aggregate 2024 e715
    [Google Scholar]
  42. Alasiri A. Rottlerin as a multifaceted antimicrobial agent: inhibiting growth, disrupting biofilms, and enhancing antibiotic efficacy against vancomycin-resistant Enterococcus. J. Umm Al-Qura Univ. Appl. Sci. 2025 00239 10.1007/s43994‑025‑00239‑0
    [Google Scholar]
  43. Assad N. Abbas A. Fayyaz ur Rehman, M.; Naeem-ul-Hassan, M. Photo-catalytic and biological applications of phyto-functionalized zinc oxide nanoparticles synthesized using a polar extract of Equisetum diffusum D. RSC Advances 2024 14 31 22344 22358 10.1039/D4RA03573A 39010906
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010399006250923063945
Loading
/content/journals/cpb/10.2174/0113892010399006250923063945
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test