Skip to content
2000
image of Formulation and Assessment of Broccoli Extract-infused Hydrogel for Targeted Breast Cancer Therapy

Abstract

Introduction

The most prevalent kind of cancer among women is breast cancer. Consequently, the development of novel, potent medications with fewer adverse effects is required to treat it. Breast cancer is frequently treated clinically with chemotherapy and surgery. However, there are still significant challenges to be addressed in the treatment of breast cancer, including inadequate therapeutic results, inevitable side effects, and the surgical excision of breast tissue. The objective of the study is to develop broccoli extract-based Hydrogel to overcome the challenges in breast cancer treatment.

Methods

The developed Hydrogel was characterized by certain techniques to check its stability and drug release abilities. Swelling studies and drug release behavior were checked; the porosity of Hydrogel was checked by SEM EDX Analysis. Furthermore, studies were done to check the anti-breast cancer activity of the developed Hydrogel.

Results

The hydrogel was a highly porous structure with and compressive modulus, which makes it good for biological use in drug delivery. The studies showed that, developed Hydrogel inhibits the growth of breast cancer cells (MCF-7) at different concentrations and time intervals of 24 and 48 Hrs and was compatible with the non-cancerous cell line 3T3-L1. The results indicate the tolerability of Hydrogel at the level of cells.

Discussions

Numerous investigations have demonstrated the anticancer effects of SFN by influencing the various biological processes that tumor cells engage in. In breast cancer cell lines, SFN functions as an HDAC inhibitor and reduces the expression of ER, EGFR, & HER-2 proteins. SFN also triggers apoptosis and cell cycle halt. Both Hydrogel and SFN inhibit the cells growth in MCF-7 breast cancer cells and agree with the previous studies.

Conclusion

In conclusion, we synthesized a hydrogel using broccoli extract to treat breast cancer with better stability, tolerance, and effectiveness through sustained local drug delivery. It was determined that this new hydrogel was a simple and affordable way to accomplish the continuous gene release feature, which would enhance the therapeutic efficacy in anti-cancer treatment while reducing the likelihood of potentially fatal side effects.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010373087250710035336
2025-07-21
2025-09-14
Loading full text...

Full text loading...

References

  1. Chen S. Navickas A. Goodarzi H. Translational adaptation in breast cancer metastasis and emerging therapeutic opportunities. Trends Pharmacol. Sci. 2024 45 4 304 318 10.1016/j.tips.2024.02.002 38453522
    [Google Scholar]
  2. Giaquinto A.N. Sung H. Newman L.A. Freedman R.A. Smith R.A. Star J. Jemal A. Siegel R.L. Breast cancer statistics 2024. CA Cancer J. Clin. 2024 74 6 477 495 10.3322/caac.21863 39352042
    [Google Scholar]
  3. Ali A.S. Nazar M.E. Mustafa R.M. Hussein S. Qurbani K. Ahmed S.K. Impact of heavy metals on breast cancer. World Acad. Sci. J. 2024 6 1 1 12
    [Google Scholar]
  4. Bharadwaj S. Sarkar D.K. Epidemiology of Breast Cancer.Breast Diseases. CRC Press 2024 1 4
    [Google Scholar]
  5. Xu J. Gao F. Liu W. Guan X. Cell-cell communication characteristics in breast cancer metastasis. Cell Commun. Signal. 2024 22 1 55 10.1186/s12964‑023‑01418‑4 38243240
    [Google Scholar]
  6. Dongsar T.T. Dongsar T.S. Abourehab M.A.S. Gupta N. Kesharwani P. Emerging application of magnetic nanoparticles for breast cancer therapy. Eur. Polym. J. 2023 187 111898 10.1016/j.eurpolymj.2023.111898
    [Google Scholar]
  7. Obeagu E.I. Obeagu G.U. Breast cancer: A review of risk factors and diagnosis. Medicine (Baltimore) 2024 103 3 e36905 10.1097/MD.0000000000036905 38241592
    [Google Scholar]
  8. Arnold M. Morgan E. Rumgay H. Mafra A. Singh D. Laversanne M. Vignat J. Gralow J.R. Cardoso F. Siesling S. Soerjomataram I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022 66 15 23 10.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  9. Wang J. Wu S.G. Breast cancer: An overview of current therapeutic strategies, challenges, and perspectives. Breast Cancer (Dove Med. Press) 2023 15 721 730 10.2147/BCTT.S432526
    [Google Scholar]
  10. Li L. Zhong D. Wang S. Zhou M. Plant-derived materials for biomedical applications. Nanoscale 2025 17 2 722 739 10.1039/D4NR03057E 39605132
    [Google Scholar]
  11. Gu H. Mao X. Du M. Metabolism, absorption, and anti-cancer effects of sulforaphane: an update. Crit. Rev. Food Sci. Nutr. 2022 62 13 3437 3452 10.1080/10408398.2020.1865871 33393366
    [Google Scholar]
  12. Gasmi A. Gasmi Benahmed A. Shanaida M. Chirumbolo S. Menzel A. Anzar W. Arshad M. Cruz-Martins N. Lysiuk R. Beley N. Oliinyk P. Anticancer activity of broccoli, its organosulfur and polyphenolic compounds. Crit. Rev. Food Sci. Nutr. 2023 1 9 10.1080/10408398.2023.2195493 37129118
    [Google Scholar]
  13. Arora I. Sharma M. Li S. Crowley M. Crossman D.K. Li Y. Tollefsbol T.O. An integrated analysis of the effects of maternal broccoli sprouts exposure on transcriptome and methylome in prevention of offspring mammary cancer. PLoS One 2022 17 3 e0264858 10.1371/journal.pone.0264858 35263365
    [Google Scholar]
  14. Borja-Martínez M. Lozano-Sánchez J. Borrás-Linares I. Pedreño M.A. Sabater-Jara A.B. Revalorization of broccoli by-products for cosmetic uses using supercritical fluid extraction. Antioxidants 2020 9 12 1195 10.3390/antiox9121195 33261112
    [Google Scholar]
  15. Nadzri M.N.B. Majeed S. Sami F. Tabish M. Ansari M.T. Preparation and evaluation of hydrogels containing methanolic extract of brassica oleracea ver. italic. J. Glob. Pharma Technol. 2019 11 1 140 146
    [Google Scholar]
  16. Uddin M.S. Khand S. Dong C. Effect of crosslinking agents on chitosan hydrogel carrier for drug loading and releasing for targeted drug delivery. preprints 2024 10.20944/preprints202405.1644.v1
    [Google Scholar]
  17. Wang Q. Wang X. Feng Y. Chitosan hydrogel as tissue engineering scaffolds for vascular regeneration applications. Gels 2023 9 5 373 10.3390/gels9050373 37232967
    [Google Scholar]
  18. Rana M.M. De la Hoz Siegler H. Evolution of hybrid hydrogels: Next-generation biomaterials for drug delivery and tissue engineering. Gels 2024 10 4 216 10.3390/gels10040216 38667635
    [Google Scholar]
  19. Madamsetty V.S. Vazifehdoost M. Alhashemi S.H. Davoudi H. Zarrabi A. Dehshahri A. Fekri H.S. Mohammadinejad R. Thakur V.K. Next-generation hydrogels as biomaterials for biomedical applications: Exploring the role of curcumin. ACS Omega 2023 8 10 8960 8976 10.1021/acsomega.2c07062 36936324
    [Google Scholar]
  20. Sood A. Dev A. Das S.S. Kim H.J. Kumar A. Thakur V.K. Han S.S. Curcumin-loaded alginate hydrogels for cancer therapy and wound healing applications: A review. Int. J. Biol. Macromol. 2023 232 123283 10.1016/j.ijbiomac.2023.123283 36657541
    [Google Scholar]
  21. Sukre M. Barge V. Kasabe A. Shinde T. Kandge M. Formulation and evaluation of econazole nitrate microemulsion. Int. J. Health Sci. 2022 III 9181 9190 10.53730/ijhs.v6nS3.8243
    [Google Scholar]
  22. Kuddushi M. Pandey D.K. Singh D.K. Mata J. Malek N. An ionic hydrogel with stimuli-responsive, self-healable and injectable characteristics for the targeted and sustained delivery of doxorubicin in the treatment of breast cancer. Mater. Adv. 2022 3 1 632 646 10.1039/D1MA00835H
    [Google Scholar]
  23. Hassan Z.U. Bashir S. Sarfraz R.M. Haroon B. Farid B. Mahmood T. Comparative effectiveness of ß-cyclodextrin based copolymeric hydrogel matrices for solubility and bioavailability enhancement of lovastatin: In vitro-in vivo evaluation. Lat. Am. J. Pharm. 2021 40 4 822 833
    [Google Scholar]
  24. Hanafy N.A.N. Leporatti S. El-Kemary M.A. Extraction of chlorophyll and carotenoids loaded into chitosan as potential targeted therapy and bio imaging agents for breast carcinoma. Int. J. Biol. Macromol. 2021 182 1150 1160 10.1016/j.ijbiomac.2021.03.189 33865895
    [Google Scholar]
  25. Arafa A.A. Nada A.A. Ibrahim A.Y. Sajkiewicz P. Zahran M.K. Hakeim O.A. Preparation and characterization of smart therapeutic pH-sensitive wound dressing from red cabbage extract and chitosan hydrogel. Int. J. Biol. Macromol. 2021 182 1820 1831 10.1016/j.ijbiomac.2021.05.167 34052272
    [Google Scholar]
  26. Park H.J. Anti-inflammatory properties of broccoli sprout extract in a lipopolysaccharide-induced testicular dysfunction. J. Anim. Reprod. Biotechnol. 2014 38 1 17 25 10.12750/JARB.38.1.17
    [Google Scholar]
  27. Ahmad A. Ahmad M. Minhas M.U. Sarfraz M. Sohail M. Khan K.U. Tanveer S. Ijaz S. Synthesis and evaluation of finasteride‐loaded hpmc‐based nanogels for transdermal delivery: a versatile nanoscopic platform. BioMed Res. Int. 2022 2022 1 2426960 10.1155/2022/2426960 35909483
    [Google Scholar]
  28. Aniagor C.O. Taha G.M. Badawy S.M. El-Naggar M.E. Hashem A. Preparation of a novel acrylic fiber-based hydrogel and its utilization for the removal of aqueous lead ion. J. Mater. Res. Technol. 2022 18 1450 1459 10.1016/j.jmrt.2022.03.007
    [Google Scholar]
  29. Mahmood T. Sarfraz R.M. Mahmood A. Salem-Bekhit M.M. Ijaz H. Zaman M. Akram M.R. Taha E.I. Sahu R.K. Benguerba Y. Preparation, in vitro characterization, and evaluation of polymeric pH-responsive hydrogels for controlled drug release. ACS Omega 2024 9 9 10498 10516 10.1021/acsomega.3c08107 38463273
    [Google Scholar]
  30. Li B.L. Zhang J. Jin W. Chen X.Y. Yang J.M. Chi S.M. Ruan Q. Zhao Y. Oral administration of pH-responsive polyamine modified cyclodextrin nanoparticles for controlled release of anti-tumor drugs. React. Funct. Polym. 2022 172 105175 10.1016/j.reactfunctpolym.2022.105175
    [Google Scholar]
  31. Passos J.S. Apolinario A.C. Ishida K. Martins T.S. Lopes L.B. Nanostructured lipid carriers loaded into in situ gels for breast cancer local treatment. Eur. J. Pharm. Sci. 2024 192 106638 10.1016/j.ejps.2023.106638 37967657
    [Google Scholar]
  32. Almawash S. El Hamd M.A. Osman S.K. Polymerized β-cyclodextrin-based injectable hydrogel for sustained release of 5-fluorouracil/methotrexate mixture in breast cancer management: In vitro and in vivo analytical validations. Pharmaceutics 2022 14 4 817 10.3390/pharmaceutics14040817 35456651
    [Google Scholar]
  33. Kamiyama M. Shibamoto T. Increase of bioactive sulforaphane and its related compounds with sulfur compounds in broccoli (Brassica Oleracea Var. Italica) sprouts during cultivation. IJAIR, 2013 2 (3)
    [Google Scholar]
  34. Al Talebi Z. Karhib M.M. Taki M.M. Salaam Abood E. Mubarak H.A. Sahar Ahmed Ibrahim C. Chemical analysis, antioxidant, and antibacterial potential of aqueous extract of broccoli (Brassica oleracea) Using GC-ms. Arch. Razi Inst. 2023 78 2 593 599 10.1007/s12161‑023‑02544‑y 37396738
    [Google Scholar]
  35. de Melo Santana B. Pieretti J.C. Gomes R.N. Cerchiaro G. Seabra A.B. Cytotoxicity towards breast cancer cells of pluronic F-127/hyaluronic acid hydrogel containing nitric oxide donor and silica nanoparticles loaded with cisplatin. Pharmaceutics 2022 14 12 2837 10.3390/pharmaceutics14122837 36559330
    [Google Scholar]
  36. Das S. Haldar P.K. Pramanik G. Formulation and evaluation of herbal gel containing Clerodendron infortunatum leaves extract. Int. J. Pharm. Tech. Res. 2011 3 1 140 143
    [Google Scholar]
  37. De Souza Ferreira S.B. Moço T.D. Borghi-Pangoni F.B. Junqueira M.V. Bruschi M.L. Rheological, mucoadhesive and textural properties of thermoresponsive polymer blends for biomedical applications. J. Mech. Behav. Biomed. Mater. 2016 55 164 178 10.1016/j.jmbbm.2015.10.026 26590909
    [Google Scholar]
  38. Datt N. Yadav P. Poonuru R.R. Development and Characterization of microwave irradiated solid dispersion lipid nanoparticles containing topical gel for dermatophytosis. J. Pharm. Negat. Results 2022 2022 2508 2516
    [Google Scholar]
  39. Azlah M.A.F. Chua L.S. Abdullah F.I. Yam M.F. A fast and reliable 2D-IR spectroscopic technique for herbal leaves classification. Vib. Spectrosc. 2020 106 103014 10.1016/j.vibspec.2019.103014
    [Google Scholar]
  40. Vilela P.B. Dalalibera A. Becegato V.A. Paulino A.T. Single-component and multi-component metal abatement in water using a hydrogel based on chitosan: characterization, isotherm, kinetic, and thermodynamic results. Water Air Soil Pollut. 2020 231 10 507 10.1007/s11270‑020‑04873‑8
    [Google Scholar]
  41. Abd El-Mohdy H.L. Aly H.M. Characterization, properties and antimicrobial activity of radiation induced phosphorus-containing PVA hydrogels. Arab. J. Sci. Eng. 2023 48 1 341 351 10.1007/s13369‑022‑07031‑w
    [Google Scholar]
  42. Pandav S. Naik J. Preparation and in vitro evaluation of ethylcellulose and polymethacrylate resins loaded microparticles containing hydrophilic drug. J. Pharm. (Cairo) 2014 2014 1 1 5 10.1155/2014/904036 26556206
    [Google Scholar]
  43. Hengchao E. Peng S. Zhao Z. Yao X. Zhang Y. Li X. Yang X. Fan T. Zhao X. Zhou C. Molecular networking and equivalently quantitative ion strategy for discovery and quantification of glucosinolates in cauliflower and broccoli by liquid chromatography tandem mass spectrometry. Lebensm. Wiss. Technol. 2023 187 115318 10.1016/j.lwt.2023.115318
    [Google Scholar]
  44. Liang H. Yuan Q.P. Dong H.R. Liu Y.M. Determination of sulforaphane in broccoli and cabbage by high-performance liquid chromatography. J. Food Compos. Anal. 2006 19 5 473 476 10.1016/j.jfca.2005.11.005
    [Google Scholar]
  45. Lin F. Zheng J. Guo W. Zhu Z. Wang Z. Dong B. Lin C. Huang B. Lu B. Smart cellulose-derived magnetic hydrogel with rapid swelling and deswelling properties for remotely controlled drug release. Cellulose 2019 26 11 6861 6877 10.1007/s10570‑019‑02572‑0
    [Google Scholar]
  46. Nieto C. Vega M.A. Rodríguez V. Pérez-Esteban P. Martín del Valle E.M. Biodegradable gellan gum hydrogels loaded with paclitaxel for HER2+ breast cancer local therapy. Carbohydr. Polym. 2022 294 119732 10.1016/j.carbpol.2022.119732 35868800
    [Google Scholar]
  47. Slavkova M. Dimitrova D. Voycheva C. Popova T. Spassova I. Kovacheva D. Yordanov Y. Tzankova V. Tzankov B. Composite hydrogel with oleic acid-grafted mesoporous silica nanoparticles for enhanced topical delivery of doxorubicin. Gels 2024 10 6 356 10.3390/gels10060356 38920903
    [Google Scholar]
  48. Kotta S. Aldawsari H.M. Badr-Eldin S.M. Nair A.B. Kaleem M. Dalhat M.H. Thermosensitive hydrogels loaded with resveratrol nanoemulsion: Formulation optimization by central composite design and evaluation in MCF-7 human breast cancer cell lines. Gels 2022 8 7 450 10.3390/gels8070450 35877535
    [Google Scholar]
  49. Sarfraz M. Iqbal R. Khan K.U. Minhas M.U. Carbopol based hydrogels for ITOPRIDE hydrochloride delivery: Synthesis, characterization and comparative assessment with various monomers. J. Funct. Biomater. 2022 13 4 295 10.3390/jfb13040295 36547555
    [Google Scholar]
  50. Alkholifi F.K. Alam A. Foudah A.I. Yusufoglu H.S. Phospholipid-based topical nano-hydrogel of Mangiferin: enhanced topical delivery and improved dermatokinetics. Gels 2023 9 3 178 10.3390/gels9030178 36975627
    [Google Scholar]
  51. Zhang Y. Lu Q. Li N. Xu M. Miyamoto T. Liu J. Sulforaphane suppresses metastasis of triple-negative breast cancer cells by targeting the RAF/MEK/ERK pathway. NPJ Breast Cancer 2022 8 1 40 10.1038/s41523‑022‑00402‑4 35332167
    [Google Scholar]
  52. Pereira L. Silva P. Duarte M. Rodrigues L. Duarte C. Albuquerque C. Serra A. Targeting colorectal cancer proliferation, stemness and metastatic potential using Brassicaceae extracts enriched in isothiocyanates: A 3D cell model-based study. Nutrients 2017 9 4 368 10.3390/nu9040368 28394276
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010373087250710035336
Loading
/content/journals/cpb/10.2174/0113892010373087250710035336
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: broccoli ; Hydrogel ; breast cancer ; TDDs ; MCF-7 ; drug delivery
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test