Skip to content
2000
image of Jiawei Danggui Buxue Decoction Reduces Apoptosis and EMT of Renal Interstitial Fibrosis by Regulating JAK2/STAT3 Signaling Pathway

Abstract

Background

Renal interstitial fibrosis (RIF) is the primary pathological progression in chronic kidney disease (CKD). Given the constraints related to cost and adverse effects of current treatments, it is crucial to explore novel and efficacious therapeutic strategies. The purpose of this study was to elucidate the potential of Jiawei Danggui Buxue Decoction (JDBD) to reduce apoptosis and epithelial-mesenchymal transition (EMT) in RIF by regulating the Janus kinase 2 (JAK2)/Signal Transducer and Activator of Transcription 3 (STAT3) pathway.

Methods

An angiotensin II (Ang II)-induced HK-2 cells model and a unilateral ureteral obstruction (UUO) animal model were employed to replicate the RIF model. A total of 48 male Wistar rats (weighing 200-220g) were acclimated for 1 week and then randomly divided into 6 groups (sham operation, UUO, Losartan potassium tablets, and three JDBD dosage groups: high, medium, and low, n=8). After the acclimatization period, UUO models were established in 40 rats through surgery, excluding the sham operation group. Each group received the corresponding drug gavage for 2 weeks. After 2 weeks, rats were anesthetized, and tissues were collected for subsequent analysis. Renal function tests and histological stains were used to evaluate renal damage and histopathological alterations in rats. Cell viability was examined using the CCK-8 assay. Apoptosis was identified through the utilization of flow cytometry and assessment of mitochondrial membrane potential, along with other techniques. We identified and examined the expression of EMT and extracellular matrix (ECM)-related factors, as well as the JAK2/STAT3 pathway.

Results

experiments indicated that JDBD effectively reduced renal dysfunction in UUO rats, ameliorated pathological changes in renal tissues, and significantly modulated the JAK2/STAT3 signaling pathway to inhibit EMT and apoptosis, thereby reducing ECM deposition. Furthermore, JDBD markedly increased the survival rate of Ang II-treated HK-2 cells and reduced apoptosis. The experimental results further confirmed that JDBD ameliorates RIF by regulating the JAK2/STAT3 pathway.

Conclusion

JDBD exhibits anti-apoptotic and EMT-inhibiting functions in RIF, potentially mediated by targeting and inhibiting JAK2/STAT3 signaling transduction.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073355322250226050458
2025-03-11
2025-08-19
The full text of this item is not currently available.

References

  1. Bikbov B. Purcell C.A. Levey A.S. Smith M. Abdoli A. Abebe M. Adebayo O.M. Afarideh M. Agarwal S.K. Agudelo-Botero M. Ahmadian E. Al-Aly Z. Alipour V. Almasi-Hashiani A. Al-Raddadi R.M. Alvis-Guzman N. Amini S. Andrei T. Andrei C.L. Andualem Z. Anjomshoa M. Arabloo J. Ashagre A.F. Asmelash D. Ataro Z. Atout M.M.W. Ayanore M.A. Badawi A. Bakhtiari A. Ballew S.H. Balouchi A. Banach M. Barquera S. Basu S. Bayih M.T. Bedi N. Bello A.K. Bensenor I.M. Bijani A. Boloor A. Borzì A.M. Cámera L.A. Carrero J.J. Carvalho F. Castro F. Catalá-López F. Chang A.R. Chin K.L. Chung S-C. Cirillo M. Cousin E. Dandona L. Dandona R. Daryani A. Das Gupta R. Demeke F.M. Demoz G.T. Desta D.M. Do H.P. Duncan B.B. Eftekhari A. Esteghamati A. Fatima S.S. Fernandes J.C. Fernandes E. Fischer F. Freitas M. Gad M.M. Gebremeskel G.G. Gebresillassie B.M. Geta B. Ghafourifard M. Ghajar A. Ghith N. Gill P.S. Ginawi I.A. Gupta R. Hafezi-Nejad N. Haj-Mirzaian A. Haj-Mirzaian A. Hariyani N. Hasan M. Hasankhani M. Hasanzadeh A. Hassen H.Y. Hay S.I. Heidari B. Herteliu C. Hoang C.L. Hosseini M. Hostiuc M. Irvani S.S.N. Islam S.M.S. Jafari Balalami N. James S.L. Jassal S.K. Jha V. Jonas J.B. Joukar F. Jozwiak J.J. Kabir A. Kahsay A. Kasaeian A. Kassa T.D. Kassaye H.G. Khader Y.S. Khalilov R. Khan E.A. Khan M.S. Khang Y-H. Kisa A. Kovesdy C.P. Kuate Defo B. Kumar G.A. Larsson A.O. Lim L-L. Lopez A.D. Lotufo P.A. Majeed A. Malekzadeh R. März W. Masaka A. Meheretu H.A.A. Miazgowski T. Mirica A. Mirrakhimov E.M. Mithra P. Moazen B. Mohammad D.K. Mohammadpourhodki R. Mohammed S. Mokdad A.H. Morales L. Moreno Velasquez I. Mousavi S.M. Mukhopadhyay S. Nachega J.B. Nadkarni G.N. Nansseu J.R. Natarajan G. Nazari J. Neal B. Negoi R.I. Nguyen C.T. Nikbakhsh R. Noubiap J.J. Nowak C. Olagunju A.T. Ortiz A. Owolabi M.O. Palladino R. Pathak M. Poustchi H. Prakash S. Prasad N. Rafiei A. Raju S.B. Ramezanzadeh K. Rawaf S. Rawaf D.L. Rawal L. Reiner R.C. Jr Rezapour A. Ribeiro D.C. Roever L. Rothenbacher D. Rwegerera G.M. Saadatagah S. Safari S. Sahle B.W. Salem H. Sanabria J. Santos I.S. Sarveazad A. Sawhney M. Schaeffner E. Schmidt M.I. Schutte A.E. Sepanlou S.G. Shaikh M.A. Sharafi Z. Sharif M. Sharifi A. Silva D.A.S. Singh J.A. Singh N.P. Sisay M.M.M. Soheili A. Sutradhar I. Teklehaimanot B.F. Tesfay B. Teshome G.F. Thakur J.S. Tonelli M. Tran K.B. Tran B.X. Tran Ngoc C. Ullah I. Valdez P.R. Varughese S. Vos T. Vu L.G. Waheed Y. Werdecker A. Wolde H.F. Wondmieneh A.B. Wulf Hanson S. Yamada T. Yeshaw Y. Yonemoto N. Yusefzadeh H. Zaidi Z. Zaki L. Zaman S.B. Zamora N. Zarghi A. Zewdie K.A. Ärnlöv J. Coresh J. Perico N. Remuzzi G. Murray C.J.L. Vos T. GBD Chronic Kidney Disease Collaboration Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020 395 10225 709 733 10.1016/S0140‑6736(20)30045‑3 32061315
    [Google Scholar]
  2. Humphreys B.D. Mechanisms of renal fibrosis. Annu. Rev. Physiol. 2018 80 1 309 326 10.1146/annurev‑physiol‑022516‑034227 29068765
    [Google Scholar]
  3. Bülow R.D. Boor P. Extracellular matrix in kidney fibrosis: More than just a scaffold. J. Histochem. Cytochem. 2019 67 9 643 661 10.1369/0022155419849388 31116062
    [Google Scholar]
  4. Liu Y. Epithelial to mesenchymal transition in renal fibrogenesis: Pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol. 2004 15 1 1 12 10.1097/01.ASN.0000106015.29070.E7 14694152
    [Google Scholar]
  5. Mei S. Li L. Wei Q. Hao J. Su Y. Mei C. Dong Z. Double knockout of Bax and Bak from kidney proximal tubules reduces unilateral urethral obstruction associated apoptosis and renal interstitial fibrosis. Sci. Rep. 2017 7 1 44892 10.1038/srep44892 28317867
    [Google Scholar]
  6. Li D. Huang Y. Wei M. Chen B. Lu Y. Overexpression of SOCS2 inhibits EMT and M2 macrophage polarization in cervical cancer via IL-6/JAK2/STAT3 pathway. Comb. Chem. High Throughput Screen. 2024 27 7 984 995 10.2174/1386207326666230818092532 37594110
    [Google Scholar]
  7. He P. Li D. Zhang B. Losartan attenuates renal interstitial fibrosis and tubular cell apoptosis in a rat model of obstructive nephropathy. Mol. Med. Rep. 2014 10 2 638 644 10.3892/mmr.2014.2304 24912579
    [Google Scholar]
  8. Bai Y. Wang W. Yin P. Gao J. Na L. Sun Y. Wang Z. Zhang Z. Zhao C. Ruxolitinib alleviates renal interstitial fibrosis in UUO mice. Int. J. Biol. Sci. 2020 16 2 194 203 10.7150/ijbs.39024 31929748
    [Google Scholar]
  9. Li X. Qu L. Dong Y. Han L. Liu E. Fang S. Zhang Y. Wang T. A review of recent research progress on the astragalus genus. Molecules 2014 19 11 18850 18880 10.3390/molecules191118850 25407722
    [Google Scholar]
  10. Chen X.P. Li W. Xiao X.F. Zhang L.L. Liu C.X. Phytochemical and pharmacological studies on Radix Angelica sinensis. Chin. J. Nat. Med. 2013 11 6 577 587 10.1016/S1875‑5364(13)60067‑9 24345498
    [Google Scholar]
  11. Ratan Z.A. Haidere M.F. Hong Y.H. Park S.H. Lee J.O. Lee J. Cho J.Y. Pharmacological potential of ginseng and its major component ginsenosides. J. Ginseng Res. 2021 45 2 199 210 10.1016/j.jgr.2020.02.004 33841000
    [Google Scholar]
  12. Chu M. Deng B. Meng L. Liu L. Dai C. Clinical efficacy of Danggui Buxue Decoction as an adjuvant therapy for patients with chronic renal failure and its effects on renal function and oxidative stress levels. World Journal of Integrated Chinese and Western Medicine 2023 18 12 2473 2477 10.13935/j.cnki.sjzx.231225
    [Google Scholar]
  13. Ye Z. Xian W. Ling G.U. Zihang L.I. Jingtian Z. Wenkai W. Liang Z. Mei X. Efficacy of Danggui Buxue decoction on diabetic nephropathy-induced renal fibrosis in rats and possible mechanism. J. Tradit. Chin. Med. 2023 43 3 507 513 10.19852/j.cnki.jtcm.20230214.004 37147752
    [Google Scholar]
  14. Li S. He A. Deng Z. Liu Q. Ginsenoside-Rg1 protects against renal fibrosis by regulating the Klotho/TGF-β1/Smad signaling pathway in rats with obstructive nephropathy. Biol. Pharm. Bull. 2018 41 4 585 591 10.1248/bpb.b17‑00934 29607931
    [Google Scholar]
  15. Hassan N.M.E. Said E. Shehatou G.S.G. Nifuroxazide suppresses UUO-induced renal fibrosis in rats via inhibiting STAT-3/NF-κB signaling, oxidative stress and inflammation. Life Sci. 2021 272 119241 10.1016/j.lfs.2021.119241 33600861
    [Google Scholar]
  16. Ehlinger M. Micicoi G. Mekki T. Favreau H. Ollivier M. Comments on: "Lateral knee laxity increases the risk of excessive joint line obliquity after medial opening-wedge high tibial osteotomy" by BA Matache, PO Jean, S Pelet, AM Roger, J Dartus, E Belzile published in Orthop Traumatol Surg Res 2023: doi.10.1016/j.otsr.2023.103717. Orthop Traumatol Surg Res. 2024 110 3 103862 10.1016/j.otsr.2024.103862 38458317
    [Google Scholar]
  17. Xu Y. Luo Y. Liang C. Xing W. Zhang T. [Corrigendum] A regulation loop between Nrf1α and MRTF‑A controls migration and invasion in MDA‑MB‑231 breast cancer cells. Int. J. Mol. Med. 2024 55 1 1 10.3892/ijmm.2024.5442 39450550
    [Google Scholar]
  18. Rigler C. Menon G. Lipworth S. Langrish J.P. Kipps C. Shanmuganathan M. Smith R. Erratum to “case series of triathletes with takotsubo cardiomyopathy presenting with swimming-induced pulmonary edema”. Transl. Sports Med. 2023 2023 1 2 10.1155/2023/9858459 38654912
    [Google Scholar]
  19. Zheng R. Zhu R. Li X. Li X. Shen L. Chen Y. Zhong Y. Deng Y. N6-(2-Hydroxyethyl) adenosine from Cordyceps cicadae ameliorates renal interstitial fibrosis and prevents inflammation via TGF-β1/Smad and NF-κB signaling pathway. Front. Physiol. 2018 9 1229 10.3389/fphys.2018.01229 30233405
    [Google Scholar]
  20. Tian S. Yang X. Wang J. Luo J. Guo H. 1,25-(OH) 2 D 3 ameliorates renal interstitial fibrosis in UUO rats through the AMPKα/mTOR pathway. J. Int. Med. Res. 2021 49 2 0300060520981360 10.1177/0300060520981360 33530801
    [Google Scholar]
  21. Qu J. Pei H. Li X.Z. Li Y. Chen J.M. Zhang M. Lu Z.Q. Erythrocyte membrane biomimetic EGCG nanoparticles attenuate renal injury induced by diquat through the NF-κB/NLRP3 inflammasome pathway. Front. Pharmacol. 2024 15 1414918 10.3389/fphar.2024.1414918 39045044
    [Google Scholar]
  22. Zhang Y. Wei Z. Xu H. Wang X. Gu T. Dong H. Chang H. Pang L. Identification of miR-451 target genes as prognostic markers in diffuse large B-cell lymphoma. Expert Rev. Hematol. 2024 Nov 1 12 10.1080/17474086.2024.2422019 39494860
    [Google Scholar]
  23. Yang Y. Xie L. Zhu Y. Sheng Y. Wang J. Zhou X. Li W. Cao C. Yang Y. Han C. Perfluorooctane sulfonate (PFOS), a novel environmental pollutant, induces liver injury in mice by activating hepatocyte ferroptosis. Ecotoxicol. Environ. Saf. 2023 267 115625 10.1016/j.ecoenv.2023.115625 39492174
    [Google Scholar]
  24. Chen S. Kong W. Shen X. Deng B. Haag J. Sinha N. John C. Sun W. Zhou C. Bae-Jump V.L. Sulindac exhibits anti-proliferative and anti-invasive effects in uterine serous carcinoma cells. J. Cancer Res. Clin. Oncol. 2024 150 8 402 10.1007/s00432‑024‑05926‑9 39198302
    [Google Scholar]
  25. Farghadani R. Lim H.Y. Abdulla M.A. Rajarajeswaran J. Novel indole Schiff base β-diiminato compound as an anti-cancer agent against triple-negative breast cancer: In vitro anticancer activity evaluation and in vivo acute toxicity study. Bioorg. Chem. 2024 152 107730 10.1016/j.bioorg.2024.107730 39216194
    [Google Scholar]
  26. Wang M. Wang J. Wang L. Feng X. Qian Y. Ye C. Wang C. Icariside II prevents kidney fibrosis development in chronic kidney disease by promoting fatty acid oxidation. Phytother. Res. 2024 38 2 839 855 10.1002/ptr.8085 38081477
    [Google Scholar]
  27. Wang M. Wang L. Zhou Y. Feng X. Ye C. Wang C. Icariin attenuates renal fibrosis in chronic kidney disease by inhibiting interleukin‐1β/transforming growth factor‐β‐mediated activation of renal fibroblasts. Phytother. Res. 2021 35 11 6204 6215 10.1002/ptr.7256 34426999
    [Google Scholar]
  28. Cheng X. Liang G. Liu M. Song R. Zhou L. Ren Y. Huang Y. Jin W. Jiang C. The therapeutic mechanisms of shenyan oral liquid I against chronic kidney disease based on network pharmacology and experimental validation. Comb. Chem. High Throughput Screen. 2024 27 19 2885 2898 10.2174/0113862073260994231031070916 37961861
    [Google Scholar]
  29. Zhao K. Li Z. Chen X. Dong T. Zhan H. Discussion and analysis of the rationality of decocting traditional Chinese medicine compound prescriptions based on the study of Danggui Buxue Decoction. Wood Sci. Technol. 2009 11 2 294 298 [Modernization of Traditional Chinese Medicine].
    [Google Scholar]
  30. Lian Y. Li C. Li J. Xie Y. Liu Q. Wu M. Shi W. Meng L. Astragaloside IV attenuated TGF-β1- induced epithelial-mesenchymal transition of renal tubular epithelial cells via connexin 43 and Akt/mTOR signaling pathway. Tissue Cell 2022 77 101831 10.1016/j.tice.2022.101831 35643056
    [Google Scholar]
  31. Zhou X. Sun X. Gong X. Yang Y. Chen C. Shan G. Yao Q. Astragaloside IV from Astragalus membranaceus ameliorates renal interstitial fibrosis by inhibiting inflammation via TLR4/NF-кB in vivo and in vitro. Int. Immunopharmacol. 2017 42 18 24 10.1016/j.intimp.2016.11.006 27855303
    [Google Scholar]
  32. Shokeir A.A. Hussein A.A.M. Soliman S.A. Kamal M.M. Abdel-Aziz A. Awadalla A. Rahim M.A. Barakat N. Recoverability of renal functions after relief of partial ureteric obstruction of solitary kidney: Impact of ferulic acid. BJU Int. 2012 110 6 904 911 10.1111/j.1464‑410X.2011.10848.x 22381210
    [Google Scholar]
  33. Wei M. Sun W. He W. Ni L. Yang Y. Ferulic acid attenuates TGF- β 1-induced renal cellular fibrosis in NRK-52E cells by inhibiting Smad/ILK/Snail pathway. Evid. Based Complement. Alternat. Med. 2015 2015 1 7 10.1155/2015/619720 25949265
    [Google Scholar]
  34. Wang W. Cao Q. Wang H. Lü Y. Pharmacokinetic study of different combinations of Danggui Buxue Decoction. Zhonghua Linchuang Yishi Zazhi 2009 14 6 659 663
    [Google Scholar]
  35. Li B. Huang W. Zhang S. Li W. Wang Q. Mechanism study on enhancing the bioavailability of ferulic acid in Danggui Shaoyao San. Shizhen Guo Yi Guo Yao 2020 31 1 1 5
    [Google Scholar]
  36. Zheng K. Zhang Z. Du C. Zhang W. Bi C. Choi R. Dong T. Tsim K. Ferulic acid enhances the chemical and biological properties of astragali radix: A stimulator for danggui buxue tang, an ancient Chinese herbal decoction. Planta Med. 2014 80 02/03 159 164 10.1055/s‑0033‑1360314 24488720
    [Google Scholar]
  37. Wang H. Li J. Yu L. Zhao Y. Ding W. Antifibrotic effect of the Chinese herbs, Astragalus mongholicus and Angelica sinensis, in a rat model of chronic puromycin aminonucleoside nephrosis. Life Sci. 2004 74 13 1645 1658 10.1016/j.lfs.2003.08.036 14738908
    [Google Scholar]
  38. Yuan H. Wu X. Wang X. Yuan C. Chinese herbal decoction astragalus and angelica exerts its therapeutic effect on renal interstitial fibrosis through the inhibition of MAPK, PI3K-Akt and TNF signaling pathways. Genes Dis. 2022 9 2 510 521 10.1016/j.gendis.2020.06.001 35224164
    [Google Scholar]
  39. Meng L.Q. Tang J.W. Wang Y. Zhao J.R. Shang M.Y. Zhang M. Liu S.Y. Qu L. Cai S.Q. Li X.M. Astragaloside IV synergizes with ferulic acid to inhibit renal tubulointerstitial fibrosis in rats with obstructive nephropathy. Br. J. Pharmacol. 2011 162 8 1805 1818 10.1111/j.1476‑5381.2011.01206.x 21232035
    [Google Scholar]
  40. Wei M.G. Sun W. Xiong P.H. Shao J.D. Antifibrotic effect of the Chinese herbs Modified Danggui Buxue Decoction on adriamycin-induced nephropathy in rats. Chin. J. Integr. Med. 2012 18 8 591 598 10.1007/s11655‑011‑0816‑x 21805297
    [Google Scholar]
  41. Wang L. Ma J. Guo C. Chen C. Yin Z. Zhang X. Chen X. Danggui buxue tang attenuates tubulointerstitial fibrosis via suppressing NLRP3 inflammasome in a rat model of unilateral ureteral obstruction. BioMed Res. Int. 2016 2016 1 12 10.1155/2016/9368483 27872860
    [Google Scholar]
  42. Liu H. Lv C. Lu J. Panax ginseng C. A. Meyer as a potential therapeutic agent for organ fibrosis disease. Chin. Med. 2020 15 1 124 10.1186/s13020‑020‑00400‑3 33292321
    [Google Scholar]
  43. Cui L. Tan Y.J. Xu S.Q. Qin B.F. Xiu M.X. Zhang X. Shi L.Q. Sun H.M. Song J. Ginsenoside Rd, a natural production for attenuating fibrogenesis and inflammation in hepatic fibrosis by regulating the ERRα-mediated P2X7r pathway. Food Funct. 2023 14 12 5606 5619 10.1039/D3FO01315D 37249244
    [Google Scholar]
  44. Fan M. Lan X. Wang Q. Shan M. Fang X. Zhang Y. Wu D. Luo H. Gao W. Zhu D. Renal function protection and the mechanism of ginsenosides: Current progress and future perspectives. Front. Pharmacol. 2023 14 1070738 10.3389/fphar.2023.1070738 36814491
    [Google Scholar]
  45. Li S. Ye J. Deng Z. Yu L. Gu X. Liu Q. Ginsenoside-Rg1 inhibits endoplasmic reticulum stress-induced apoptosis after unilateral ureteral obstruction in rats. Ren. Fail. 2015 37 5 890 895 10.3109/0886022X.2015.1015427 25707520
    [Google Scholar]
  46. Ye H. Wu J. Lü G. Li L. Effect of Danggui and Huangqi extracts on the absorption of ginsenosides in rats. Chinese Journal of Clinical Pharmacology 2017 33 7 620 623 10.13699/j.cnki.1001‑6821.2017.07.013
    [Google Scholar]
  47. Wang S.G. Xu Y. Chen J.D. Yang C.H. Chen X.H. Astragaloside IV stimulates angiogenesis and increases nitric oxide accumulation via JAK2/STAT3 and ERK1/2 pathway. Molecules 2013 18 10 12809 12819 10.3390/molecules181012809 24135938
    [Google Scholar]
  48. Wen X.D. Zhang Y.L. Yang L. Ye Z. Fu G.C. Hu Y.H. Pan T. Ye Q.B. Angelica sinensis Polysaccharide and Astragalus membranaceus Polysaccharide Accelerate Liver Regeneration by Enhanced Glycolysis via Activation of JAK2/STAT3/HK2 Pathway. Molecules 2022 27 22 7890 10.3390/molecules27227890 36431990
    [Google Scholar]
  49. Yu Q. Zeng K.W. Ma X.L. Jiang Y. Tu P.F. Wang X.M. Ginsenoside Rk1 suppresses pro-inflammatory responses in lipopolysaccharide-stimulated RAW264.7 cells by inhibiting the Jak2/Stat3 pathway. Chin. J. Nat. Med. 2017 15 10 751 757 10.1016/S1875‑5364(17)30106‑1 29103460
    [Google Scholar]
  50. Chevalier R.L. Forbes M.S. Thornhill B.A. Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 2009 75 11 1145 1152 10.1038/ki.2009.86 19340094
    [Google Scholar]
  51. Wang Y.N. Liu H.J. Ren L.L. Suo P. Zou L. Zhang Y.M. Yu X.Y. Zhao Y.Y. Shenkang injection improves chronic kidney disease by inhibiting multiple renin-angiotensin system genes by blocking the Wnt/β-catenin signalling pathway. Front. Pharmacol. 2022 13 964370 10.3389/fphar.2022.964370 36059935
    [Google Scholar]
  52. Karamanos N.K. Theocharis A.D. Piperigkou Z. Manou D. Passi A. Skandalis S.S. Vynios D.H. Orian-Rousseau V. Ricard-Blum S. Schmelzer C.E.H. Duca L. Durbeej M. Afratis N.A. Troeberg L. Franchi M. Masola V. Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J. 2021 288 24 6850 6912 10.1111/febs.15776 33605520
    [Google Scholar]
  53. Rayego-Mateos S. Campillo S. Rodrigues-Diez R.R. Tejera-Muñoz A. Marquez-Exposito L. Goldschmeding R. Rodríguez-Puyol D. Calleros L. Ruiz-Ortega M. Interplay between extracellular matrix components and cellular and molecular mechanisms in kidney fibrosis. Clin Sci (Lond) 2021 135 16 1999 2029 10.1042/CS20201016 34427291
    [Google Scholar]
  54. Schuster R. Younesi F. Ezzo M. Hinz B. The role of myofibroblasts in physiological and pathological tissue repair. Cold Spring Harb. Perspect. Biol. 2023 15 1 a041231 10.1101/cshperspect.a041231 36123034
    [Google Scholar]
  55. Bon H. Hales P. Lumb S. Holdsworth G. Johnson T. Qureshi O. Twomey B.M. Spontaneous extracellular matrix accumulation in a human in vitro model of renal fibrosis is mediated by αV integrins. Nephron J. 2019 142 4 328 350 10.1159/000499506 31048591
    [Google Scholar]
  56. Meran S. Steadman R. Fibroblasts and myofibroblasts in renal fibrosis. Int. J. Exp. Pathol. 2011 92 3 158 167 10.1111/j.1365‑2613.2011.00764.x 21355940
    [Google Scholar]
  57. Schelling J.R. Tubular atrophy in the pathogenesis of chronic kidney disease progression. Pediatr. Nephrol. 2016 31 5 693 706 10.1007/s00467‑015‑3169‑4 26208584
    [Google Scholar]
  58. Ó hAinmhire E. Humphreys B.D. Fibrotic changes mediating acute kidney injury to chronic kidney disease transition. Nephron J. 2017 137 4 264 267 10.1159/000474960 28595180
    [Google Scholar]
  59. Li Y.Y. Tian Z.H. Su S.S. Shi J.J. Zhou C. Zhang L.H. Zhang F.R. Hao Y.K. Anti-apoptotic effect of HeidihuangWan in renal tubular epithelial cells via PI3K/Akt/mTOR signaling pathway. J. Ethnopharmacol. 2023 302 Pt A 115882 10.1016/j.jep.2022.115882 36341817
    [Google Scholar]
  60. Docherty N.G. O’Sullivan O.E. Healy D.A. Fitzpatrick J.M. Watson R.W.G. Evidence that inhibition of tubular cell apoptosis protects against renal damage and development of fibrosis following ureteric obstruction. Am. J. Physiol. Renal Physiol. 2006 290 1 F4 F13 10.1152/ajprenal.00045.2005 16339963
    [Google Scholar]
  61. Zhou D. Liu Y. Understanding the mechanisms of kidney fibrosis. Nat. Rev. Nephrol. 2016 12 2 68 70 10.1038/nrneph.2015.215 26714578
    [Google Scholar]
  62. Kuo H.L. Chuang H.L. Chen C.M. Chen Y.Y. Chen Y.S. Lin S.C. Weng P.Y. Liu T.C. Wang P.Y. Huang C.F. Guan S.S. Liu S.H. Yang S.F. Wu C.T. Wogonin ameliorates ER stress-associated inflammatory response, apoptotic death and renal fibrosis in a unilateral ureteral obstruction mouse model. Eur. J. Pharmacol. 2024 977 176676 10.1016/j.ejphar.2024.176676 38815787
    [Google Scholar]
  63. Banjara S. Suraweera C.D. Hinds M.G. Kvansakul M. The Bcl-2 family: Ancient origins, conserved structures, and divergent mechanisms. Biomolecules 2020 10 1 128 10.3390/biom10010128 31940915
    [Google Scholar]
  64. Guo A. Chang Y. Lin J. Guo J. He Y. Wang C. Wu Z. Xing Y. Jin F. Deng Y. Resveratrol enhances anticancer effects of silybin on HepG2 cells and H22 tumor-bearing mice via inducing G2/M phase arrest and increasing Bax/Bcl-2 ratio. Comb. Chem. High Throughput Screen. 2024 Jan 10.2174/0113862073263408231101105647 38204247
    [Google Scholar]
  65. Yu W. Sheng M. Xu R. Yu J. Cui K. Tong J. Shi L. Ren H. Du H. Berberine protects human renal proximal tubular cells from hypoxia/reoxygenation injury via inhibiting endoplasmic reticulum and mitochondrial stress pathways. J. Transl. Med. 2013 11 1 24 10.1186/1479‑5876‑11‑24 23360542
    [Google Scholar]
  66. Yang Y. Yang W. Hu T. Sun M. Wang J. Shen J. Ding E. Protective effect of biochanin A on Gamma Radiation‐induced oxidative stress, antioxidant status, apoptotic, and DNA repairing molecules in Swiss Albino mice. Cell Biochem. Funct. 2024 42 8 e70005 10.1002/cbf.70005 39498677
    [Google Scholar]
  67. Wang Q. Zhao J. Zhang M. Sun M. Fu Z.F. Zhao L. Zhou M. Neuroinvasive virus utilizes a lipid droplet surface protein, perilipin2, to restrict apoptosis by decreasing Bcl-2 ubiquitination. J. Virol. 2024 Nov e01607-24 10.1128/jvi.01607‑24 39498967
    [Google Scholar]
  68. Chuang P.Y. He J.C. JAK/STAT signaling in renal diseases. Kidney Int. 2010 78 3 231 234 10.1038/ki.2010.158 20631733
    [Google Scholar]
  69. Luan J. Fu J. Wang D. Jiao C. Cui X. Chen C. Liu D. Zhang Y. Wang Y. Yuen P.S.T. Kopp J.B. Pi J. Zhou H. miR-150-based RNA interference attenuates tubulointerstitial fibrosis through the SOCS1/JAK/STAT pathway in vivo and in vitro. Mol. Ther. Nucleic Acids 2020 22 871 884 10.1016/j.omtn.2020.10.008 33230482
    [Google Scholar]
  70. Qin T. Wu Y. Liu T. Wu L. Effect of Shenkang on renal fibrosis and activation of renal interstitial fibroblasts through the JAK2/STAT3 pathway. BMC Complementary Medicine and Therapies 2021 21 1 12 10.1186/s12906‑020‑03180‑3 33407391
    [Google Scholar]
  71. Yang N. Luo M. Li R. Huang Y. Zhang R. Wu Q. Wang F. Li Y. Yu X. Blockage of JAK/STAT signalling attenuates renal ischaemia-reperfusion injury in rats. Nephrol. Dial. Transplant. 2007 23 1 91 100 10.1093/ndt/gfm509 17670769
    [Google Scholar]
  72. Wang C. Gao X. Qiao M. Gao D. Guo Y. Wang J. Song C. Jiajiejian gel ameliorates thyroid nodules through regulation of thyroid hormones and suppression of the (IL-6, TNF-α, IL-1β)/JAK2/STAT3/VEGF pathway. Front. Pharmacol. 2024 15 1483686 10.3389/fphar.2024.1483686 39494342
    [Google Scholar]
  73. Zhu M. Peng Y. Qi Q. Zhang Y. Han W. Bao Y. Liu Y. Mechanistic study of Nidus Vespae inhibiting gastric cancer in vitro through the JAK2/STAT3 signaling pathway. J. Ethnopharmacol. 2025 338 Pt 1 119027 10.1016/j.jep.2024.119027 39489359
    [Google Scholar]
  74. Gan L. Geng L. Li Q. Zhang L. Huang Y. Lin J. Ou S. Allicin ameliorated high-glucose peritoneal dialysis solution-induced peritoneal fibrosis in rats via the JAK2/STAT3 signaling pathway. Cell Biochem. Biophys. 2024 Oct 10.1007/s12013‑024‑01593‑2 39448419
    [Google Scholar]
  75. Pang M. Ma L. Gong R. Tolbert E. Mao H. Ponnusamy M. Chin Y.E. Yan H. Dworkin L.D. Zhuang S. A novel STAT3 inhibitor, S3I-201, attenuates renal interstitial fibroblast activation and interstitial fibrosis in obstructive nephropathy. Kidney Int. 2010 78 3 257 268 10.1038/ki.2010.154 20520592
    [Google Scholar]
  76. Song X. Du Z. Yao Z. Tang X. Zhang M. Rhein improves renal fibrosis by restoring Cpt1a-mediated fatty acid oxidation through SirT1/STAT3/twist1 pathway. Molecules 2022 27 7 2344 10.3390/molecules27072344 35408745
    [Google Scholar]
  77. Liu J. Zhong Y. Liu G. Zhang X. Xiao B. Huang S. Liu H. He L. Role of Stat3 signaling in control of EMT of tubular epithelial cells during renal fibrosis. Cell. Physiol. Biochem. 2017 42 6 2552 2558 10.1159/000480216 28848189
    [Google Scholar]
  78. Chen Y. Mu L. Xing L. Li S. Fu S. Rhein alleviates renal interstitial fibrosis by inhibiting tubular cell apoptosis in rats. Biol. Res. 2019 52 1 50 10.1186/s40659‑019‑0257‑0 31492196
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073355322250226050458
Loading
/content/journals/cchts/10.2174/0113862073355322250226050458
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: ECM ; cell apoptosis ; JAK2/STAT3 signaling pathway ; JDBD ; EMT ; Renal interstitial fibrosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test