Skip to content
2000
image of Investigation of the Mechanism of Pachyman against Gout Arthritis with Network Pharmacology Analysis and Verification In Vivo

Abstract

Purpose

Pachyman, derived from , has been used to treat gouty arthritis (GA) for thousands of years, although its precise role and mechanisms remain unclear. Herein, we investigate the therapeutic effects of pachyman on GA and explore their underlying mechanisms.

Methods

Network pharmacology and experimental methods were employed to investigate the therapeutic mechanisms of pachyman against GA. The protein-protein interaction network of shared targets between pachyman and gout was constructed. Furthermore, we elucidated the functions and mechanisms of pachyman against GA. Subsequently, we validated the predicted mechanisms from an experiment on rats.

Results

The treatment of GA with pachyman primarily related to tumor necrosis factor (TNF), matrix metalloproteinases (MMP), and relaxation factor signaling pathways. In the experimental validation, pachyman were found to regulate the expression of IL-1β, TNF-α, TGF-β, superoxide dismutase, and glutathione peroxidase of hyperuricemic rats.

Conclusion

These collective findings suggest that pachyman holds promise as an alternative treatment for GA.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073330896241211155436
2025-01-22
2025-10-06
Loading full text...

Full text loading...

References

  1. Zhang Y. Cui Y. Li X.A. Li L.J. Xie X. Huang Y.Z. Deng Y.H. Zeng C. Lei G.H. Is tea consumption associated with the serum uric acid level, hyperuricemia or the risk of gout? A systematic review and meta-analysis. BMC Musculoskelet Disord 2017 18 1 95
    [Google Scholar]
  2. Chen J. Wu M. Yang J. Wang J. Qiao Y. Li X. The immunological basis in the pathogenesis of gout. Iran. J. Immunol. 2017 14 2 90 98 28630380
    [Google Scholar]
  3. Major T.J. Dalbeth N. Stahl E.A. Merriman T.R. An update on the genetics of hyperuricaemia and gout. Nat. Rev. Rheumatol. 2018 14 6 341 353 10.1038/s41584‑018‑0004‑x 29740155
    [Google Scholar]
  4. Perez-Ruiz F. Calabozo M. Erauskin G.G. Ruibal A. Herrero-Beites A.M. Renal underexcretion of uric acid is present in patients with apparent high urinary uric acid output. Arthritis Care Res. 2002 47 6 610 613 10.1002/art.10792 12522834
    [Google Scholar]
  5. Chen X. Zhang L. Cheung P.C.K. Immunopotentiation and anti-tumor activity of carboxymethylated-sulfated β-(1→3)-d-glucan from Poria cocos. Int. Immunopharmacol. 2010 10 4 398 405 10.1016/j.intimp.2010.01.002 20093198
    [Google Scholar]
  6. Liu X. Wang X. Xu X. Zhang X. Purification, antitumor and anti-inflammation activities of an alkali-soluble and carboxymethyl polysaccharide CMP33 from Poria cocos. Int. J. Biol. Macromol. 2019 127 39 47 10.1016/j.ijbiomac.2019.01.029 30629996
    [Google Scholar]
  7. Tang J. Nie J. Li D. Zhu W. Zhang S. Ma F. Sun Q. Song J. Zheng Y. Chen P. Characterization and antioxidant activities of degraded polysaccharides from Poria cocos sclerotium. Carbohydr. Polym. 2014 105 121 126 10.1016/j.carbpol.2014.01.049 24708960
    [Google Scholar]
  8. Wang N. Zhang Y. Wang X. Huang X. Fei Y. Yu Y. Shou D. Antioxidant property of water-soluble polysaccharides from Poria cocos Wolf using different extraction methods. Int. J. Biol. Macromol. 2016 83 103 110 10.1016/j.ijbiomac.2015.11.032 26601761
    [Google Scholar]
  9. Huang Y.J. Hsu N.Y. Lu K.H. Lin Y.E. Lin S.H. Lu Y.S. Liu W.T. Chen M.H. Sheen L.Y. Poria cocos water extract ameliorates the behavioral deficits induced by unpredictable chronic mild stress in rats by down-regulating inflammation. J. Ethnopharmacol. 2020 258 112566 10.1016/j.jep.2020.112566 31926986
    [Google Scholar]
  10. Zhang W. Chen L. Li P. Zhao J. Duan J. Antidepressant and immunosuppressive activities of two polysaccharides from Poria cocos (Schw.) Wolf. Int J Biol Macromol. 2018 120 Pt B 1696 1704
    [Google Scholar]
  11. Yao R. Geng Z. Mao X. Bao Y. Guo S. Bao L. Sun J. Gao Y. Xu Y. Guo B. Meng F. Cui X. Tu-Teng-Cao extract alleviates monosodium urate‐induced acute gouty arthritis in rats by inhibiting uric acid and inflammation. Evid. Based Complement. Alternat. Med. 2020 2020 1 3095624 10.1155/2020/3095624 32382282
    [Google Scholar]
  12. Xiao N. Chen H. He S.Y. Xue C.X. Sui H. Chen J. Qu J.L. Liang L.N. Zhang L. Evaluating the efficacy and adverse effects of clearing heat and removing dampness method of Traditional Chinese Medicine by comparison with Western Medicine in patients with gout. Evid. Based Complement. Alternat. Med. 2018 2018 1 8591349 10.1155/2018/8591349 30538765
    [Google Scholar]
  13. liu C. Yin Z. Feng T. Zhang M. Zhou Z. Zhou Y. An integrated network pharmacology and RNA-Seq approach for exploring the preventive effect of Lonicerae japonicae flos on LPS-induced acute lung injury. J. Ethnopharmacol. 2021 264 113364 10.1016/j.jep.2020.113364 32916233
    [Google Scholar]
  14. Trevisan G. Hoffmeister C. Rossato M.F. Oliveira S.M. Silva M.A. Ineu R.P. Guerra G.P. Materazzi S. Fusi C. Nassini R. Geppetti P. Ferreira J. Transient receptor potential ankyrin 1 receptor stimulation by hydrogen peroxide is critical to trigger pain during monosodium urate-induced inflammation in rodents. Arthritis Rheum. 2013 65 11 2984 2995 10.1002/art.38112 23918657
    [Google Scholar]
  15. Humphrey W. Dalke A. Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996 14 1 33 38 10.1016/0263‑7855(96)00018‑5
    [Google Scholar]
  16. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  17. Singh J.A. Gaffo A. Gout epidemiology and comorbidities. Semin. Arthritis Rheum. 2020 50 3 S11 S16 10.1016/j.semarthrit.2020.04.008 32620196
    [Google Scholar]
  18. Dalbeth N. Lauterio T.J. Wolfe H.R. Mechanism of action of colchicine in the treatment of gout. Clin. Ther. 2014 36 10 1465 1479 10.1016/j.clinthera.2014.07.017 25151572
    [Google Scholar]
  19. Pascart T. Richette P. Colchicine in Gout: An Update. Curr. Pharm. Des. 2018 24 6 684 689 10.2174/1381612824999180115103951 29336252
    [Google Scholar]
  20. Finkelstein Y. Aks S.E. Hutson J.R. Juurlink D.N. Nguyen P. Dubnov-Raz G. Pollak U. Koren G. Bentur Y. Colchicine poisoning: The dark side of an ancient drug. Clin. Toxicol. 2010 48 5 407 414 10.3109/15563650.2010.495348 20586571
    [Google Scholar]
  21. Feng Y.L. Zhao Y.Y. Ding F. Xi Z.H. Tian T. Zhou F. Du X. Chen D.Q. Wei F. Cheng X.L. Lin R.C. [Chemical constituents of surface layer of Poria cocos and their pharmacological properties (I)]. Zhongguo Zhongyao Zazhi 2013 38 7 1098 1102 23847967
    [Google Scholar]
  22. Zhang R. Zhu X. Bai H. Ning K. Network pharmacology databases for Traditional Chinese Medicine: Review and assessment. Front. Pharmacol. 2019 10 123 10.3389/fphar.2019.00123 30846939
    [Google Scholar]
  23. Wang X. Wang Z.Y. Zheng J.H. Li S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med. 2021 19 1 1 11 10.1016/S1875‑5364(21)60001‑8 33516447
    [Google Scholar]
  24. Zhao L. Zhang H. Li N. Chen J. Xu H. Wang Y. Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol. 2023 309 116306 10.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  25. Jiashuo W.U. Fangqing Z. Zhuangzhuang L.I. Weiyi J. Yue S. Integration strategy of network pharmacology in Traditional Chinese Medicine: A narrative review. J. Tradit. Chin. Med. 2022 42 3 479 486 35610020
    [Google Scholar]
  26. Liu P. Xu H. Shi Y. Deng L. Chen X. Potential molecular mechanisms of plantain in the treatment of gout and hyperuricemia based on network pharmacology. Evid. Based Complement. Alternat. Med. 2020 2020 1 3023127 10.1155/2020/3023127 33149752
    [Google Scholar]
  27. Dehghan F. Haerian B.S. Muniandy S. Yusof A. Dragoo J.L. Salleh N. The effect of relaxin on the musculoskeletal system. Scand. J. Med. Sci. Sports 2014 24 4 e220 e229 10.1111/sms.12149 24283470
    [Google Scholar]
  28. Ng H.H. Shen M. Samuel C.S. Schlossmann J. Bennett R.G. Relaxin and extracellular matrix remodeling: Mechanisms and signaling pathways. Mol. Cell. Endocrinol. 2019 487 59 65 10.1016/j.mce.2019.01.015 30660699
    [Google Scholar]
  29. Zhou H.F. Ren K. Zhao G.J. Relaxin inhibits macrophage inflammation by repressing NLRP3. Int. J. Cardiol. 2020 299 254 10.1016/j.ijcard.2019.09.018 31791541
    [Google Scholar]
  30. Gao X. M. Su Y. Moore S. Han L. P. Kiriazis H. Lu Q. Zhao W. B. Ruze A. Fang B. B. Duan M. J. Du X. J. Relaxin mitigates microvascular damage and inflammation following cardiac ischemia-reperfusion. Basic Res Cardiol. 2019 114 4 30 10.1007/s00395‑019‑0739‑9
    [Google Scholar]
  31. Kanai A.J. Konieczko E.M. Bennett R.G. Samuel C.S. Royce S.G. Relaxin and fibrosis: Emerging targets, challenges, and future directions. Mol. Cell. Endocrinol. 2019 487 66 74 10.1016/j.mce.2019.02.005 30772373
    [Google Scholar]
  32. Nguyen N.H. Tran G.B. Nguyen C.T. Anti-oxidative effects of superoxide dismutase 3 on inflammatory diseases. J. Mol. Med. 2020 98 1 59 69 10.1007/s00109‑019‑01845‑2 31724066
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073330896241211155436
Loading
/content/journals/cchts/10.2174/0113862073330896241211155436
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test