Skip to content
2000
image of The Regulatory Effects of Electroacupuncture on the Intestinal Flora of Mice with Ulcerative Colitis

Abstract

Introduction

This study aimed to investigate the modulation of intestinal flora by electroacupuncture in a murine ulcerative colitis (UC) model, with a focus on analyzing microbial taxa and identifying key regulatory targets and pathways.

Methods

A UC model was established in mice using 5% dextran sodium sulfate (DSS). Electroacupuncture was applied at bilateral “Shangjuxu” (electrostimulation) and “Tianshu” (manual acupuncture) points from days 5–9, while the mesalazine group received 0.5 g/kg/day via gavage. Disease activity index (DAI), colon length, and histopathology (hematoxylin-eosin staining) were evaluated. Intestinal flora composition was analyzed 16S rDNA sequencing.

Results

Electroacupuncture significantly reduced DAI scores on days 7 and 9 ( < 0.05; < 0.01) compared to the model group, improved colon morphology, and reduced inflammation. Linear discriminant analysis and Wilcoxon tests revealed an increased abundance of and elevated alpha diversity in the electroacupuncture group. Functional prediction demonstrated suppressed RNA transport and glycerophospholipid metabolism in the model group ( < 0.05), which were significantly enhanced post-electroacupuncture ( < 0.01).

Discussion

Electroacupuncture restored beneficial taxa (., ) and microbial diversity, suggesting gut homeostasis modulation. Enhanced lipid metabolism and RNA transport pathways may underlie its anti-inflammatory and mucosal repair effects.

Conclusion

Electroacupuncture alleviates UC by modulating the structure and function of intestinal flora, with and associated metabolic pathways identified as key targets. These findings highlight the potential of electroacupuncture as a UC therapy.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073357858250219050156
2025-04-07
2025-09-14
Loading full text...

Full text loading...

References

  1. Ordás I. Eckmann L. Talamini M. Baumgart D.C. Sandborn W.J. Ulcerative colitis. Lancet 2012 380 9853 1606 1619 10.1016/S0140‑6736(12)60150‑0 22914296
    [Google Scholar]
  2. Conrad K. Roggenbuck D. Laass M.W. Diagnosis and classification of ulcerative colitis. Autoimmun. Rev. 2014 13 4-5 463 466 10.1016/j.autrev.2014.01.028 24424198
    [Google Scholar]
  3. Magro F. Gionchetti P. Eliakim R. Ardizzone S. Armuzzi A. Barreiro-de Acosta M. Third european evidence-based consensus on diagnosis and management of ulcerative colitis. J. Crohn’s Colitis 2017 11 6 649 670 10.1093/ecco‑jcc/jjx008 28158501
    [Google Scholar]
  4. Shen Z.H. Zhu C.X. Quan Y.S. Yang Z.Y. Wu S. Luo W.W. Tan B. Wang X.Y. Relationship between intestinal microbiota and ulcerative colitis: Mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J. Gastroenterol. 2018 24 1 5 14 10.3748/wjg.v24.i1.5 29358877
    [Google Scholar]
  5. Glassner K.L. Abraham B.P. Quigley E.M.M. The microbiome and inflammatory bowel disease. J. Allergy Clin. Immunol. 2020 145 1 16 27 10.1016/j.jaci.2019.11.003 31910984
    [Google Scholar]
  6. Becattini S. Taur Y. Pamer E.G. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 2016 22 6 458 478 10.1016/j.molmed.2016.04.003 27178527
    [Google Scholar]
  7. Sehgal P. Colombel J.F. Aboubakr A. Narula N. Systematic review: Safety of mesalazine in ulcerative colitis. Aliment. Pharmacol. Ther. 2018 47 12 1597 1609 10.1111/apt.14688 29722441
    [Google Scholar]
  8. Subject of experimental acupuncture and moxibustion. Beijing China Traditional Chinese Medicine Press 2016 1 6
    [Google Scholar]
  9. Joos S. Wildau N. Kohnen R. Szecsenyi J. Schuppan D. Willich S.N. Hahn E.G. Brinkhaus B. Acupuncture and moxibustion in the treatment of ulcerative colitis: A randomized controlled study. Scand. J. Gastroenterol. 2006 41 9 1056 1063 10.1080/00365520600580688 16938719
    [Google Scholar]
  10. Wen Y. Shi L. Li J. Du W. Chen Y. Lan X. Acupuncture combined with acupoint catgut embedding sequential therapy for mild and moderate ulcerative colitis. Zhongguo Zhenjiu 2018 38 4 353 357 10.13703/j.0255‑2930.2018.04.003 29696917
    [Google Scholar]
  11. Qi Q. Liu Y.N. Jin X.M. Zhang L.S. Wang C. Bao C.H. Liu H.R. Wu H.G. Wang X.M. Moxibustion treatment modulates the gut microbiota and immune function in a dextran sulphate sodium-induced colitis rat model. World J. Gastroenterol. 2018 24 28 3130 3144 10.3748/wjg.v24.i28.3130 30065559
    [Google Scholar]
  12. Wei D. Xie L. Zhuang Z. Zhao N. Huang B. Tang Y. Gut microbiota: A new strategy to study the mechanism of electroacupuncture and moxibustion in treating ulcerative colitis. 2019
    [Google Scholar]
  13. Li X.L. Jia W.R. Wu X.L. Feng Y.Y. Jiang H.X. Huang Y.J. Effect of manual acupuncture and electroacupuncture with different stimulation parameters on mice with ulcerative colitis. Global Trad. Chinese Med. 2022 15 6 949 957
    [Google Scholar]
  14. Murthy S.N.S. Cooper H.S. Shim H. Shah R.S. Ibrahim S.A. Sedergran D.J. Treatment of dextran sulfate sodium-induced murine colitis by intracolonic cyclosporin. Dig. Dis. Sci. 1993 38 9 1722 1734 10.1007/BF01303184 8359087
    [Google Scholar]
  15. Wang Q.Y. Chen C.L. Wang J.D. Lai Z.S. Liu R. Zhang Y.L. Establishment of dextran sulfate sodium-induced ulcerative colitis model in mice. J. First Mil. Med. Univ. 2002 22 7 608 610 12376288
    [Google Scholar]
  16. Zhang Y.L. Huang L-X. Zhao J-S. Interpretation of china national standard nomenclature and location of meridian points (gb/t 12346-2021). Zhongguo Zhenjiu 2002 42 5 579 582 10.13703/j.0255‑2930.20220117‑k0001 35543953
    [Google Scholar]
  17. Hu Y.L. Handbook of acupuncture and moxibustion for practical animals. Beijing China Agriculture Press 2003 390 392
    [Google Scholar]
  18. Kim J.J. Shajib M.S. Manocha M.M. Khan W.I. Investigating intestinal inflammation in DSS-induced model of IBD. J. Vis. Exp. 2012 60 3678 10.3791/3678‑v 22331082
    [Google Scholar]
  19. Sann H. Erichsen J. Hessmann M. Pahl A. Hoffmeyer A. Efficacy of drugs used in the treatment of IBD and combinations thereof in acute DSS-induced colitis in mice. Life Sci. 2013 92 12 708 718 10.1016/j.lfs.2013.01.028 23399699
    [Google Scholar]
  20. Imhann F. Vich Vila A. Bonder M.J. Fu J. Gevers D. Visschedijk M.C. Spekhorst L.M. Alberts R. Franke L. van Dullemen H.M. Ter Steege R.W.F. Huttenhower C. Dijkstra G. Xavier R.J. Festen E.A.M. Wijmenga C. Zhernakova A. Weersma R.K. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 2018 67 1 108 119 10.1136/gutjnl‑2016‑312135 27802154
    [Google Scholar]
  21. Fernandes P. MacSharry J. Darby T. Fanning A. Shanahan F. Houston A. Brint E. Differential expression of key regulators of Toll-like receptors in ulcerative colitis and Crohn’s disease: A role for tollip and peroxisome proliferator-activated receptor gamma? Clin. Exp. Immunol. 2016 183 3 358 368 10.1111/cei.12732 26462859
    [Google Scholar]
  22. Li H. Ye X. Su Y. He W. Zhang J. Zhang Q. Zhan L. Jing X. Mechanism of acupuncture and moxibustion on promoting mucosal healing in ulcerative colitis. Chin. J. Integr. Med. 2023 29 9 847 856 10.1007/s11655‑022‑3531‑x 35412218
    [Google Scholar]
  23. Wu X.L. Huang G.R. Li X.L. Huo G.Y. Jiang H.X. Feng Y.Y. Research progress of acupuncture and moxibustion on regulating intestinal flora. Acta. Univ. Tradit. Med. Sin. Pharmacol. Shanghai. 2021 35 2 103 108
    [Google Scholar]
  24. Qi Q. Im H. Li K.S. Gu M. Wu H.G. Yang L. Huang Y. Zhao J.M. Cui Y.H. Liu H.R. Wu L.Y. Influence of herb-partitioned moxibustion at qihai (cv6) and bilateral tianshu (st25) and shangjuxu (st37) acupoints on toll-like receptors 4 signaling pathways in patients with ulcerative coliti. J. Tradit. Chin. Med. 2021 41 3 479 485 34114407
    [Google Scholar]
  25. Chen C.T. Yan J. Tian H.M. Liao W.F. Chen P.G. Zhang H. Comparative study of electro-acupuncturing at tianshu and dachangshu, tianshu and shangjuxu on serum no and mda in rats with ulcerative colitis. Cuiding J. Trad. Chinese Med. Pharm. 2008 14 12 1 3
    [Google Scholar]
  26. Goyal N. Rana A. Ahlawat A. Bijjem K.R.V. Kumar P. Animal models of inflammatory bowel disease: A review. Inflammopharm. 2014 22 4 219 233 10.1007/s10787‑014‑0207‑y 24906689
    [Google Scholar]
  27. Machiels K. Joossens M. Sabino J. De Preter V. Arijs I. Eeckhaut V. Ballet V. Claes K. Van Immerseel F. Verbeke K. Ferrante M. Verhaegen J. Rutgeerts P. Vermeire S. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2014 63 8 1275 1283 10.1136/gutjnl‑2013‑304833 24021287
    [Google Scholar]
  28. Louis P. Flint H.J. Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol. Lett. 2009 294 1 1 8 10.1111/j.1574‑6968.2009.01514.x 19222573
    [Google Scholar]
  29. Guo C. Zhang Y. Ling T. Zhao C. Li Y. Geng M. Gai S. Qi W. Luo X. Chen L. Zhang T. Wang N. Chitosan oligosaccharides alleviate colitis by regulating intestinal microbiota and pparγ/sirt1-mediated nf-κb pathway. Mar. Drugs 2022 20 2 96 10.3390/md20020096 35200626
    [Google Scholar]
  30. He X.Q. Liu D. Liu H.Y. Wu D.T. Li H.B. Zhang X.S. Gan R.Y. Prevention of ulcerative colitis in mice by sweet tea (Lithocarpus litseifolius) via the regulation of gut microbiota and butyric-acid-mediated anti-inflammatory signaling. Nutrients 2022 14 11 2208 10.3390/nu14112208 35684007
    [Google Scholar]
  31. Furusawa Y. Obata Y. Fukuda S. Endo T.A. Nakato G. Takahashi D. Nakanishi Y. Uetake C. Kato K. Kato T. Takahashi M. Fukuda N.N. Murakami S. Miyauchi E. Hino S. Atarashi K. Onawa S. Fujimura Y. Lockett T. Clarke J.M. Topping D.L. Tomita M. Hori S. Ohara O. Morita T. Koseki H. Kikuchi J. Honda K. Hase K. Ohno H. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013 504 7480 446 450 10.1038/nature12721 24226770
    [Google Scholar]
  32. O’Keefe S.J.D. Diet, microorganisms and their metabolites, and colon cancer. Nat. Rev. Gastroenterol. Hepatol. 2016 13 12 691 706 10.1038/nrgastro.2016.165 27848961
    [Google Scholar]
  33. Liang L. Liu L. Zhou W. Yang C. Mai G. Li H. Chen Y. Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway. Clin. Sci. (Lond.) 2022 136 4 291 307 10.1042/CS20210778 35194640
    [Google Scholar]
  34. Fuentes S. Rossen N.G. van der Spek M.J. Hartman J.H.A. Huuskonen L. Korpela K. Salojärvi J. Aalvink S. de Vos W.M. D’Haens G.R. Zoetendal E.G. Ponsioen C.Y. Microbial shifts and signatures of long-term remission in ulcerative colitis after faecal microbiota transplantation. ISME J. 2017 11 8 1877 1889 10.1038/ismej.2017.44 28398347
    [Google Scholar]
  35. Spirin A.S. Omnipotent RNA. FEBS Lett. 2002 530 1-3 4 8 10.1016/S0014‑5793(02)03434‑8 12387857
    [Google Scholar]
  36. Hastings M.L. Krainer A.R. RNA therapeutics. RNA 2023 29 4 393 395 10.1261/rna.079626.123 36928165
    [Google Scholar]
  37. Zhou Z. Sun B. Huang S. Jia W. Yu D. The tRNA-associated dysregulation in diabetes mellitus. Metabolism 2019 94 9 17 10.1016/j.metabol.2019.01.017 30711570
    [Google Scholar]
  38. Zhang J. Zhang Y. McGrenaghan C.J. Kelly V.P. Xia Y. Sun J. Disruption to trna modification by queuine contributes to inflammatory bowel disease. Cell. Mol. Gastroenterol. Hepatol. 2023 15 6 1371 1389 10.1016/j.jcmgh.2023.02.006 36801450
    [Google Scholar]
  39. Wang Z. Huang Y. Wang D. Wang R. Li K. Qi Q. Ma Z. Gu M. Zheng H. Lu Y. Wu L. Genome-wide regulation of acupuncture and moxibustion on ulcerative colitis rats. Evid. Based Complement. Alternat. Med. 2021 2021 9945121 10.1155/2021/9945121 34659440
    [Google Scholar]
  40. Xu L. Gan H.T. Correlation analysis between lipid metabolism indexes and nutritional metabolism and the severity of ulcerative colitis. J. Clin. Intern. Med. 2016 33 11 753 755
    [Google Scholar]
  41. Yuan Z. Yang L. Zhang X. Ji P. Hua Y. Wei Y. Mechanism of Huang-lian-Jie-du decoction and its effective fraction in alleviating acute ulcerative colitis in mice: Regulating arachidonic acid metabolism and glycerophospholipid metabolism. J. Ethnopharmacol. 2020 259 112872 10.1016/j.jep.2020.112872 32417423
    [Google Scholar]
  42. Zhao L.L. Tian Q.L. Feng Y.F. Review on relationships between raw264.7 cell line and lipid metabolism. Chemistry & Bioengineering 2012 29 1 13 16
    [Google Scholar]
  43. Wu T. Sun M. Liu R. Sui W. Zhang J. Yin J. Fang S. Zhu J. Zhang M. Bifidobacterium longum subsp. longum remodeled roseburia and phosphatidylserine levels and ameliorated intestinal disorders and liver metabolic abnormalities induced by high-fat diet. J. Agric. Food Chem. 2020 68 16 4632 4640 10.1021/acs.jafc.0c00717 32237746
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073357858250219050156
Loading
/content/journals/cchts/10.2174/0113862073357858250219050156
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article. Supplemental Table 1: DAI scoring criteria. Supplemental Table 2: Analysis of community composition. Supplemental Table 3: Venn diagram showing C, EA, M, and mesalazine common community. Supplemental Table 4: Statistical table of difference test for the C group . the M group and the M group . the EA group.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test