Combinatorial Chemistry & High Throughput Screening - Online First
Description text for Online First listing goes here...
51 - 100 of 129 results
-
-
Xuebijing Alleviates Microglial Activation after Traumatic Brain Injury via Regulation of NF-κB Pathway: Network Pharmacology and Experimental Validation
Authors: Hongran Fu, Xiaoyu Wang, Xuelin Mo, Jingwei Li and Dongkai GuoAvailable online: 15 April 2025More LessObjectiveXuebijing (XBJ) injection, a Traditional Chinese medicine (TCM) widely used in China for treating sepsis and multiple organ dysfunction, has shown neuroprotective effects in traumatic brain injury (TBI). However, the mechanisms underlying these effects remain unclear. This study aims to elucidate the neuroprotective and pharmacological molecular mechanisms of XBJ and its active monomer, Hydroxy-safflor yellow A (HSYA), in treating TBI through network pharmacology and experimental validation.
MethodsPotential therapeutic targets for TBI were collected from TCMSP, TTD, OMIM, and GeneCards databases. Active compounds and targets of XBJ injection were obtained from TCMSP. The STRING database and Cytoscape software constructed a protein-protein interaction (PPI) network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the DAVID database and visualized with Bioinformatics tools. Neuroprotective effects of XBJ were verified in vitro using BV2 and primary microglia cells stimulated by Lipopolysaccharide (LPS). Additionally, a TBI mice model was used to identify microglial activation in vivo.
ResultsA total of 161 common targets related to TBI were identified. Network pharmacological analysis suggested that XBJ targets proteins involved in inflammation. In vitro results showed that XBJ and HSYA inhibited LPS-induced microglial activation via the NF-κB pathway. Furthermore, XBJ was found to inhibit microglial activation in TBI mice.
ConclusionThese findings indicate that XBJ and HSYA may treat TBI by repressing microglial activation through the NF-κB pathway. Our study provides valuable evidence supporting XBJ as an effective therapy for TBI.
-
-
-
Chemistry and Pharmacology of Chenopodium album L. (BATHUA)
Authors: Nagendra Sharma, Pankaj Kumar Chaurasia, Shashi Lata Bharati and Ahmed M. SaqrAvailable online: 08 April 2025More LessIntroductionChenopodium album Linn. is a nutritionally and pharmacologically significant herb that generally grows in the winter season along with other crops. It is rich in fibers, protein, minerals (Mg, Ca, Fe, K, P, and others), vitamins (ascorbic acids, thiamine, riboflavin, and others), and several other biologically active chemical components like flavonoids, saponins, steroids and many more. In this article, the authors briefly describe and assess the chemistry and pharmacology of this nutritionally significant plant.
MethodsThis study is based on several literature searches conducted via Google Scholar, Research Gate, PubMed, and many other online sources.
Result and ConclusionDue to its richness with bioactive phytochemicals, it has become a valuable functional food. C. album has several medicinal properties like antioxidant, antimicrobial, anti-arthritic, anti-diabetic, anti-infection, anti-ulcer, and many others. Even after its rich nutritional values, chemical compositions, and a broad spectrum of pharmacological properties, this is a highly ignored herb worldwide. Therefore, extensive research and awareness regarding the functional role of this herb is needed.
-
-
-
The Regulatory Effects of Electroacupuncture on the Intestinal Flora of Mice with Ulcerative Colitis
Authors: Xinyu Gao, Enfan Xiao, Shaohui Geng, Haixu Jiang, Hesong Wang, Yuxin Zhao, Jiaxin Xie, Guangrui Huang and Wenrui JiaAvailable online: 07 April 2025More LessIntroductionThis study aimed to investigate the modulation of intestinal flora by electroacupuncture in a murine ulcerative colitis (UC) model, with a focus on analyzing microbial taxa and identifying key regulatory targets and pathways.
MethodsA UC model was established in mice using 5% dextran sodium sulfate (DSS). Electroacupuncture was applied at bilateral “Shangjuxu” (electrostimulation) and “Tianshu” (manual acupuncture) points from days 5–9, while the mesalazine group received 0.5 g/kg/day via gavage. Disease activity index (DAI), colon length, and histopathology (hematoxylin-eosin staining) were evaluated. Intestinal flora composition was analyzed via 16S rDNA sequencing.
ResultsElectroacupuncture significantly reduced DAI scores on days 7 and 9 (P < 0.05; P < 0.01) compared to the model group, improved colon morphology, and reduced inflammation. Linear discriminant analysis and Wilcoxon tests revealed an increased abundance of Roseburia and elevated alpha diversity in the electroacupuncture group. Functional prediction demonstrated suppressed RNA transport and glycerophospholipid metabolism in the model group (P < 0.05), which were significantly enhanced post-electroacupuncture (P < 0.01).
DiscussionElectroacupuncture restored beneficial taxa (e.g., Roseburia) and microbial diversity, suggesting gut homeostasis modulation. Enhanced lipid metabolism and RNA transport pathways may underlie its anti-inflammatory and mucosal repair effects.
ConclusionElectroacupuncture alleviates UC by modulating the structure and function of intestinal flora, with Roseburia and associated metabolic pathways identified as key targets. These findings highlight the potential of electroacupuncture as a UC therapy.
-
-
-
Curcumin Regulating Primordial Follicle Initiation by Restoring the Oxidative-antioxidant Balance
Authors: Wanjing Li, Jinbang Xu, Dan Shi, Jingyi Wang, Tao Liu, Juan Yang and Disi DengAvailable online: 07 April 2025More LessBackgroundDiminished ovarian reserve (DOR) is accompanied by abnormal initiation and development of primordial follicles. Reporting that curcumin can protect the ovarian reserve, we used rats as a model to explore the regulatory mechanism of curcumin on primordial follicle priming.
ObjectiveCurcumin restores the ovarian microenvironment of DOR model rats by AMPK/SIRT 1 signaling pathway, thus regulating the initiation of primordial follicles.
MethodsThe study used the ovaries of 3-day-old female rats, after replicating the DOR model by triptolide (TP), then used curcumin intervention for 3 days. Histomorphological analysis was counted by H & E staining; ELISA test was used to count ovarian hormone [follicle stimulating hormone (FSH) / luteinizing hormone (LH) ratio and estradiol (E2)] concentration in the culture supernatant. Spectrophotometric measurement was used to count of superoxide dismutase (SOD) and the malondialdehyde (MDA). The protein and mRNA expression of the pathway and key indicators for follicle initiation were determined by Western Blot and Q-PCR (AMPK, SIRT 1, PTEN, PGC-1 α, and AMH).
ResultsAfter curcumin treatment, the number of growing follicles increased (P < 0.05). FSH/LH ratio decreased but the content and expression of E2 and AMH increased (P < 0.05). The protein and mRNA expression of characteristic indicators of inhibiting primordial follicle initiation (PTEN) was decreased (P < 0.05). Oxidation-reduction-related SOD activity increased and the content of MDA decreased (P < 0.05), while the protein and mRNA expression of PGC-1α increased (P < 0.05). The protein and mRNA expression of the pathway (AMPK, SIRT 1) were increased (P < 0.05).
ConclusionCurcumin restored the ovarian local oxidant-antioxidant balance and promoted primordial follicle priming through AMPK/SIRT 1 signaling pathway in the DOR model rats.
-
-
-
Exploring Mechanisms of Ephx2 in Treating Atherosclerosis Using Independent Cascade Model and Adverse Outcome Pathways
Authors: Caiyuzhen Zhang, Yuanwen Dai, Yong Chen, Bo Cao, Jinbing An and Wei PangAvailable online: 27 March 2025More LessBackgroundAtherosclerosis (AS) is a leading cause of cardiovascular diseases, characterized by lipid accumulation in arterial walls. The gene Ephx2, which encodes soluble epoxide hydrolase (sEH), is implicated in AS development, but its precise mechanisms and therapeutic potential are not fully understood.
ObjectivesThis study aimed to analyze gene expression data from low-density lipoprotein receptor knockout (LDLR−/−) and LDLR−/−sEH−/− mice to identify significant genes associated with AS.
MethodsA directed compound-protein interaction network was constructed based on these genes and related pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In the end, through resistance distance (RD) between any two nodes in this network, the Independent Cascade (IC) model was applied to explore Ephx2 mechanisms in AS, such as important Adverse Outcome Pathways (AOPs).
ResultsSeveral AOPs were identified as critical in AS treatment via Ephx2. The key AOPs included inflammatory response and cytokine release, cholesterol deposition and oxidation, disruption of plaque stability, smooth muscle cell proliferation and migration, and platelet activation and coagulation. Within the top AOPs of inflammatory response and cytokine release, potential target genes were identified, such as Mapk3, Pik3cd, Gnai2, Mapk10, Arnt, and RhoA. Critical paths from Ephx2 to these target genes were established, suggesting mechanisms by which Ephx2 may influence AS pathogenesis.
ConclusionBy defining the AS network and corresponding RD, this study elucidates potential mechanisms by which Ephx2 affects AS through specific KEGG pathways, AOPs, and target genes. These findings enhanced the understanding of AS pathogenesis and highlighte potential targets like Mapk3 for developing therapeutic strategies in AS prevention and treatment.
-
-
-
Paeonol Inhibits the MAPK Signaling Pathway by Targeting SIRT1 in AGE-Induced HUVECs Injury
Authors: Dingkun Liu, Hongrui Gao, Xiaochun Wu, Yulin Mo, Xiaobin Jia, Liang Feng and Minghua ZhangAvailable online: 27 March 2025More LessBackgroundChronic hyperglycemia in diabetes is a significant contributor to endothelial injury through the induction of oxidative stress. Paeonol is anticipated to address oxidative stress with the aim of ameliorating endothelial injury. Our study delved into the effects of paeonol on endothelial damage induced by diabetes and elucidated the underlying mechanisms.
MethodsThis research presented a novel endothelial injury model employing advanced glycation end products (AGEs) in human umbilical vein endothelial cells (HUVECs). Additionally, a network analysis was carried out to pinpoint the targets influenced by paeonol, with pivotal targets substantiated via polymerase chain reaction (PCR), western blot analysis, and immunofluorescence staining. Ultimately, the introduction of small interfering RNA transfection validated the involvement of SIRT1 in AGEs-induced HUVECs injury.
ResultsTwelve metabolites of paeonol were conclusively detected in vivo. Paeonol demonstrated substantial efficacy in ameliorating and diminishing levels of various cytokines and biochemical indicators, including AGEs, Col IV, ET-1, E-selectin, FN, hs-CRP, ICAM-1, MMP2, and sVCAM-1. Notably, network analysis accentuated the pivotal role of the MAPK signaling pathway. Furthermore, paeonol exhibited significantly elevated mRNA and protein levels of SIRT1 and ERK across varying dosage regimens compared to the model group while displaying relatively decreased mRNA expression levels of p38MAPK.
ConclusionThis research revealed that paeonol inhibited the activation of p38 and ERK within the MAPK signaling pathway. Moreover, the regulatory influence of paeonol over p38 and ERK was compromised subsequent to the silencing of SIRT1, indicating a SIRT1-dependent suppressive action of paeonol on the MAPK pathway. The potential therapeutic utility of SIRT1 in mitigating diabetic endothelial impairment and its concomitant cardiovascular ramifications is underscored by these findings.
-
-
-
Astragalosides Promote MH7A Cell Apoptosis by Suppressing WTAP-mediated m6A Methylation of TRAIL-DR4
Authors: Xiaoya Cui, Linhui Zhang, Huimei Chen and Hui JiangAvailable online: 25 March 2025More LessBackgroundAstragaloside (AST), a natural saponin extracted from Astragalus membranaceus (Fisch.) Bunge., has been consistently utilized in the treatment of rheumatoid arthritis (RA). N6-methyladenosine (m6A), the most prevalent modification of mRNA, is associated with the progression of various diseases, including RA. Nonetheless, the effects of AST on m6A modification in RA remain to be elucidated.
MethodsThe MH7A cell model was established through induction with TNF-α. The effects of AST on the expression levels of WTAP, BAX, BCL2, and TRAIL-DR4 were evaluated utilizing immunofluorescence, RT-qPCR, and Western blot analysis. Furthermore, CCK-8 and flow cytometry were used to assess MH7A cell viability, cell cycle, apoptosis, and proliferation. Then, the m6A modification of TRAIL-DR4 was elucidated via MeRIP-qPCR.
ResultsThe optimal dose administration time was 50 μg/mL at 48 h. AST not only reduced the expression levels of WTAP, BCL2, BAX, TRAIL-DR4, and the m6A modification level of TRAIL-DR4 but also significantly enhanced apoptosis in MH7A cell, while inhibiting cell viability and proliferation. Furthermore, AST was capable of reversing the effect on MH7A cell proliferation and apoptosis induced by WTAP overexpression.
ConclusionThis study elucidates the protective role of AST on MH7A cells by attenuating m6A/WTAP-mediated apoptosis, offering novel insights into the mechanisms of AST.
-
-
-
Jiawei Danggui Buxue Decoction Reduces Apoptosis and EMT of Renal Interstitial Fibrosis by Regulating JAK2/STAT3 Signaling Pathway
Authors: Xin Jiang, Yinghang Wang, Saiyue Qiu, Lu Tang, Meixiu Luo and Zhi PanAvailable online: 11 March 2025More LessBackgroundRenal interstitial fibrosis (RIF) is the primary pathological progression in chronic kidney disease (CKD). Given the constraints related to cost and adverse effects of current treatments, it is crucial to explore novel and efficacious therapeutic strategies. The purpose of this study was to elucidate the potential of Jiawei Danggui Buxue Decoction (JDBD) to reduce apoptosis and epithelial-mesenchymal transition (EMT) in RIF by regulating the Janus kinase 2 (JAK2)/Signal Transducer and Activator of Transcription 3 (STAT3) pathway.
MethodsAn angiotensin II (Ang II)-induced HK-2 cells model and a unilateral ureteral obstruction (UUO) animal model were employed to replicate the RIF model. A total of 48 male Wistar rats (weighing 200-220g) were acclimated for 1 week and then randomly divided into 6 groups (sham operation, UUO, Losartan potassium tablets, and three JDBD dosage groups: high, medium, and low, n=8). After the acclimatization period, UUO models were established in 40 rats through surgery, excluding the sham operation group. Each group received the corresponding drug via gavage for 2 weeks. After 2 weeks, rats were anesthetized, and tissues were collected for subsequent analysis. Renal function tests and histological stains were used to evaluate renal damage and histopathological alterations in rats. Cell viability was examined using the CCK-8 assay. Apoptosis was identified through the utilization of flow cytometry and assessment of mitochondrial membrane potential, along with other techniques. We identified and examined the expression of EMT and extracellular matrix (ECM)-related factors, as well as the JAK2/STAT3 pathway.
ResultsIn vivo experiments indicated that JDBD effectively reduced renal dysfunction in UUO rats, ameliorated pathological changes in renal tissues, and significantly modulated the JAK2/STAT3 signaling pathway to inhibit EMT and apoptosis, thereby reducing ECM deposition. Furthermore, JDBD markedly increased the survival rate of Ang II-treated HK-2 cells and reduced apoptosis. The in vitro experimental results further confirmed that JDBD ameliorates RIF by regulating the JAK2/STAT3 pathway.
ConclusionJDBD exhibits anti-apoptotic and EMT-inhibiting functions in RIF, potentially mediated by targeting and inhibiting JAK2/STAT3 signaling transduction.
-
-
-
GLI3 is Inhibited by miR-143-3p and Attenuates Septic-induced Lung Injury and Inflammation by Targeting SFRP1
Authors: Minqing Ma, Haixia Han, Xiaoyan Luo, Jiakai Lin and Bin SunAvailable online: 10 March 2025More LessObjectivesTranscription factors (TF) are the central regulatory hubs of signaling pathways in eukaryotic cells. Here, we explored the abnormal expression of TF in septic-induced lung injury by sequencing.
MethodsThe levels of target proteins were detected using Western Blot and Elisa. Cell function was evaluated using CCK8 and transwell assays. A double luciferase reporter assay was performed to detect interactions between target molecules.
ResultsWe found that TF glioma-associated oncogene (GLI) family zinc finger 3 (GLI3) was abnormally low expressed in a lipopolysaccharide (LPS) induced acute lung injury (ALI) cell model. In an in vitro model, GLI3 overexpression promoted the proliferation and migration and inhibited apoptosis of lung epithelial cells in LPS-induced inflammatory environment. Importantly, GLI3 overexpression inhibited the secretion of inflammatory factors IL-1β, IL-6, and TNF-α. Additionally, miR-143-3p inhibited the expression of GLI3. MiR-143-3p inhibitor alleviated the cell damage caused by LPS, while knocking down GLI3 counteracted this effect, indicating that miR-143-3p downregulated GLI3 and inhibited its anti-inflammatory effect. Secreted frizzled related protein-1 (SFRP1) was upregulated in LPS-treated cells and SFRP1 promoter interacted with GLI3, suggesting that SFRP1 was a target of TF GLI3. Co-transfection with GLI3 knockdown and SFRP1 overexpression plasmids attenuated the secretion of inflammatory factors IL-1β, IL-6, and TNF-α caused by GLI3 knockdown in LPS-treated cells, indicating that SFRP1 plays an anti-inflammatory role as a GLI3 target in the ALI cell model.
ConclusionsmiR-143-3p caused degradation of GLI3 mRNA and thus inhibited the transcription of SFRP1, leading to decreased proliferation and increased levels of inflammatory factors, providing new potential targets for the clinical diagnosis and treatment of ALI.
-
-
-
The Anti-PEDV Effects and Mechanisms of Forsythia Essential Oil Based on Network Pharmacology and Experimental Validation
Authors: Ruiping Liang, Jianbo Guo, Kai Li, Xuan Wang, Xiaoxiao Ge, Jinhui Wang, Jing Sun, Chongbo Zhao, Huanxian Shi, Rongxia Qiao, Hongqing Zheng and Xiaofei ZhangAvailable online: 10 March 2025More LessObjectivePorcine epidemic diarrhea virus (PEDV), a member of the Coronaviridae, is responsible for acute diarrhea, vomiting, and dehydration, which can lead to high mortality in neonatal piglets. Previous research has indicated the antiviral potential of forsythia essential oil (FEO); however, its active components and mechanisms of action remain inadequately defined. This study aims to investigate the antiviral effects of FEO and elucidate its potential mechanisms for treating PEDV.
MethodsThe primary components of FEO were identified using gas chromatography-mass spectrometry (GC/MS) in conjunction with the National Institute of Standards and Technology Standard Spectrum (NIST) Database. Network pharmacology and weighting coefficients were employed to determine the key signaling pathways associated with PEDV-related diseases. Molecular docking simulations were conducted to explore the interactions between the active ingredients and their corresponding targets. The safety profile of FEO was assessed through cell viability assays utilizing the CCK8 method. Subsequently, immunofluorescence assays (IFA) and reverse transcription-quantitative polymerase chain reaction (RT-Q-PCR) were performed to provide evidence of the anti-PEDV effects. Additionally, the viral replication cycle was analyzed to identify the stages at which FEO exerts its antiviral effects. Finally, key targets were validated through RT-Q-PCR to further investigate the anti-PEDV mechanisms of FEO.
ResultsThe IL-17 signaling pathway was identified as a critical pathway for the treatment of PEDV with FEO based on network pharmacology and weighting coefficient analyses. Furthermore, results from RT-Q-PCR and IFA demonstrated that FEO influenced the replication of PEDV during the attachment and internalization phases. Specifically, during the viral attachment phase, FEO significantly upregulated the expression of HSP90AA1 while downregulating MAPK14 expression, leading to a reduction in associated inflammatory factors. At the high dose of FEO, the expression of HSP90AA1 was higher than that of the model group by about 5-fold, and the expression of MAPK14 was lower than that of the model group by about 2-fold. Cell viability assay showed no significant cytotoxicity of FEO at 0.63 µL/mL, thus confirming its safety.
ConclusionThe findings of this study suggest that FEO possesses potential antiviral properties against PEDV. Its novel mechanisms of action warrant further investigation, which may contribute to the development of effective therapeutic strategies for managing PEDV infections.
-
-
-
Computational Study for Preparation of Benzoimidazo[1,2-a]pyrimidines from Reaction of Benzaldehyde, Indanedione and 1H-benzo[d]imidazol-2-amine
Authors: Yas Zibaei, Leila Zare Fekri and Mohammad NikpassandAvailable online: 03 March 2025More LessBackgroundBenzoimidazo[1,2-a]pyrimidines are important compounds that have many useful effects in the body. They can help fight cancer, fungal infections, inflammation, and viruses. They can also help with various other health conditions. They can act as antineoplastic, antitubercular, parasitical activity, benzodiazepine receptor agonists, calcium channel blockers, potent P38 MAP kinase inhibitors, TIE-2 and/or VEGFR2 inhibitory activities, protein kinase inhibitors, and T cell activation. There are different methods to make the benzoimidazo[1,2-a]pyrimidines. Some of them dealth with the one-pot threecomponent condensation reactions of β-dicarbonyl compounds, aldehyde and 1H-benzo[d]imidazol-2-amine in the presence of catalyst. Although the synthesis of this group of compounds has been done before, and the products have been identified from the spectroscopic point of view, the kinetics and reaction mechanism have not been investigated. The strength of these calculations is that evaluation of the activation energy of various steps suggests possible mechanisms, probable mechanisms, and valuable synthetic intermediates.
MethodsIn this report, seven possible mechanisms for synthesizing the benzoimidazo[1,2-a]pyrimidines have been investigated using density functional theory (DFT) at the B3LYP/6-311G** level of theory. Each synthetic route involves condensation of the benzaldehyde, indanedione and 1H-benzo[d]imidazol-2-amine molecules to yield the proposed product. The calculations showed that the suggested method has six steps; its initiation step includes the Knoevenagel reaction between indanedione and aldehyde, and the rate determining state is dehydration in the fifth step.
ResultSix potential pathways for the reaction will occur. Then, we focused on the best pathway and studied it in detail. The ways that three chemicals-indanedione (R1), benzaldehyde (R2), and 1H-benzo[d]imidazol-2-amine (R3) react with each other were studied using ab-initio program by ChemBio3D, Gauss View, and Gaussian 09. The Density Functional Theory (DFT) using the B3LYP basis set was used to improve the arrangement of molecules involved in the three-part creation of a specific compound called 12-phenyl-5H-benzo[4,5]imidazo[1,2-a]indeno[1,2-d]pyrimidin-13(12H)-one (P).
ConclusionDuring the study of the six mechanisms, the proposed pathway 2 is the best mechanism for this reaction because its rate-determining step has the lowest activation energy value. This route consists of 6 steps, the fifth step of which is related to the conversion of IM4 to IM5 (relative ∆E: 109.80 Kj/mol), during which a dehydration reaction is performed, and this step occurs by passing through transition state TS5 (Total Energy (Hart./particles: -1194.747403).
-
-
-
Dry Powder Inhaler of Sustained-Release Microspheres Containing Glycyrrhizin: Factorial Design and Optimization
Authors: Arpita Chakraborty, Riya Mahar and Nidhi NainwalAvailable online: 28 February 2025More LessBackgroundGlycyrrhizin is a saponin glycoside of the liquorice plant. It is commonly used to treat respiratory problems. Inhalable glycyrrhizin formulation in asthma can be a good alternative for widely used inhaled corticosteroids that exhibit side effects upon long-term use.
AimAsthma is a major and prevalent respiratory disease. However, the rate of drug development in this arena is quite slow, as indicated by merely four new drugs approved by the USFDA in the last 6 years for respiratory diseases.
ObjectiveWe herein propose to design and develop Glycyrrhizin-inhalable microspheres for the treatment of asthma.
MethodA 32 full factorial design was applied to show the effect of the two independent variables (polycaprolactone, and polyvinyl alcohol concentration) on each of the selected dependent variables (drug loading and entrapment efficiency).
ResultsThe optimized microspheres were spherical and 1-5 µm in size. The formulation showed a fine particle fraction of 78%, indicating that the powders were suitable for inhalation. The Drug loading and encapsulation efficiency of the optimized formulation were found to be 9.8% and 40.98%, respectively. The aerosolization study on the Anderson cascade impactor showed that deposition of particles of formulation blended with lactose was better than nonblended formulation and drug in the lungs.
ConclusionIn comparison to the pure drug, optimized formulation prolonged drug residency in the lung for more than 12 hrs after inhalation. Inhalable microparticles of glycyrrhizin provide sustained and prolonged drug release in the lungs along with protection of drugs against pulmonary degradation.
-
-
-
Revealing the Mechanism of Buzhong Yiqi Tang in Ameliorating Autoimmune Thyroiditis via the Toll-like Receptor Pathway
Authors: Zhuo Zhao, Jiayun Li, Donglin Liu, Hao Gao, Zhe Jin, Zhimin Wang, Yiran Chen, Si Chen, Ziyu Liu and Xiao YangAvailable online: 28 February 2025More LessIntroductionEsophageal Squamous Cell Carcinoma (ESCC) remains a significant global health challenge, underscoring the urgent need for the development of innovative therapeutic approaches. Ranunculus ternatus Thunb., a traditional herb, exhibits potential anticancer properties, but its mechanisms against ESCC remain poorly understood. This study integrates network pharmacology and experimental validation to explore the therapeutic effects of the ethyl acetate extract of Ranunculus ternatus Thunb. (RTE).
MethodsPotential targets of RTE and ESCC were screened using public databases. A Protein-Protein Interaction (PPI) network was constructed to identify key targets, followed by GO and KEGG pathway enrichment analyses. The predicted mechanisms were validated using in vitro assays, including cell proliferation analysis and western blot assay in ESCC cell lines.
ResultsNetwork pharmacology analysis identified 274 potential targets, with 14 key genes implicated in the therapeutic effects of RTE. GO analysis revealed significant involvement in the inflammatory response and apoptotic signaling pathways. KEGG pathway analysis highlighted the MAPK, Relaxin, and PI3K/Akt signaling pathways as critical mechanisms. In vitro experiments demonstrated that RTE significantly inhibited the proliferation of EC-109 and TE-13 cells by modulating the MAPK/ERK and PI3K/Akt pathways.
DiscussionThe study reveals that active compounds of RTE target MAPK/ERK and PI3K/Akt pathways, aligning with prior evidence. However, future studies should explore animal models to confirm efficacy.
ConclusionThis study provides a comprehensive understanding of the molecular mechanisms underlying the anticancer effects of RTE against ESCC. These findings underscore the potential of RTE as a promising natural compound for ESCC treatment.
-
-
-
Agaricus blazei Murill Extract (FA-2-b-β) Induces Ferroptosis in Diffuse Large B-Cell Lymphoma via the Nrf2/HO-1 Pathway
Authors: Rong Li, Dan Huang, Along Wu and Yanqin SunAvailable online: 28 February 2025More LessIntroductionFerroptosis is a recently identified iron-dependent programmed cell death closely linked to the progression of diffuse large B-cell lymphoma (DLBCL). While studies have shown that FA-2-b-β extracted from Agaricus blazei Murill affects various malignancies, its specific role in modulating ferroptosis in DLBCL and the underlying mechanisms are not yet clear. Objectives: This study aims to elucidate the anticancer properties and mechanisms of FA-2-b-β in inducing ferroptosis in DLBCL cells.
MethodsThe cell counting kit 8 assay was carried out to evaluate the inhibition of cellular proliferation. Ferroptosis was evaluated using the ferrous colorimetric method, together with kits for measuring malondialdehyde (MDA), reduced glutathione (GSH), reactive oxygen species (ROS), western blotting, JC-1 assays, and transmission electron microscopy. Reverse transcription-quantitative polymerase chain reaction and western blot were conducted to determine whether FA-2-b-β affected nuclear factor erythroid 2- related factor 2 (Nrf2) and heme oxygenase 1 (HO-1).
ResultsFA-2-b-β induced ferroptosis in DLBCL cells by elevating the ROS and MDA levels, facilitating the accretion of Fe2+, diminishing GSH, upregulating the expression of PTGS2, and downregulating the expression of FTH1, SLC7A11, and GPX4. Furthermore, FA-2-b-β caused structural damage to mitochondria and diminished the mitochondrial membrane potential. The ferroptosis triggered by FA-2-b-β also led to the downregulation of Nrf2 and HO-1, thereby regulating the Nrf2/HO-1 pathway.
ConclusionFA-2-b-β suppressed DLBCL cell growth by inducing ferroptosis through the Nrf2/HO-1 pathway, making it an attractive potential therapeutic option.
-
-
-
20D-Dynamic Representation of Protein Sequences Combined with K-means Clustering
Authors: Dorota Bielińska-Wąż, Piotr Wąż and Agata BłaczkowskaAvailable online: 26 February 2025More LessObjectiveThe objective of this research is to demonstrate that alignment-free bioinformatics approaches are effective tools for analyzing the similarity and dissimilarity of protein sequences. All numerical parameters representing sequences are expressed analytically, ensuring precision, clarity, and efficient processing, even for large datasets and long sequences. Additionally, a novel approach for identifying previously unknown virus strains is introduced.
MethodsA novel approach is proposed, integrating the unique features of our newly developed method, the 20D-Dynamic Representation of Protein Sequences, with the K-means clustering algorithm. The sequences are represented as clouds of material points in a 20-dimensional space (20D-dynamic graphs), with their spatial distribution being unique to each protein sequence. The numerical parameters, referred to as descriptors in molecular similarity theory, represent quantities characteristic of dynamic systems and serve as input data for the K-means clustering algorithm.
ResultsExamples of the application of the approach are presented, including projections of the 20D-dynamic graphs onto 3D spaces, which serve as a visual tool for comparing sequences. Additionally, cluster plots for the analyzed sequences are provided using the proposed method.
DiscussionCombining the 20D-Dynamic Representation of Protein Sequences with an unsupervised machine learning algorithm (K-means clustering) enhances its scalability. This approach is applicable to large datasets without restrictions on sequence length.
ConclusionIt has been demonstrated that the 20D-Dynamic Representation of Protein Sequences, combined with the K-means clustering algorithm, successfully classifies subtypes of influenza A virus strains.
-
-
-
Modeling the Physico-Chemical Characteristics of Benzenes through the Application of Zagreb Rho Indices
By İdris ÇiftçiAvailable online: 26 February 2025More LessIntroductionQuantitative Structure–Property Relationship (QSPR) models play a crucial role in predicting the chemical and physical characteristics of molecules.
MethodsThis study introduces Zagreb rho indices derived from graph theory to assess the physico-chemical properties of benzenes. The rho degree of vertices in connected graphs was formulated and used to compute these indices.
ResultsStrong correlations (R> 0.94) were observed between Zagreb rho indices and various molecular properties such as boiling point, molecular weight, and electron energy.
DiscussionThe findings demonstrate that Zagreb rho indices can serve as reliable predictors within QSPR frameworks, offering structural sensitivity and outperforming traditional topological indices in several aspects.
-
-
-
Advances in Targeting Neutrophil Extracellular Traps as a Promising Approach for Breast Cancer Treatment
Authors: Jiale Mi, Jiani Guo, Kang Kang, Shiqi Wang and Mingde HuangAvailable online: 26 February 2025More LessNeutrophils release neutrophil extracellular traps (NETs), a reticular structure mainly composed of antimicrobial peptides, DNA, and histones. Neutrophil elastase (NE), matrix metalloproteinase-9, and histone G are the key components of NETs critically involved in breast cancer invasion and migration, which suggests an important role of NETs in tumorigenesis and metastasis. Studies have reported that NETs significantly promote breast cancer invasion, intravascular infiltration, and distant metastasis by inducing epithelial-mesenchymal transition (EMT), remodeling the extracellular matrix, and modulating the immune microenvironment. Meanwhile, NETs also function crucially in capturing circulating tumor cells, forming a pre-metastatic microenvironment, and awakening dormant cancer cells. Notably, NETs are also closely associated with chemotherapy and immunotherapy resistance in breast cancer. Therapeutic strategies targeting NETs, including DNase I, PAD4 inhibitors, elastase inhibitors, and histone C inhibitors, have been widely studied. These targeted therapies can effectively suppress the generation of NETs, improve drug efficacy, and delay tumor metastasis. This review aimed to systematically elucidate the mechanism of action of NETs in the progression and drug resistance of breast cancer and explore potential targeted therapeutic strategies against NETs. These strategies could effectively inhibit the generation of NETs, delay the progression of breast cancer, and improve therapeutic efficacy. An in-depth study of the mechanism of action of NETs and the clinical significance of their targeted interventions is expected to provide a new direction for breast cancer treatment.
-
-
-
Identification of Mitochondrial-related Characteristic Biomarkers in Osteosarcoma using Bioinformatics and Machine Learning
Authors: Jingyi Hou, Yu Zhang, Ning Yang, Bin Chen, Chengbing Chang, Haipeng Gu, Yanqi Liu and Naiqiang ZhuAvailable online: 25 February 2025More LessBackground/AimsOsteosarcoma (OS), a malignant tumor originating in bone or cartilage, primarily affects children and adolescents. Notably, substantial alterations in mitochondrial energy metabolism have been observed in OS; however, the specific contribution of mitochondrial-related genes (MRGs) to OS pathogenesis and prognosis remains unclear. Herein, we identified novel diagnostic biomarkers associated with mitochondrial-related processes in OS via comprehensive bioinformatics analysis.
MethodsOS mRNA expression profiles were retrieved from GSE16088 and GSE19276 databases. Mitochondrial-related differentially expressed genes (MitoDEGs) were identified by integrating differentially expressed analysis with mitochondrial-localized genes. A protein-protein interaction network was constructed, and machine learning algorithms (LASSO regression analysis and SVM-RFE) identified characteristic MitoDEGs. Subsequently, immune cell infiltration, microenvironment analysis, and single-cell RNA sequencing (scRNA-seq) analyzed differences in characteristic MitoDEGs, and RT-PCR was used for in vitro verification of characteristic MitoDEGs.
ResultsMitoDEGs in OS were significantly enriched in the pathways associated with mitochondrial function and immune regulation. Two MitoDEGs, UCP2 and PRDX4, were identified via LASSO and SVM-RFE. Correlation analysis demonstrated a close association between UCP2 and PRDX4 expression levels and immune cell infiltration, particularly in CD8+ T and native CD4+ T cells, as observed in both immune cell and scRNA-seq analyses. Furthermore, RT-PCR confirmed the expression levels of UCP and PRDX4 at the cellular level, which was consistent with the bioinformatics results.
ConclusionThis study identified UCP2 and PRDX4 as characteristic MitoDEGs and potential diagnostic biomarkers for OS using machine learning algorithms. These findings provide novel insights into the clinical applications of these biomarkers for OS diagnosis.
-
-
-
Rapid Screening and Effective Rabbit-Derived Fab Antibodies Production Based on Yeast Surface Display
Authors: Weili Shen, Tingting Gong and Changli ShaoAvailable online: 24 February 2025More LessIntroduction/ObjectiveAntibodies have broad applications in various fields, such as biology and medicine. The screening and preparation of highly specific and sensitive antibodies are essential research areas. Several techniques for the preparation of mouse-derived antibodies have been developed, but limited studies on rabbit-derived antibodies with a broader antibody profile and easier humanization are reported. An improved yeast surface display technique was used for rapid screening of rabbit-derived Fab antibodies.
MethodsAfter RNA extraction from peripheral rabbit blood, a cDNA library was obtained by reverse transcription. After recombinant vector construction, the expressed sequence in the form of Fab antibody structure was fused to the N-terminal end of Aga2p in the vector; a bidirectional promoter was inserted and successfully expressed in brewer's yeast EBY100. In addition, sequences, such as leucine zipper and inulinase signal peptide (INU), were inserted into the recombinant vector to improve the expression and stability of Fab antibody further.
ResultsA biotin-labeled salbutamol marker was synthesized, and two rabbit-derived salbutamol-Fab antibodies were screened in three weeks using fluorescence-activated cell sorting (FACS).
ConclusionAfter antigen-binding kinetic studies, the screened antibodies demonstrated good affinity and specificity.
-
-
-
Evaluation of Carbamazepine and Gabapentin’s Safety and Efficacy in Trigeminal Neuralgia Treatment: A Systematic Review and Meta-Analysis
Authors: Yang Yan, Haitao Shang and Tao HanAvailable online: 24 February 2025More LessAimThis study aimed to assess the safety and effectiveness of carbamazepine in treating trigeminal neuralgia in contrast to gabapentin. Hence, a systematic review and meta-analysis of randomised controlled trials had been carried out.
MethodsThe relevant studies were searched in PubMed and filtered according to the inclusion and exclusion criteria. Independently, two reviewers chose the studies, evaluated the quality of the investigations, and retrieved the data. RevMan was used for analysis when the data were collected and entered into the data extraction sheet. In addition to heterogeneity, the overall estimate measures were computed as mean differences with a 95% confidence interval for continuous data and relative risk for dichotomous data. To investigate the impact of outliers on the result, a sensitivity analysis was performed. A funnel plot was used to qualitatively evaluate the publishing bias. A total of 1,650 participants from 19 randomised controlled trials were evaluated.
ResultsThe meta-analysis revealed that the group receiving gabapentin therapy had a similar overall effective rate to the group receiving carbamazepine therapy (OR = 1.94, 95% CI 1.46, 2.57, P = 0.32). Additionally, our meta-analysis revealed that the group receiving gabapentin therapy witnessed a significantly lower risk of adverse reactions than the group receiving carbamazepine therapy (OR= 0.29, 95% CI 0.22, 0.387, P<0.00001).
ConclusionIn summary, the current trials comparing carbamazepine and gabapentin have had inadequate methodological quality. It is not possible to conclude that gabapentin is more effective than carbamazepine in terms of adverse effects based on the evidence that is currently available.
-
-
-
UPLC-Q-TOF-MS, Network Pharmacology and Molecular Docking to Reveal the Antidepressant Mechanism of the Different Components of Medicinal and Edible Lilies (Lilium sp. pl)
Authors: Zhaoyang Tan, Linghe Huang, Yanqiu Tian, Sai Jiang, Zhi Wang, Hongping Long, Qiaozhen Tong, Shunxiang Li and Lin JiangAvailable online: 24 February 2025More LessBackground and ObjectivesTo explore the mechanism of action of the differential components of medicinal and edible lilies in treating depression by network pharmacology using UPLC-Q-TOF-MS technology.
MethodsThe chemical composition of medicinal and edible lilies was analyzed, screening for unique medicinal compounds. Searched for depression-related targets. Constructed PPI networks. Performed GO and KEGG analyses. Built a network of differential components, and conducted molecular docking. In addition, the contents of regaloside before and after lily processing were compared.
ResultsMedicinal lilies and edible lilies have 17 main differences, including regaloside B and regaloside E. There are 179 targets for actives, 2690 for antidepressants, and 98 intersected. Core targets (7) led to 238 GO processes and 107 KEGG pathways. The molecular docking results showed that 17 components, including regaloside B, regaloside E, (25R)-3β,17α-Dihydroxy-5α- spirostan-6-one 3-O-α-L- rhamnopyranosyl-(1→2)-β- D-glucopyranoside (Named: Lilium lancifolium saponin), etc. could act on 7 potential targets such as EGFR, HSP90AA1, STAT3, TNF, etc. to exert antidepressant effects.
ConclusionThis study employed a network pharmacology combined with a molecular docking approach to compare the active constituents of medicinal and edible lilies in antidepressants, and their pharmacological mechanisms, both theoretically and technically. The phytoconstituents were found to act mainly by inhibiting the inflammatory response in depression. Especially Lilium lancifolium saponin may have a close relationship with antidepressants. These results provide some justification for lilies in the treatment of depression.
-
-
-
Quercetin Inhibits Ectopic Lesion Formation in Mice by Modulating the MAT2A/PRMT5 Pathway through PPARγ Activation
Authors: Shun Zhang, Yuan-Yuan Zhang, Qiu-Xia Zeng, Li Wang, Kong-Xian Li and Qi ChenAvailable online: 24 February 2025More LessIntroductionThis study aimed to examine the impact of quercetin on a mouse model of endometriosis and elucidate its underlying mechanisms.
MethodsAn endometriosis model was established using C57BL/6 mice, which were divided into three groups: 1) sham group, 2) model group, and 3) model group treated with daily gavage administration of 100 mg/kg/d quercetin. Histopathological examination was performed using hematoxylin and eosin (HE) staining. The microstructure of the lesions was examined using electron microscopy. The expressions levels of related proteins, such as the peroxisome proliferator-activated receptor-γ (PPARγ), methionine adenosyl-transferase 2A (MAT2A), Ki67 and VEGF was measured using Western blotting or Immunohistochemistry.
ResultsCompared to the model group, the medication group showed sparse endometrial stromal cells, irregular morphology, and numerous vacuoles, indicating apoptosis. Compared to the sham group, SAM expression was unchanged (P > 0.05), while PPARγ decreased. MAT2A, PRMT5, cyclin D1, and C-MYC increased, and vimentin, Ki67, VEGF, and caspase-1 were strongly positive (P < 0.05). Quercetin intervention reduced ectopic lesion weights, increased PPARγ, and decreased MAT2A, PRMT5, SAM, cyclin D1, and C-MYC. Vimentin, Ki67, VEGF, and caspase-1 were weakly positive (P < 0.05).
DiscussionThese results indicate that quercetin effectively reduced endometriosis lesions by modulating key protein expressions and promoting apoptosis.
ConclusionQuercetin modulated the transcription of the MAT2A/PRMT5 gene by activating PPARγ activity, thereby influencing the ectopic implantation and growth of endometrial cells.
-
-
-
Exploring the Blueprint of Life: The Innovation in Antibody and Protein Design
Authors: Zhiwei Yang and Gerald H. LushingtonAvailable online: 20 February 2025More LessThe innovation in antibody and protein design highlights the transformation from empirical approaches to sophisticated strategies integrating computational methods and artificial intelligence (AI). Key principles, such as combinatorial, structure-based, consensus, and computational designs, have been pivotal in predicting structures from sequences (in silico design). Advances in tools, like AlphaFold and Rosetta suite, enable accurate structure prediction, facilitating the development of functional proteins and antibodies. However, challenges remain, including improving prediction accuracy, modeling flexible regions, understanding structural dynamics, and designing catalytic and binding sites. Despite these, the field promises groundbreaking advancements in biomedical sciences, enriching our understanding and serving human health and scientific discovery.
-
-
-
Investigation of LncRNA Expression Profiles and Analysis of Immune-Related lncRNA-miRNA-mRNA Networks in Neovascular Age-Related Macular Degeneration
Authors: Liying Qin, Xiang Gao, Xiuhai Lu, Wencai Liu, Jingyi Tian, and and Gongqiang YuanAvailable online: 12 February 2025More LessIntroductionAge-related Macular Degeneration (AMD) is a predominant cause of blindness in the elderly. The present study is the first to investigate the alteration of lncRNAs and mRNAs in neovascular AMD.
MethodsNine patients with neovascular AMD were included in the study. The control group comprised seven patients with epiretinal membranes. RNA sequencing was performed to obtain the differentially expressed mRNAs (DEmRNAs) and lncRNAs (DElncRNAs). Then, the DElncRNA-DEmRNA co-expression network, ceRNA network, and immune-related ceRNA subnetwork were constructed. Functional annotation of DEmRNAs between the two groups and DEmRNAs in networks was conducted. The immune cell distribution in neovascular AMD was also evaluated. Real-time qPCR (RT-qPCR) was used to validate the expression levels of key markers.
ResultsA total of 342 DEmRNAs and 157 DElncRNAs were obtained in neovascular AMD. Functional annotation indicated that these DEmRNAs significantly enriched immune system-related processes, such as positive regulation of B cell activation, immunoglobulin receptor binding, complement activation, and classical pathway. The DElncRNA-DEmRNA co-expression network, including 185 DElncRNA-DEmRNA co-expression pairs, and the ceRNA (DElncRNA-miRNA-DEmRNA) network, containing 45 lncRNA-miRNA pairs and 73 miRNA-mRNA pairs, were constructed. The immune-related ceRNA subnetwork, including 2 lncRNAs, 5 miRNAs, and 3 mRNAs, was constructed. In addition, the distribution of immune cells was slightly different between the neovascular AMD group and the control group. RT-qPCR validation indicated the consistency between the RT-qPCR results and RNA sequencing results.
ConclusionIn conclusion, STC1, S100A1, MEG3, MEG3-hsa-miR-608-S100A1, and MEG3-hsa-miR-130b-3p/hsa-miR-149-3p-STC1 may be related to the occurrence and development of neovascular AMD.
-
-
-
Therapeutic Potential of Desert Truffles in the Management of Eye Infections: Demystifying the Fact
Available online: 10 February 2025More LessTruffle, an ascomycetous, hypogeous macrofungi, has long been recognized and valued for its therapeutic and dietary properties. Of late, a range of medicinal compounds, such as ergosterol, tuberoside anandamide, polysaccharides, and phenolics exhibiting anti-inflammatory, immunomodulatory, anticancer, antibacterial, and aphrodisiac properties have been identified in truffles. This review provides an update on contemporary truffle research with a focus on antimicrobial potentials and aims to draw the attention of researchers to exploit the therapeutic potential of truffles in the management of eye infections. The scholarly literature pertaining to the utilization of desert truffles in the management of ocular infections was systematically summarized and reviewed from multiple databases, including Scopus, Web of Science Core Collection, PubMed, and others. The essence of truffle is used as a remedy for trachoma and as an anti-inflammatory agent for ocular problems. The most probable inhibitory constituents are the fungal lectins, polysaccharides, and laccases. Truffle lectins possess the ability to identify and remove bacterial exopolysaccharides. In addition, the fungal polysaccharides affect the bacterial defensive systems. Conversely, laccases facilitate the process of oxidizing phenols, resulting in the release of superoxide anion radicals and the production of hydrogen peroxide. The application of desert truffles in addressing ocular issues has been clinically observed to be satisfactory. The existing literature clearly indicates a pressing need for further investigation into the translation of the antimicrobial properties of crude truffle extract into truffle-based pharmaceutical formulations for clinical application.
-
-
-
Identification of NR4A2 as a Potential Predictive Biomarker for Atherosclerosis
Authors: Lebin Yuan, Ruru Bai, Xinhao Han and Jiajia XiangAvailable online: 10 February 2025More LessIntroduction/ObjectiveAtherosclerosis, a leading cause of death globally, is characterized by the buildup of immune cells and lipids in medium to large-sized arteries. However, its precise mechanism remains unclear. The purpose of this study is to explore innovative and reliable biomarkers as a viable approach for the identification and management of atherosclerosis.
MethodsThe atherosclerosis-related datasets GSE100927 and GSE66360 were retrieved from the Gene Expression Omnibus (GEO) database. The Limma package in the R programming language was utilized, applying the criteria of |logFC| > 1 and P < 0.05. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the 127 identified DEGs using R. Machine learning techniques were then applied to these data to explore and pinpoint potential biomarkers. The diagnostic potential of these markers was assessed via Receiver Operating Characteristic (ROC) curve analysis. Finally, western blot, real-time quantitative PCR (qRT-PCR), and immunohistochemistry (IHC) were employed to confirm the key biomarkers.
ResultsOur research indicated that a total of 127 DEGs linked to atherosclerosis were successfully identified. Through the application of machine learning methods, eight critical genes were highlighted. Among these, Nuclear Receptor Subfamily 4 Group A Member-2 (NR4A2) emerged as the most promising marker for further investigation. CIBERSORT analysis revealed that NR4A2 expression levels were significantly correlated with multiple immune cell types, including B cells, plasma cells, and macrophages. Additional validation experiments confirmed that NR4A2 expression was indeed elevated in atherosclerotic plaques, supporting its potential as a biomarker for atherosclerosis.
ConclusionOur study identified NR4A2 as a potential immune-related biomarker for the diagnosis and treatment of atherosclerosis.
-
-
-
Causal Mediation Analysis of the Effect of Dietary Habits on Sleep Apnea Risk
Authors: Yingying-Li1, Liang Wu and Wendo- ChenAvailable online: 06 February 2025More LessObjectiveDiet is a modifiable factor that influences several chronic diseases, making lifelong dietary interventions critically important for reducing disease risk. Hence, this study aims to assess the potential causal relationship between diet and sleep apnea (SA).
MethodsWe analyzed genome-wide association study (GWAS) data from approximately 450,000 individuals, focusing on 8 dietary intakes and GWAS statistics for 249 metabolites from the UK Biobank. Sleep apnea-related phenotypic data from 16,761 participants were sourced from the FinnGen Biobank. Furthermore, we conducted a series of two-sample Mendelian Randomization (two-sample MR) to explore the causality between diet and SA. Sensitivity analyses were conducted to assess the robustness of the two-sample MR results, and reverse MR analysis was performed to examine potential reverse causality. Multivariate MR (MVMR) analysis and mediation effect estimation were employed to evaluate the mediating roles of metabolites.
ResultsTwo-sample MR analyses revealed significant causal associations between bread intake (OR=0.56, 95% CI 0.35–0.89, P =0.014), cheese intake (OR=0.67, 95% CI 0.50–0.89, P =0.006), and dried fruit intake (OR=0.61, 95% CI 0.39–0.95, P =0.029) with SA. Reverse MR analysis indicated a causal effect of SA on dried fruit intake (P < 0.05). Univariate MR analyses further identified significant causal effects of bread and cheese intakes on 2 and 32 metabolites, respectively (P < 0.05). Subsequent MVMR analysis demonstrated direct causal effects of bread and cheese intake on SA, independent of metabolite mediation (P < 0.05). Furthermore, the mediating effect of cheese intake on SA through glucose was estimated at 0.023 (90% CI 0.01–0.046), whereas other modeled mediation effects were not statistically significant.
ConclusionThe MR analysis in this study offers genetic evidence indicating that heightened genetic susceptibility to cheese and bread intake potentially reduces SA risk. These findings underscore and validate the significance of diet in preventing SA.
-
-
-
Adaptability of Thermotoga Maritima's Glycolysis Pathway in Both Oxic and Anoxic Environments
Authors: Raja Lakhal, Manaf AlMatar and Tahani AlkalafAvailable online: 06 February 2025More LessBackgroundThe phylum Thermotogae is composed of five families: Fervidobacteriaceae, Thermatogaceae, Kosmotogaceae, Petrotogaceae, and Mesoaciditogaceae; one class: Thermotogae; and four orders: Kosmotogales, Petrotogales, and Mesoaciditogales. There are thirteen genera in all. The physical and metabolic characteristics of the Thermotogae species reflect the extreme heat from which they were separated. Thermotogae members have a broad spectrum of metabolic capacities, resulting in a pool of valuable chemicals with potential uses in many different sectors.
MethodA 1.5-liter operating capacity bioreactor with a 2.3-liter double-jacket glass volume was utilised to culture Thermotoga maritima in both oxic and anoxic conditions. In addition to temperature, pH, and redox potential, sensors that were installed within the fermentor monitored additional parameters. RNA extraction and cDNA synthesis A total of RNAs was extracted utilising Roche's High Pure RNA reagent. Analysis of glycolysis pathways in T. maritima was performed by NMR spectroscopy
ResultBased on NMR analysis, our findings demonstrate that T. maritima uses the EM route to metabolize 90% of glucose in anoxia and the ED pathway for 10%. On the other hand, T. maritima continues to employ the EM and ED glycolysis routes concurrently when exposed to extended oxidative stress; however, the ED pathway's contribution drops from 10% to around 5%.
ConclusionCompared to the EM route, the ED pathway has more strongly repressed transcripts that encode its unique enzymes.
-
-
-
Bingqing Gao Facilitates the Healing Process of Full-Thickness Skin Defects in Rat Wounds by Activating the PI3K/AKT Pathway
Authors: Hong’e Ma, Rui Hu, Jiajun Guo, Xinfu Wang, Xin Liu, Ning Zhang, Ruilong Ren, Danyang Wang and Wenxian ZhangAvailable online: 04 February 2025More LessBackgroundTrauma, resulting from mechanical factors, entails damage to human tissues or organs. Whether occurring during times of war or peace, trauma is prevalent, particularly skin defects arising from surgery or external injuries. The development and design of effective wound dressings have become paramount. Bingqing Gao(BQG), rooted in Chinese folk medicine, is employed explicitly in trauma treatment based on traditional Chinese medicine (TCM) theory. This study aims to elucidate how BQG facilitates full-thickness skin wound healing in Sprague Dawley (SD) rats.
MethodsData collection commenced using two approaches: retrieval from TCM system pharmacology databases (TCMSP) and literature mining to compile the practical chemical components and targets of BQG. A drug-target network was constructed. Subsequently, disease targets related to wound healing were collected to select core targets and pathways, building a drug-disease target protein-protein interaction (PPI) network using the ClusterONE algorithm to identify core genes. Gene Ontology (GO) and KEGG enrichment analyses were conducted based on the Metascape database. Finally, molecular docking validation was performed on the screened core targets and core components. In terms of in vivo experimentation, an SD rat full-thickness skin defect model was established, and varying doses of BQG were applied. Healing area, HE staining, Masson staining, ELISA, PCR, and other methods were employed to validate cytokines, differential proteins, and pathways. The study collectively discusses the mechanism and targets by which BQG promotes full-thickness skin wound healing in SD rats.
ResultsThrough network pharmacology screening, we identified various active components, including resveratrol, Lithospermic acid B, sanguiinH-2, asernestioside A_qt, kaempferol, daidzein, quercetin, apigenin, and Medicarpin. The core targets encompass Interleukin-6 (IL-6), Protein Kinase B (AKT1), Vascular Endothelial Growth Factor A (VEGFA), Interleukin-1 beta (IL-1β), Tumor Protein 53 (TP53), Epidermal Growth Factor Receptor (EGFR), Tumor Necrosis Factor (TNF), Albumin (ALB), among others. Potential signaling pathways include Phosphoinositide 3-kinase (PI3K)/AKT, Tumor Necrosis Factor (TNF), Hypoxia-Inducible Factor-1 (HIF-1), and more. Molecular docking studies suggest a robust binding interaction between the active components of BQG and disease targets, indicating a potential regulation of cytokines through the PI3K/AKTsignaling pathway, thereby promoting wound healing. The results of the in vivo experiment revealed that, in comparison to the model group, both the rhb-FGF group and BQG-H group exhibit a noteworthy increase in the expression levels of PI3K and AKT genes. Concurrently, there is a significant decrease in the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. Additionally, there is a substantial increase in the levels of Transforming Growth Factor-beta (TGF-β) and Vascular Endothelial Growth Factor (VEGF).
ConclusionNetwork pharmacology results indicate that BQG promotes wound healing through multiple components, targets, and pathways. In vivo experimental results suggest that BQG may activate the PI3K/AKTsignaling pathway, inhibit the production and release of related pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, promote VEGF generation at the injury site, and enhance TGF-β signaling transduction, effectively regulates the inflammatory response at the site of injury, promotes vascular regeneration in the injury area, and induces the proliferation and migration of cells in the injury area, ultimately contributing to wound healing. This study establishes the foundation for a more profound understanding of the molecular mechanisms underlying BQG's promotion of wound healing and offers insights for future drug research on BQG.
-
-
-
Therapeutic Mechanism of Zhishi Decoction Regulating P38/MAPK Signaling Pathway on Functional Constipation (FC)
Available online: 04 February 2025More LessBackgroundZhishi decoction (ZSD) is one of the most common herb decoctions in traditional Chinese medicine (TCM), and it is used for the treatment of FC. However, its main therapeutic mechanism is not yet clear. This study aims to explore the possible pharmacodynamic material basis and potential molecular mechanism from network pharmacology and molecular docking and verify them through animal experiments.
MethodsFirstly, the effective ingredients, potential targets, and key targets of ZSD in the treatment of FC were screened through network pharmacology. Go and KEGG analyses were performed for potential targets. Secondly, molecular docking was used to link the main active components of ZSD with target genes to predict their possible molecular mechanisms. Finally, 30 male BALB/c mice (20±2g) were randomly divided into five groups (n=6), including the blank group, ZSD groups with two dosages (7.15, 14.3g/kg), FC model group, and positive group (lactulose group). All the mice were given difenoxate tablets for 14 days to establish FC model except the blank group. Moreover, the mice in the blank group were given the same volume of normal saline. After admination for 14 days, the whole colon tissues were obtained for the analysis of small intestinal propulsion rate, and the expression of P38MAPK in colon tissues of mice was observed via immunohistochemistry and WesterBlot.
ResultsIn this study, 43 active ingredients in ZSD were identified. Four hundred and thirty potential therapeutic targets were selected, among which AKT1, MAPK12, and MAPK14 were key targets. 164 GO biological processes and 123 KEGG signaling pathways were identified after analysis, such as MAPK signaling pathway, TNF signaling pathway etc. The molecular docking results showed that Prangenin, 4-Hydroxyhomopterocarpin, isoponcimarin, and AKT1, MAPK12, MAPK14 had good binding degree. Additionally, ZSD could relieve the symptoms of FC in mice significantly. Compared with the model group, p38/MAPK positive expression cells and protein expression levels in the colon tissues of ZSD groups significantly increased in a dose-dependent manner (p<0.01).
ConclusionThis study confirmed that ZSD could act on AKT1, MAPK12, and MAPK14 targets to activate the p38/MAPK signaling pathway to relieve FC induced by defenoxate tablets. The further development of ZSD provided a theoretical basis.
-
-
-
CD4+ Effector Memory T Cells Related Marker Gene Signatures in Osteoporosis and Aging: Insight From Single-Cell Analysis and Mendelian Randomization
Authors: Xiangwen Shi, Linmeng Tang, Mingjun Li, Yipeng Wu and Yongqing XuAvailable online: 04 February 2025More LessObjectiveWith the accelerated aging of the population, aging has emerged as a major risk factor for osteoporosis (OP). This study aims to investigate the relationship and shared molecular mechanisms between OP and aging through various genetic approaches.
MethodsSingle-cell data from the peripheral blood of osteoporosis patients, aging individuals, and healthy controls were integrated to analyze characteristic changes in cell subpopulations. Differentially expressed genes (DEGs) were then identified within core subpopulations, and Mendelian randomization (MR) analysis was employed to explore potential causal links between key genes and OP. Additionally, an OP model was established in rats, and mRNA levels of key genes were measured using RT-qPCR.
ResultsThrough the integration, filtering, and analysis of scRNA-seq data, an increased proportion of CD4+ effector memory T (CD4+ TEM) cells were identified in OP and aging samples, marking them as a core subpopulation. Differential expression analysis identified 49 DEGs, and further analysis through Mendelian Randomization (MR) identified three key genes (KLRB1, NR4A2, and S100A4) significantly associated with OP. Notably, the upregulation of KLRB1 and S100A4 may enhance the interactions within T cells and with other cell subgroups. At the same time, the downregulation of NR4A2 could impede communication between T cells and other cell subpopulations. The RT-qPCR results indicated that NR4A2 was significantly downregulated in the OP group.
ConclusionThis study conducted a comprehensive analysis of the potential link between OP and aging, identifying CD4+ TEM cells as the core cell subgroup in OP and aging samples. It further revealed the causal relationship between KLRB1, NR4A2, and S100A4 and the occurrence of OP. The upregulation of KLRB1 and S100A4 may contribute to OP pathogenesis by promoting interactions between CD4+ TEM cells and other cell subgroups, providing new insights for molecular targeting and immunotherapy of OP.
-
-
-
A Comparative Chemoinformatics Analysis of Compounds Extracted from Nyctanthes Arbor-tristis
Authors: Nandini Sandeep Kotharkar, Sanket Bapat, Pranav Pathak and Renu VyasAvailable online: 02 February 2025More LessIntroductionNatural products are a rich source of diverse chemical compounds with interesting therapeutic properties. There is a need for in-depth investigation of this reservoir with in-silico tools to assert the molecular diversity with respect to clinical significance. Although studies have been reported on plants such as Nyctanthes arbor-tristis(NAT) and its medicinal importance. A comprehensive study on comparative analysis of all phyto-constituents has not been carried out.
Aimn the present work, we have carried out a comparative study of compounds obtained from the ethanolic extracts of various parts such as calyx, corolla, leaf, and bark of the NAT plant.
MethodsThe extracted compounds were characterized by LCMS and GCMS studies. This was further corroborated by the network analysis, docking, and dynamic simulation studies with validated anti-arthritic targets.
ResultsThe most significant observation from LCMS and GCMS was that the compounds from calyx and corolla were closer in chemical space to the anti-arthritic compounds. To further expand and explore chemical space, the common scaffolds were seeded to enumerate a virtual library. The virtual molecules were prioritized based on the drug-like, leadlike scores and docked against anti-arthritic targets to reveal identical interactions in the pocket region.
ConclusionThe comprehensive study will be of immense value to medicinal chemists for the rational synthesis of molecules as well as bioinformatics professionals for getting useful insight into identifying rich diverse molecules from plant sources.
-
-
-
Forsythiaside A Ameliorates Inflammation by Regulating the Autophagy in Methotrexate-induced Intestinal Mucositis
Authors: Wuying Lang, Jiayi Zhang, Xuejun Xiao, Min Cheng, Xin Zheng, Haizhou Gong, Ihsan Ali, Yongping Zhao, Feng Jia, Zhe Wang, Jing Wang, Wei Li and Haihua ZhangAvailable online: 29 January 2025More LessBackgroundMethotrexate (MTX) effectively eliminates cancerous cells but can also cause inflammation intestinal, known as mucositis. Forsythiaside A (FTA) from Forsythia suspensa has shown promise in relieving mucositis by targeting the NLRP3 pathways. Since NLRP3 inflammasome activation is negatively regulated by autophagy, this study explores how FTA-mediated autophagy affects NLRP3 inflammasome in treating MTX-induced intestinal inflammation.
MethodsIntestinal mucositis was induced in rats with MTX. FTA's impact was assessed using HE staining and ELISA. The mechanism was studied using immunofluorescence, western blot, and ELISA.
ResultsFTA treatment resulted in reduced levels of D-lactic acid and diamine oxidase (DAO) in MTX-treated rats. Western blot and immunofluorescence analyses revealed up-regulation of Beclin-1 and LC3II/I, accumulation of LC3, and down-regulation of p62 expression levels in MTX-treated rats following 40 or 80 mg/kg FTA intervention. However, when the autophagy inhibitor 3-MA was used, the intestinal pathology was exacerbated, the inflammatory scores increased, and serum levels of TNF-α, IL-1β, and IL-18 were elevated. Western blotting indicated decreased LC3II/I expression, while NLRP3, cleaved caspase 1, and cleaved IL-1β expressions were upregulated.
ConclusionThese findings suggested that FTA alleviated MTX-treated intestinal mucositis by activating autophagy, which in turn inhibits the NLRP3 inflammasome.
-
-
-
PGD2/PTGDR2 Signaling Affects the Stemness of Gastric Cancer Stem Cells by Regulating Autophagy
Authors: Feifan Wang, Hengjin Tian, Peiyao Gao, Zhanshan Cha and Qiang ZhangAvailable online: 27 January 2025More LessBackgroundProstaglandin D2 (PGD2) can inhibit the development of gastric cancer (GC); however, its role in the autophagic death of GC stem cells (GCSCs) remains elusive. Therefore, this study aims to evaluate the mechanisms by which PGD2 regulates the stemness in GCSCs.
MethodsIn this study, HGC27-derived GCSCs were employed to knock down PGD2 receptor 2 (PTGDR2). Subsequently, cell stemness and autophagic activity in these GCSCs were assessed via sphere-forming capacity, transmission electron microscopy, and western blot analyses.
ResultsThe results revealed that PGD2 suppressed the stemness of GCSCs and induced GCSCs autophagy, whereas the downregulation of PTGDR2 had the opposite effect. Furthermore, PGD2 was also found to inhibit the expression of stemness-associated proteins CD44 and OCT4, which were blocked by 3-MA and enhanced by RAPA. Moreover, the shPTGDR2 + PGD2 group indicated higher stemness than the PGD2 group, with 3-MA enhancing this effect and RAPA reducing this change.
ConclusionIn summary, this study indicated that PGD2/PTGDR2 signaling affects stemness and autophagy in GCSCs. The results suggest that PGD2/PTGDR2 signaling may affect the stemness of GCSCs by regulating autophagy.
-
-
-
Predicting Polymerase Chain Reaction Success: Integrating the K-Word Order Model, Physicochemical Properties Modeling of Double Bases, and Support Vector Machine
Available online: 23 January 2025More LessIntroductionPolymerase Chain Reaction (PCR) has been a pivotal scientific technique since the twentieth century, and it is widely applied across various domains. Despite its ubiquity, challenges persist in efficiently amplifying specific DNA templates.
MethodWhile PCR experimental procedures have garnered significant attention, the analysis of the DNA template, which is the experiment's focal point, has been notably overlooked. This study addresses the uncertainty surrounding the amplification of DNA fragments using conventional Taq DNA polymerase-based PCR protocols. The imperative need to characterize DNA templates and devise a reliable method for predicting PCR success is underscored.
ResultIn this study, we formulate a 72-dimensional feature vector representing a DNA template through the utilization of k-word order and modeling of physicochemical properties of double bases. Subsequently, a Support Vector Machine (SVM) model is employed to assess PCR results.
ConclusionA jackknife cross-validation test is used to evaluate the anticipated success rates, resulting in an overall accuracy of 95.77%. Sensitivity, specificity, and Matthew's Correlation Coefficient (MCC) stand at 95.75%, 95.79%, and 0.915, respectively.
-
-
-
Investigation of the Mechanism of Pachyman against Gout Arthritis with Network Pharmacology Analysis and Verification In Vivo
Authors: Qing-xin Kong, Wei-ping Xu, Cheng Fan, Bi-Lin Liu, Li-Ping Reng and Qiao RuanAvailable online: 22 January 2025More LessPurposePachyman, derived from Poria cocos, has been used to treat gouty arthritis (GA) for thousands of years, although its precise role and mechanisms remain unclear. Herein, we investigate the therapeutic effects of pachyman on GA and explore their underlying mechanisms.
MethodsNetwork pharmacology and experimental methods were employed to investigate the therapeutic mechanisms of pachyman against GA. The protein-protein interaction network of shared targets between pachyman and gout was constructed. Furthermore, we elucidated the functions and mechanisms of pachyman against GA. Subsequently, we validated the predicted mechanisms from an experiment on rats.
ResultsThe treatment of GA with pachyman primarily related to tumor necrosis factor (TNF), matrix metalloproteinases (MMP), and relaxation factor signaling pathways. In the experimental validation, pachyman were found to regulate the expression of IL-1β, TNF-α, TGF-β, superoxide dismutase, and glutathione peroxidase of hyperuricemic rats.
ConclusionThese collective findings suggest that pachyman holds promise as an alternative treatment for GA.
-
-
-
Mechanisms of the Compound of Magnoliae Flos and Xanthii Fructus Essential Oils for the Treatment of Allergic Rhinitis based on the Integration of Network Pharmacology, Molecular Docking, and Animal Experiment
Authors: Tao Lu, Yuqin Yang, Zhenlin Yang, Ziyi Liu, Miao Li, Ziman Lu, Ting Gong and Jincheng ZhangAvailable online: 22 January 2025More LessAim and ObjectiveMagnoliae Flos (Chinese name: Xin-Yi) and Xanthii Fructus (Chinese name: Cang-Er-Zi) are Chinese herbal medicines and have been used to treat allergic rhinitis (AR). However, the therapeutic effect, active ingredients, and probable processes of a compound of Magnoliae Flos and Xanthii Fructus in the form of essential oils (CMFXFEO) in treating AR have not been reported. This study aims to determine the efficacy of the CMFXFEO on ovalbumin (OVA)-induced AR in a rat model and to use network pharmacology and molecular docking to reveal the hub genes, biological functions, and signaling pathways of CMFXFEO against AR.
MethodsAnimal experiments were applied to validate the role of CMFXFEO in the treatment of AR. 20 rats were randomly divided into four groups: control group (CON, n=5), positive control group (AR, n=5), CMFXFEO-treated group (AR+CMFXFEO, n=5), and budesonide-treated group (AR+Budesonide, n=5). Rats were stimulated with OVA to induce AR. Symptom scores assessment and histo-pathomorphological evaluation was performed. The serum level of OVA-specific immunoglobulin (Ig) E was measured. Gas Chromatograph-Mass Spectrometer analysis (GC-MS) was used to identify the monomer chemical composition of CMFXFEO. The target genes of CMFXFEO were obtained by using PubChem and SwissTargetPrediction databases. The target genes of AR were screened using GeneCards, DisGeNET, and OMIM databases. The target genes were intersected using the venny2.1 website to obtain the potential therapeutic targets of CMFXFEO for treating AR and to construct the PPI network. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to reveal associated signaling pathways. The Sybyl tool was used to dock the CMFXFEO with key therapeutic targets molecularly.
ResultsIntranasal CMFXFEO administration significantly suppressed the allergic symptoms, reduced the inflammatory cell infiltration, and the serum level of OVA-specific immunoglobulin (Ig) E. The main components of CMFXFEO obtained through the GC-MS analysis, listed as γ-terpinene (9.4908%), limonene (7.2693%), menthol (7.1821%), β-pinene (7.1190%), β-caryophyllene (7.0396%), eucalyptol (6.1367%), linalool(5.9686%), eugenol (5.0776%). A total of 398 CMFXFEO targets and 488 AR-related targets were screened, of which 42 were common targets. The GO and KEGG pathway analyses unveiled that CMFXFEO were strongly associated with several signaling pathways, including the AGE-RAGE signaling pathway, TNF signaling pathway, and Chemokine signaling pathway. PPI network construction screened six hub genes as therapeutic targets, including STAT3, IL1B, TLR4, PTGS2, ICAM1, and VCAM1. The molecular docking verification indicated that CMFXFEO have good binding activity with therapeutic targets, and β-Pinene’s docking ability with TLR4 is particularly prominent.
ConclusionThe anti-inflammatory and anti-allergic effects of CMFXFEO are to inhibit the infiltration of inflammatory cells in the OVA-induced AR rat model. The results of the network pharmacology and molecular docking deduced that the CMFXFEO may have the potential to treat AR by multiple pathways through relieving inflammatory, anti-oxidative stress response, and modulating the immune system.
-
-
-
FOLR1 Regulates the Malignant Progression of Glioblastoma through the SRC/ERK1/2 Axis
Authors: Xueshan Jia, Weihang Liang, Junya Yang, Xuejiao Chen, Bin Yi, Zhikun Cao and Qingfeng TianAvailable online: 20 January 2025More LessBackgroundGBM is an aggressive brain tumor with limited treatment options. Prior research has indicated FOLR1 as a pivotal gene involved in cancer pathogenesis.
AimThis study aimed to explore the involvement of folate receptor alpha (FOLR1) in glioblastoma (GBM) and evaluate its potential as a therapeutic target.
ObjectiveThis study investigated the expression pattern of FOLR1 in GBM, its impact on patient prognosis, and its role in GBM cell growth and the SRC/ERK1/2 signaling axis.
MethodsInitially, we conducted an expression analysis of FOLR1 based on public databases and examined its expression pattern in GBM and its impact on patient prognosis. Subsequently, cell experiments were carried out to evaluate the regulation of GBM cells by differential FOLR1 expression. We then downloaded 100 FOLR1 co-expressed genes from the Linkedomics data repository and performed an enrichment analysis. Finally, the role of FOLR1 and SRC/ERK1/2 axis in GBM was analyzed again by cell experiments.
ResultsFOLR1 was found to be substantially expressed in GBM patients and was linked to a poor prognosis. Cell experiments showed that overexpression of FOLR1 promoted GBM cell growth, while low expression of FOLR1 inhibited cell growth. Additionally, genes related to FOLR1 were enriched in the lysosome, toxoplasmosis, and other pathways. This study further indicated that FOLR1 facilitates the activation of the SRC/ERK1/2 signaling pathway in GBM cells, and the attenuation of these pathways can effectively impede the malignancy-promoting effects triggered by FOLR1 in GBM cells.
ConclusionsWe revealed that FOLR1 orchestrates the malignant advancement of GBM by stimulating the SRC/ERK1/2 signaling axis, underscoring its pivotal role in the pathogenesis of GBM.
-
-
-
Herbal Mucoadhesive Gels for Canker Sores: Analysis of Physicochemical Properties, Efficacy, and Safety
Available online: 20 January 2025More LessAimThe goal of this research was to formulate mucoadhesive gels using hydroglyceric extracts of Cistus creticus L. and Inula viscosa (L.) Aiton, either separately or in combination, utilizes carboxymethyl cellulose and detects their physicochemical characteristics and safety for oromucosal cells and antimicrobial (antibacterial, antifungal, and antiviral) efficacy to assess their performance.
MethodsUsing LC-HRMS, the extracts of C. creticus and I. viscosa were examined. Evaluations were conducted on the formulations' viscosity, cytotoxicity-cell proliferation controls, texture, antibacterial activity, pH, and organoleptic properties. The minimal inhibitory concentrations and microbroth dilution tests were used to assess the effectiveness of the formulations.
ResultsThe pH, organoleptic, and physical characteristics of each formulation have been determined to be appropriate. The research results demonstrated that I. viscosa contributed antiviral efficacy to the formulations linked to dose-dependent activities against all examined mouth pathogens, whereas C. creticus provided antibacterial and antifungal efficacy. The formulation containing C. creticus extract alone was the most cytotoxic, whereas the formulation including I. viscosa extract alone was the least cytotoxic against gingival fibroblast cells, according to the findings of tests on cell proliferation and cytotoxicity.
ConclusionThe formulation contained a 32% 1:1 mixture of I. viscosa and C. creticus hydroglyceric extracts was detected as safe with acceptable cytotoxicity along with antibacterial and antiviral effectiveness, were encouraging for future investigations.
-
-
-
Transcriptome-Based Analysis of the Oxidative Response of Thermotoga maritima to the O2 Stress
Authors: Raja Lakhal, Manaf AlMatar, Tahani Alkalaf and Osman AlbarriAvailable online: 16 January 2025More LessBackgroundThermotoga maritima is an anaerobic hyperthermophilic eubacterium isolated from geothermally heated maritime surfaces. It can grow at temperatures up to 80 degrees Celsius.
MethodsA 2.3-L bioreactor was specifically designed to cultivate hyperthermophilic bacteria under carefully regulated pH, redox potential, temperature, and dissolved O2.
ResultsUsing this bioreactor, which was adjusted at 80°C and pH 7.0, it was found that Thermotoga maritima demonstrated continued growth even after being exposed to oxygen for an extended period. Transcription studies revealed that following prolonged oxygen exposure, the genes encoding ROS-scavenging systems, alkyl hydroperoxide reductase (ahp), thioredoxin-dependent thiol peroxidase (bcp 2), and, to a lesser extent, neelaredoxin (nlr), were upregulated/overexpressed. When oxygen was available, the metabolism of glucose was diverted to make lactate rather than acetate.
ConclusionBased on the O/R ratio of 1.0 in anaerobiosis and 1.67 in the presence of O2, we may conclude that Thermotoga maritima is capable of semi-oxidative metabolism.
-
-
-
Artificial Intelligence in Computer-Aided Drug Design (CADD) Tools for the Finding of Potent Biologically Active Small Molecules: Traditional to Modern Approach
Available online: 15 January 2025More LessComputer-Aided Drug Design (CADD) entails designing molecules that could potentially interact with a specific biomolecular target and promising their potential binding. The stereo-arrangement and stereo-selectivity of small molecules (SMs)--based chemotherapeutic agents significantly influence their therapeutic potential and enhance their therapeutic advantages. CADD has been a well-established field for decades, but recent years have observed a significant shift toward acceptance of computational approaches in both academia and the pharmaceutical industry. Recently, artificial intelligence (AI), bioinformatics, and data science have played a significant role in drug discovery to accelerate the development of effective treatments, reduce expenses, and eliminate the need for animal testing. This shift can be attributed to the availability of extensive data on molecular properties, binding to therapeutic targets, and their 3D structures. Increasing interest from legislators, pharmaceutical companies, and academic and industrial scientists is evidence that AI is reshaping the drug discovery industry. To achieve success in drug discovery, it is necessary to optimize pharmacodynamic, pharmacokinetic, and clinical outcome-related properties. Moreover, the advent of on-demand virtual libraries containing billions of drug-like SMs, coupled with abundant computing capacities, has further facilitated this transition. To fully capitalize on these resources, rapid computational methods are needed for effective ligand screening. This includes structure-based virtual screening (SBVS) of vast chemical spaces, aided by fast iterative screening approaches. At the same time, advances in deep learning (DL) predictions of ligand properties and target activities have become very helpful, as they no longer need information about the structure of the receptor. This study examines recent progress in the drug discovery and development (DDD) approach, their potential to reshape the entire DDD process, and the challenges they face. This review examines the role of artificial intelligence as a fundamental component in drug discovery, particularly focusing on small molecules. It also discusses how AI-driven approaches can expedite the identification of diverse, potent, target-specific, and drug-like ligands for protein targets. This advancement has the potential to make drug discovery more efficient and cost-effective, ultimately facilitating the development of safer and more effective therapeutics.
-
-
-
Mechanism Analysis of the Effect of Cordycepin on Colorectal Cancer via Network Pharmacology and Experiment
Authors: Ya Chen, Peng Wang, Mingzhu Zhang, Hao Yang and Beibei LiangAvailable online: 14 January 2025More LessObjectiveColorectal Cancer (CRC) has attracted much attention due to its high mortality and morbidity. Cordycepin, also known as 3'-deoxyadenosine (3'-dA), exhibits many biological functions, including antibacterial, anti-inflammatory, antiviral, anti-tumor, and immunomodulatory effects. It has been proven to show anticancer activity in both laboratory research studies and living organisms. However, the molecular mechanism of the effect of cordycepin on CRC remains unclear.
MethodsThe genes associated with cordycepin and colorectal cancer have been identified by comparing the toxicogenomics database (CTD) and GeneCards database. The common genes between cordycepin and CRC have been identified using the Venny tool. The Protein-protein Interaction (PPI) network has been drawn using the STRING database. GO and KEGG enrichment analyses of the intersecting genes have been followed by experimental validation, both in vitro and in vivo.
Results24 drug targets have been screened using the CTD database and 1490 disease targets have been obtained from the GeneCards database and GO and KEGG analyses. The effect of cordycepin on the proliferation of SW480 cells has been assessed using CCK-8. The related results have indicated cordycepin to inhibit the proliferation of SW480 cells, promote apoptosis, and activate the p53 signal pathway. The findings obtained from in vivo experiments have been found to be consistent with those obtained from in vitro studies.
ConclusionOur findings have elucidated an effective way to search for cordycepin’s potential mechanism of effect on CRC therapy by employing the network pharmacology and experiment. We have predicted that cordycepin can inhibit tumor growth by regulating the apoptosis pathway. This study has offered valuable insights into the potential mechanism of the effect of cordycepin on CRC and provided a theoretical basis for further validation of its clinical application.
-
-
-
Mechanism Study on the Regulation of Th1/Th2 in the Treatment of Idiopathic Membranous Nephropathy by Shengyang Yiwei Decoction
Authors: Yuan Wu, Xue-Qin Zhang, Heng-Tong An, Shuai-Jie Wang, Ya-Yun Zhao and Zhi-Qiang ChenAvailable online: 13 January 2025More LessBackgroundShengyang Yiwei Decoction showed efficacy in idiopathic membranous nephropathy treatment, and this study aimed to assess the underlying molecular mechanisms.
MethodsRats with passive Heymann nephritis were divided into the model group, the Shengyang Yiwei Decoction group, the JAK2 inhibitor group, and the STAT3 inhibitor group. Healthy rats served as the normal control. 24-hour urinary protein excretion, IgG deposition, renal histopathology, the expression levels of synaptopodin, nephrin, podocalyxin, interferon-γ, interleukin-4, T-box expressed in T cells, GATA binding protein-3, and relevant pathway proteins were measured.
ResultsWithin the model group, a notable elevation in the 24-h urinary protein level was observed, accompanied by evident IgG deposition, increased glomerular volume, eosinophilic deposits, diminished expression of podocyte marker proteins, and a discernible imbalance in Th1/Th2 cellular immunity. Conversely, in Shengyang Yiwei Decoction and both inhibitor groups, enhancements were observed across the aforementioned indexes.
ConclusionShengyang Yiwei Decoction may reduce glomerular podocyte injury through the suppression of the JAK2/STAT3 signaling pathway and modulation of the Th1/Th2 immune balance.
-
-
-
The Anaphylactic and Anti-allergenic Properties of Shuanghuanglian: A Review
Authors: Xin Jiang, Ji Li, Xiaohui Yao and Hao DingAvailable online: 13 January 2025More LessShuanghuanglian (SHL) and its primary constituents have demonstrated protective effects against allergenic diseases. This review examines the anaphylactic and anti-allergenic activities of SHL and its constituents. We also discuss potential avenues for future research, particularly regarding the expansion of the clinical applications of SHL formulations (oral or nebulized) for the treatment of allergenic disorders.
For this review, we searched the PubMed, Web of Science, and China National Knowledge Infrastructure databases for relevant publications. Additionally, details of the essential active components and target genes of SHL were obtained from the Traditional Chinese Medicine Systems Pharmacology database (TCMSP), and information on allergy-related genes was collected from the GeneCards and Online Mendelian Inheritance in Man(OMIM) databases. Lists of both the SHL target and disease-related genes were imported into the ‘Draw Venn Diagram’ tool on the website (http://bioinformatics.psb.ugen /web tools/Venn/). A protein–protein interaction network for SHL and disease targets was constructed with reference to the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the potential pathways were identified based on Kyoto Encyclopaedia of Genes and Genome enrichment analyses.
The allergenic reactions induced by SHL injection (intravenous) and its main constituents (intraperitoneal or intravenous injection) have been verified in animal experiments. Furthermore, the protective effects of SHL injection (intraperitoneal) and its individual Chinese herb components (intragastric administration), namely, Flos Lonicerae, Radix Scutellariae, and Fructus Forsythiae, as well as their main constituents (intraperitoneal or intragastric administration), have been verified in asthma, rhinitis, atopic dermatitis, and both IgE- and non-IgE-mediated systemic allergic responses. The network pharmacology analysis revealed that the therapeutic effects of SHL might be primarily mediated through the regulation of the IL-17 and TNF-α signalling pathways and Th17 cell differentiation.
Accumulated research data provide a theoretical basis for the clinical application of SHL (via extravascular routes) in the treatment of allergenic diseases.
-
-
-
Betanin Mitigates Inflammation and Ankle Joint Damage by Subduing the MAPK/NF-κB Pathway in Arthritis Triggered by Type II Collagen in Rats
Authors: Yongxiang He, Shaik Althaf Hussain and Wenjie DaiAvailable online: 13 January 2025More LessBackground: Rheumatoid Arthritis (RA), a chronic inflammatory autoimmune illness, is characterized by synovitis, progressive joint damage, and bone erosion. Even though the potent drugs available contain biologics, several patients fail to react to them or cause hostile effects.
ObjectivesBetanin (BTN), the betacyanin present in the red beetroot, has antioxidant, anti-inflammatory, and apoptotic properties. In this study, we assessed the anti-inflammatory and apoptotic effect of BTN on collagen-induced arthritis (CIA).
Materials and MethodsThe rats were arbitrarily separated into four sets: Normal, CIA, CIA+BTN (25 mg/kg bw), and CIA+BTN (50 mg/kg bw). The hematological, biochemical markers, cytokines, inflammatory enzymes, histopathology of the ankle joint, and protein expression of inflammatory and apoptotic proteins were studied.
ResultsInflammatory enzymes, histopathological variations, cytokines generation, and joint inflammation were strongly alleviated, and apoptosis was augmented by BTN in a concentration-dependent manner. Bcl-2 and MAPK/NF-κB proteins were reduced, while the caspase-3, caspase-9, and Bax were intensified. The anti-rheumatic action of BTN was correlated to the attenuation of the MAPK/NF-κB pathway, which suppresses cytokine production, inflammation, and reduced cartilage impairments.
ConclusionThese outcomes recommend that BTN can be employed as a strong healing alternative for RA management.
-
-
-
Bushen Daozhuo Granules Alleviate Chronic Non-Bacterial Prostatitis in Rats through p38 MAPK and Akt Signaling Pathways Based on Tandem Mass Tag-Based Quantitative Proteomics and Network Pharmacology Analyses
Authors: Dalin Sun, Yuanyuan Liu, Dong Xing, Dandan Wang, Bin Cai, Zhian Tang, Qinglin Hu, Wenjun Ma and Baofang JinAvailable online: 13 January 2025More LessIntroductionThe traditional Chinese medicine formula, Bushen Daozhuo Granules (BSDZG), is used to treat chronic non-bacterial prostatitis (CNP) clinically. However, its mechanism of action is unclear. The aim of our study was to determine the effect of BSDZG on CNP and its underlying mechanisms.
MethodsMale Wistar rats were randomly assigned to control, CNP, and BSDZG groups. CNP was induced using purified prostaglandin solution and Freund's complete adjuvant, after which the BSDZG group received 1.54 g/kg/d of BSDZG for 30 days. Prostate tissues were used to determine apoptosis and inflammatory cytokines. The herb-composition-target network and functional signaling pathways were built using a network pharmacology approach, which was also confirmed in vivo.
ResultsTreatment with BSDZG significantly alleviated the histopathological lesions, inflammation, and apoptosis in the prostate of CNP rats. The herb-composition-target network comprising 42 active compounds and 32 targets of 11 herbs was illustrated, and KEGG pathways analysis identified the Akt and MAPK pathways as related to the effects of BSDZG. Phosphorylation of p38 MAPK, NF-кB, and Bax expression was significantly enhanced and phosphorylated Akt and Bcl-2 levels were decreased in CNP rats, which could be reversed by BSDZG.
ConclusionThis study presented for the first time that BSDZG effectively alleviated CNP symptoms in rats and elucidated the underlying mechanisms mediated by the Akt and MAPK pathways, providing the theoretical basis for the clinical use and promotion of BSDZG.
-
-
-
TSPOAP1-AS1: A Novel Biomarker for the Prognosis and Therapeutic Target in Cervical Cancer
Authors: Jinyuan Li, Zhen Ye, Yuhong Gan, Dongbing Li and Yibiao ChenAvailable online: 13 January 2025More LessBackgroundTSPOAP1 antisense RNA 1 (TSPOAP1-AS1) is a long non-coding RNA (lncRNA) that has received widespread attention in oncology research in recent years. Its role and mechanism in some cancers have gradually been revealed. However, it is not clear what role TSPOAP1-AS1 plays in cervical cancer (CESC).
ObjectiveIn this study, bioinformatic analysis and experimental validation were carried out to investigate the relationship between TSPOAP1-AS1 and CESC.
MethodsThe relationships between clinical characteristics in patients with CESC, TSPOAP1-AS1 expression, prognostic factors, regulation network, and immune infiltration of TSPOAP1-AS1 were evaluated using statistics and The Cancer Genome Atlas database. Real-Time Quantitative Reverse Transcription PCR was used to test TSPOAP1-AS1, miR-17-5p, and AGFG2 expression in CESC cell lines.
ResultsCESC patients exhibited markedly reduced expression of TSPOAP1-AS1. There was a significant correlation between low expression of TSPOAP1-AS1 in CESC patients and the clinical stage (p < 0.05), weight (p < 0.05), and BMI (p < 0.05). Lower expression of TSPOAP1-AS1 in patients with CESC was associated with poorer overall survival (OS) (p = 0.014) and disease-specific survival (DSS) (p = 0.030). There was also an independent correlation between high expression of TSPOAP1-AS1 (p = 0.036) and DSS in patients with CESC. TSPOAP1-AS1 was involved in the ribosome, oxidative phosphorylation, antigen processing and presentation, cell adhesion molecules (CAMs), the chemokine signaling pathway, neuroactive ligand-receptor interaction, and primary immunodeficiencies. The infiltration of immune cells and the expression of TSPOAP1-AS1 were found to be correlated. A ceRNA network of TSPOAP1-AS1/miR-17-5p/AGFG2 was constructed in CESC. In CESC, a ceRNA network involving TSPOAP1-AS1/miR-17-5p/AGFG2 was successfully established. When comparing CESC cell lines with HcerEpic, the expression of TSPOAP1-AS1 and AGFG2 decreased significantly, and the expression of miR-17-5p increased significantly.
ConclusionIn CESC patients, low expression of TSPOAP1-AS1 was associated with poor survival and immune infiltration. It may be effective to use TSPOAP1-AS1 as a biomarker of prognosis and therapeutic target in CESC.
-
-
-
Mechanism of Qilong Capsule against Myocardial Ischemia-Reperfusion Injury Based on Network Pharmacology and Experimental Validation
Authors: Lingxu Li, Jingxue Ye, Jiahui Zhou, Zhihui Wang, Ruoyun Li, Min Wang and Guibo SunAvailable online: 10 January 2025More LessIntroductionQilong capsule (QC) has been used clinically to treat ischemic stroke in China. This study evaluated the therapeutic effects of QC on myocardial ischemia-reperfusion injury (MIRI) and its potential mechanisms.
MethodThe components and candidate targets of QC against MIRI were predicted by network pharmacology via relevant databases such as TCMSP, BATMAN-TCM, GeneCards. The potential mechanisms were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and verified by enzyme-linked immunosorbent assay (ELISA) and Western blot.
ResultsNetwork pharmacology analysis indicated that the cardioprotective effect of QC against MIRI was associated with inflammatory pathways. We further confirmed that QC effectively decreased the levels of inflammatory factors, including hs-CRP and MCP-1, and suppressed the expression of TNF-α and the phosphorylation of STAT3.
ConclusionThis study provides evidence for further clinical applications of QC for MIRI therapy.
-
-
-
Potential Antibacterial of Leaf Sirih Merah Against Enterococcus Faecalis ATCC 29212 Bacteria
Authors: Trisna Yuliana, Devi Meliani and Dikdik KurniaAvailable online: 10 January 2025More LessBackgroundDental root canal failure is a disease caused by gram-positive bacteria, Enterococcus faecalis. The disease is caused by the bacterial cell wall consisting of a peptidoglycan layer that protects the bacteria from internal osmotic pressure. Peptidoglycan biosynthesis includes many enzymes, such as MurA, Penicillin-binding protein (PBP), and SrtA. Herbal plants are a source of bioactive compounds, including antibacterial agents. There is information that red betel leaves, also known as Piper crocatum, contain active substances such as flavonoids, terpenoids, and steroids. However, there is no additional information on the antibacterial properties of P. crocatum and the molecular mechanisms that affect the cell wall of E. faecalis ATCC 29212 bacteria.
ObjectiveThis study aims to determine the antibacterial activity of the extract in vitro, screen and study the antibacterial compounds of red betel leaves against oral pathogenic bacteria, namely E.faecalis ATCC 29212 through molecular docking.
MethodsThe n-hexan:ea (9:1) fraction of P. crocatum extract was tested for inhibition zones against E. faecalis ATCC 29212 bacteria, fractions that had positive results were then identified using the LC-MS method. The LC-MS resulting compounds were tested using In Silico.
ResultsAntibacterial in the n-hexane: ethyl acetate (9:1) fraction of Red Betel Leaf has the best concentration of 10% with a moderate inhibition zone category. LC-MS test results identified compounds including Longicamphenylone, m/z 207, Nootkatone m/z 219, and Tridecanal m/z 221. Molecular interactions between these compounds with target proteins, namely MurA, PBP, and SrtA, show lower binding affinity values than natural ligands and positive controls for each protein.
ConclusionNootkatone compounds demonstrated potential as MurA and PBP inhibitors, while Longicamphenylone compounds showed potential as SrtA inhibitors. Both compounds have the potential to inhibit peptidoglycan biosynthesis and bacterial cell wall formation through docking simulations.
-
-
-
Causal Association between Arm Fat, Left Leg Fat, and Trunk Fat Masses and Risk of Polycystic Ovarian Syndrome: A Mendelian Randomization Study
Authors: Yuhan Zhang, Wei Zhou, Qiong Su and Qi ChenAvailable online: 09 January 2025More LessBackgroundObservational studies have reported that arm fat, left leg fat, and trunk fat masses have different effects on polycystic ovarian syndrome (PCOS). However, the causal relationship between them remains unknown.
Materials and MethodsA two-sample Mendelian randomization (MR) study was conducted by utilizing pooled data from the largest Genome-Wide Association Study (GWAS). Random effect inverse variance weighted (IVW) method, weighted median (WM), and MR-Egger regression analysis were the main statistical methods utilized. Finally, a sensitivity assessment was conducted. Cochran’s Q test was used to analyze heterogeneity, whereas MR-Egger regression (intercept term) was used to analyze horizontal pleiotropy. The leave-one-out analysis was performed to assess if MR estimates were impacted by a single nucleotide polymorphism (SNP) exhibiting significant horizontal pleiotropy.
ResultsThis study discovered a significant positive correlation between left leg fat mass, arm fat mass, and trunk fat mass and genetic factors of PCOS (odds ratio (OR): 4.452, confidence interval (CI): 2.740−7.232, p < 0.001, OR: 3.321, CI: 2.248−4.907, p < 0.001, and OR: 2.518, CI: 1.722−3.682, p < 0.001, respectively).
ConclusionThis study indicates that arm fat, left leg fat, and trunk fat masses may be genetically correlated with PCOS.
-
Most Read This Month Most Read RSS feed
Most Cited Most Cited RSS feed
-
-
Label-Free Detection of Biomolecular Interactions Using BioLayer Interferometry for Kinetic Characterization
Authors: Joy Concepcion, Krista Witte, Charles Wartchow, Sae Choo, Danfeng Yao, Henrik Persson, Jing Wei, Pu Li, Bettina Heidecker, Weilei Ma, Ram Varma, Lian-She Zhao, Donald Perillat, Greg Carricato, Michael Recknor, Kevin Du, Huddee Ho, Tim Ellis, Juan Gamez, Michael Howes, Janette Phi-Wilson, Scott Lockard, Robert Zuk and Hong Tan
-
-
- More Less