Skip to content
2000
image of Xuebijing Alleviates Microglial Activation after Traumatic Brain Injury via Regulation of NF-κB Pathway: Network Pharmacology and 
Experimental Validation

Abstract

Objective

Xuebijing (XBJ) injection, a Traditional Chinese medicine (TCM) widely used in China for treating sepsis and multiple organ dysfunction, has shown neuroprotective effects in traumatic brain injury (TBI). However, the mechanisms underlying these effects remain unclear. This study aims to elucidate the neuroprotective and pharmacological molecular mechanisms of XBJ and its active monomer, Hydroxy-safflor yellow A (HSYA), in treating TBI through network pharmacology and experimental validation.

Methods

Potential therapeutic targets for TBI were collected from TCMSP, TTD, OMIM, and GeneCards databases. Active compounds and targets of XBJ injection were obtained from TCMSP. The STRING database and Cytoscape software constructed a protein-protein interaction (PPI) network. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed using the DAVID database and visualized with Bioinformatics tools. Neuroprotective effects of XBJ were verified using BV2 and primary microglia cells stimulated by Lipopolysaccharide (LPS). Additionally, a TBI mice model was used to identify microglial activation .

Results

A total of 161 common targets related to TBI were identified. Network pharmacological analysis suggested that XBJ targets proteins involved in inflammation. results showed that XBJ and HSYA inhibited LPS-induced microglial activation the NF-κB pathway. Furthermore, XBJ was found to inhibit microglial activation in TBI mice.

Conclusion

These findings indicate that XBJ and HSYA may treat TBI by repressing microglial activation through the NF-κB pathway. Our study provides valuable evidence supporting XBJ as an effective therapy for TBI.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073364997250324231219
2025-04-15
2025-08-27
Loading full text...

Full text loading...

References

  1. Li C. Wang P. Li M. Zheng R. Chen S. Liu S. Feng Z. Yao Y. Shang H. The current evidence for the treatment of sepsis with Xuebijing injection: Bioactive constituents, findings of clinical studies and potential mechanisms. J. Ethnopharmacol. 2021 265 113301 10.1016/j.jep.2020.113301 32860891
    [Google Scholar]
  2. Wang T. Li S. Wu Y. Yan X. Zhu Y. Jiang Y. Jiang F. Liu W. Mechanistic investigation of xuebijing for treatment of paraquat-induced pulmonary fibrosis by metabolomics and network pharmacology. ACS Omega 2021 6 30 19717 19730 10.1021/acsomega.1c02370 34368559
    [Google Scholar]
  3. Song Y. Yao C. Yao Y. Han H. Zhao X. Yu K. Liu L. Xu Y. Liu Z. Zhou Q. Wang Y. Ma Z. Zheng Y. Wu D. Tang Z. Zhang M. Pan S. Chai Y. Song Y. Zhang J. Pan L. Liu Y. Yu H. Yu X. Zhang H. Wang X. Du Z. Wan X. Tang Y. Tian Y. Zhu Y. Wang H. Yan X. Liu Z. Zhang B. Zhong N. Shang H. Bai C. XueBiJing injection versus placebo for critically ill patients with severe community-acquired pneumonia: A randomized controlled trial. Crit. Care Med. 2019 47 9 e735 e743 10.1097/CCM.0000000000003842 31162191
    [Google Scholar]
  4. Zhou Y. Li J. Luo Y. Bai Y. Shi Y. Effect of xuebijing injection on patients with severe traumatic brain injury. Xiandai Shengwu Yixue Jinzhan 2016 1128 1130
    [Google Scholar]
  5. Hu H.X. Zhu M.Q. Sun Y.C. Ma C. Wang X. Liu X.L. Xuebijing enhances neuroprotective effects of ulinastatin on transient cerebral ischemia via Nrf2-are signal pathways in the hippocampus. J. Biol. Regul. Homeost. Agents 2018 32 5 1143 1149 30334406
    [Google Scholar]
  6. Sun S. Guo X. Lin D. Effects of different doses of xuebijing injection on inflammatory response in patients with severe stroke. Pract. Clin. Med. 2015 16 20
    [Google Scholar]
  7. Ma C. Han D.F. Jin H. Cheng Y.Y. Hu H.X. Wang X. A combination of ulinastatin and xuebijing amplifies neuroprotection after transient cerebral ischemia via attenuating apoptosis signal pathways in hippocampus. Curr. Pharm. Des. 2019 24 44 5342 5347 10.2174/1381612825666190206224134 30727870
    [Google Scholar]
  8. Yuguang G. Deqing H. Jie Z. Yujuan M. Kan Y. Yuxiong L. Qiong Z. Qiqi L. Use of network pharmacology and experiment validation to uncover the mechanism of jianshen lishui prescription in the treatment of intracerebral hemorrhage. Comb. Chem. High Throughput Screen. 2024 27 1 9 10.2174/0113862073256436231031100059 38243958
    [Google Scholar]
  9. Kalra S. Malik R. Singh G. Bhatia S. Al-Harrasi A. Mohan S. Albratty M. Albarrati A. Tambuwala M.M. Pathogenesis and management of traumatic brain injury (TBI): Role of neuroinflammation and anti-inflammatory drugs. Inflammopharmacology 2022 30 4 1153 1166 10.1007/s10787‑022‑01017‑8 35802283
    [Google Scholar]
  10. Shichita T. Ooboshi H. Yoshimura A. Neuroimmune mechanisms and therapies mediating post-ischaemic brain injury and repair. Nat. Rev. Neurosci. 2023 24 5 299 312 10.1038/s41583‑023‑00690‑0 36973481
    [Google Scholar]
  11. Squillace S. Salvemini D. Toll-like receptor-mediated neuroinflammation: Relevance for cognitive dysfunctions. Trends Pharmacol. Sci. 2022 43 9 726 739 10.1016/j.tips.2022.05.004 35753845
    [Google Scholar]
  12. Wei P. Wang K. Luo C. Huang Y. Misilimu D. Wen H. Jin P. Li C. Gong Y. Gao Y. Cordycepin confers long-term neuroprotection via inhibiting neutrophil infiltration and neuroinflammation after traumatic brain injury. J. Neuroinflammation 2021 18 1 137 10.1186/s12974‑021‑02188‑x 34130727
    [Google Scholar]
  13. Friberg S. Lindblad C. Zeiler F.A. Zetterberg H. Granberg T. Svenningsson P. Piehl F. Thelin E.P. Fluid biomarkers of chronic traumatic brain injury. Nat. Rev. Neurol. 2024 20 11 671 684 10.1038/s41582‑024‑01024‑z 39363129
    [Google Scholar]
  14. Candelario-Jalil E. Dijkhuizen R.M. Magnus T. Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 2022 53 5 1473 1486 10.1161/STROKEAHA.122.036946 35387495
    [Google Scholar]
  15. Kumari S. Dhapola R. Sharma P. Nagar P. Medhi B. HariKrishnaReddy D. The impact of cytokines in neuroinflammation-mediated stroke. Cytokine Growth Factor Rev. 2024 78 105 119 10.1016/j.cytogfr.2024.06.002 39004599
    [Google Scholar]
  16. Qin C. Yang S. Chu Y.H. Zhang H. Pang X.W. Chen L. Zhou L.Q. Chen M. Tian D.S. Wang W. Signaling pathways involved in ischemic stroke: Molecular mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022 7 1 215 10.1038/s41392‑022‑01064‑1 35794095
    [Google Scholar]
  17. Go M. Kou J. Lim J.E. Yang J. Fukuchi K. Microglial response to LPS increases in wild-type mice during aging but diminishes in an Alzheimer’s mouse model: Implication of TLR4 signaling in disease progression. Biochem. Biophys. Res. Commun. 2016 479 2 331 337 10.1016/j.bbrc.2016.09.073 27641666
    [Google Scholar]
  18. Atta A.A. Ibrahim W.W. Mohamed A.F. Abdelkader N.F. Microglia polarization in nociplastic pain: Mechanisms and perspectives. Inflammopharmacology 2023 31 3 1053 1067 10.1007/s10787‑023‑01216‑x 37069462
    [Google Scholar]
  19. Silva D.A.A.F. Fiadeiro M.B. Bernardino L.I. Fonseca C.S.P. Baltazar G.M.F. Cristóvão A.C.B. “Lipopolysaccharide-induced animal models for neuroinflammation – An overview.”. J. Neuroimmunol. 2024 387 578273 10.1016/j.jneuroim.2023.578273 38183948
    [Google Scholar]
  20. Wangler L.M. Godbout J.P. Microglia moonlighting after traumatic brain injury: Aging and interferons influence chronic microglia reactivity. Trends Neurosci. 2023 46 11 926 940 10.1016/j.tins.2023.08.008 37723009
    [Google Scholar]
  21. Hegdekar N. Sarkar C. Bustos S. Ritzel R.M. Hanscom M. Ravishankar P. Philkana D. Wu J. Loane D.J. Lipinski M.M. Inhibition of autophagy in microglia and macrophages exacerbates innate immune responses and worsens brain injury outcomes. Autophagy 2023 19 7 2026 2044 10.1080/15548627.2023.2167689 36652438
    [Google Scholar]
  22. Shen Q. Ge L. Lu W. Wu H. Zhang L. Xu J. Tang O. Muhammad I. Zheng J. Wu Y. Wang S.W. Zeng X.X. Xue J. Cheng K. Transplanting network pharmacology technology into food science research: A comprehensive review on uncovering food‐sourced functional factors and their health benefits. Compr. Rev. Food Sci. Food Saf. 2024 23 5 e13429 10.1111/1541‑4337.13429 39217524
    [Google Scholar]
  23. Wang X. Wang Y. Yuan T. Wang H. Zeng Z. Tian L. Cui L. Guo J. Chen Y. Network pharmacology provides new insights into the mechanism of traditional Chinese medicine and natural products used to treat pulmonary hypertension. Phytomedicine 2024 135 156062 10.1016/j.phymed.2024.156062 39305743
    [Google Scholar]
  24. Lv S. Wang Q. Zhang X. Ning F. Liu W. Cui M. Xu Y. Mechanisms of multi-omics and network pharmacology to explain traditional chinese medicine for vascular cognitive impairment: A narrative review. Phytomedicine 2024 123 155231 10.1016/j.phymed.2023.155231 38007992
    [Google Scholar]
  25. Bai Y. Chen R. Sun J. Guo Y. Evaluation of therapeutic mechanism of hedyotis diffusa willd (HDW)‒ scutellaria barbata (SB) in clear cell renal cell carcinoma via singlecell RNA sequencing and network pharmacology. Comb. Chem. High Throughput Screen. 2024 27 6 910 921 10.2174/1386207326666230731155309 37526191
    [Google Scholar]
  26. Nogales C. Mamdouh Z.M. List M. Kiel C. Casas A.I. Schmidt H.H.H.W. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol. Sci. 2022 43 2 136 150 10.1016/j.tips.2021.11.004 34895945
    [Google Scholar]
  27. Zhang P. Zhang D. Zhou W. Wang L. Wang B. Zhang T. Li S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform. 2023 25 1 bbad518 10.1093/bib/bbad518 38197310
    [Google Scholar]
  28. Li L. Yang L. Yang L. He C. He Y. Chen L. Dong Q. Zhang H. Chen S. Li P. Network pharmacology: A bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin. Med. 2023 18 1 146 10.1186/s13020‑023‑00853‑2 37941061
    [Google Scholar]
  29. Guo D. Zhu Y. Sun H. Xu X. Zhang S. Hao Z. Wang G. Mu C. Ren H. Pharmacological activation of REV-ERBα represses LPS-induced microglial activation through the NF-κB pathway. Acta Pharmacol. Sin. 2019 40 1 26 34 10.1038/s41401‑018‑0064‑0 29950615
    [Google Scholar]
  30. Yu X. Niu W. Wang Y.Y. Olaleye O.E. Wang J.N. Duan M.Y. Yang J.L. He R.R. Chu Z.X. Dong K. Zhang G.P. Liu C.X. Cheng C. Li C. Novel assays for quality evaluation of XueBiJing: Quality variability of a Chinese herbal injection for sepsis management. J. Pharm. Anal. 2022 12 4 664 682 10.1016/j.jpha.2022.01.001 36105162
    [Google Scholar]
  31. Zhou W. Lai X. Wang X. Yao X. Wang W. Li S. Network pharmacology to explore the anti-inflammatory mechanism of Xuebijing in the treatment of sepsis. Phytomedicine 2021 85 153543 10.1016/j.phymed.2021.153543 33799226
    [Google Scholar]
  32. Zhang L. Fei M. Wang H. Zhu Y. Sodium aescinate provides neuroprotection in experimental traumatic brain injury via the Nrf2-ARE pathway. Brain Res. Bull. 2020 157 26 36 10.1016/j.brainresbull.2020.01.019 32014567
    [Google Scholar]
  33. Gu C. Hu Q. Wu J. Mu C. Ren H. Liu C.F. Wang G. P7C3 inhibits LPS-induced microglial activation to protect dopaminergic neurons against inflammatory factor-induced cell death in vitro and in vivo. Front. Cell. Neurosci. 2018 12 400 10.3389/fncel.2018.00400 30455635
    [Google Scholar]
  34. Hoesel B. Schmid J.A. The complexity of NF-κB signaling in inflammation and cancer. Mol. Cancer 2013 12 1 86 10.1186/1476‑4598‑12‑86 23915189
    [Google Scholar]
  35. Yu S. Chen X. Xiu M. He F. Xing J. Min D. Guo F. The regulation of Jmjd3 upon the expression of NF-κB downstream inflammatory genes in LPS activated vascular endothelial cells. Biochem. Biophys. Res. Commun. 2017 485 1 62 68 10.1016/j.bbrc.2017.02.020 28189690
    [Google Scholar]
  36. Zhu M.M. Wang L. Yang D. Li C. Pang S. T. Li X. H. Li R. Yang B. Lian Y. P. Ma L. Lv Q.L. Jia X.B. Feng L. Wedelolactone alleviates doxorubicin-induced inflammation and oxidative stress damage of podocytes by IkappaK/IkappaB/NF-kappaB pathway. Biomed. Pharm. 2019 117 109088 10.1016/j.biopha.2019.109088
    [Google Scholar]
  37. Guo Y. Wang Y. Huang X. Lv H. Fan R. Huang W. Gan P. Liu W. Yan K. Xia Z. Liu J. Determination of hydroxysafflor yellow A in biological fluids of patients with traumatic brain injury by UPLC‐ESI‐MS/MS after injection of Xuebijing. Biomed. Chromatogr. 2014 28 8 1090 1095 10.1002/bmc.3124 24535782
    [Google Scholar]
  38. Wang Y. Han B. Dulaglutide Alleviates Alzheimer’s Disease by Regulating Microglial Polarization and Neurogenic Activity. Comb. Chem. High Throughput Screen. 2024 1 9 10.2174/1386207325666220726163514 35894460
    [Google Scholar]
  39. Ritzel R.M. Li Y. Jiao Y. Lei Z. Doran S.J. He J. Shahror R.A. Henry R.J. Khan R. Tan C. Liu S. Stoica B.A. Faden A.I. Szeto G. Loane D.J. Wu J. Brain injury accelerates the onset of a reversible age-related microglial phenotype associated with inflammatory neurodegeneration. Sci. Adv. 2023 9 10 eadd1101 10.1126/sciadv.add1101 36888713
    [Google Scholar]
  40. Zhang C. Chen X. Wei T. Song J. Tang X. Bi J. Chen C. Zhou J. Su X. Song Y. Xuebijing alleviates LPS-induced acute lung injury by downregulating pro-inflammatory cytokine production and inhibiting gasdermin-E-mediated pyroptosis of alveolar epithelial cells. Chin. J. Nat. Med. 2023 21 8 576 588 10.1016/S1875‑5364(23)60463‑7 37611976
    [Google Scholar]
  41. Zhang M. Zheng R. Liu W.J. Hou J.L. Yang Y.L. Shang H.C. Xuebijing injection, a Chinese patent medicine, against severe pneumonia: Current research progress and future perspectives. J. Integr. Med. 2023 21 413 422 10.1016/j.joim.2023.08.004
    [Google Scholar]
  42. Hu T. Xuebijing Injection for Sepsis Treatment: When Will It Be Approved Outside of China? JAMA Intern. Med. 2023 183 11 1280 1281 10.1001/jamainternmed.2023.4398 37721746
    [Google Scholar]
  43. Loane D.J. Kumar A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp. Neurol. 2016 275 0 3 316 327 10.1016/j.expneurol.2015.08.018 26342753
    [Google Scholar]
  44. Cai L. Gong Q. Qi L. Xu T. Suo Q. Li X. Wang W. Jing Y. Yang D. Xu Z. Yuan F. Tang Y. Yang G. Ding J. Chen H. Tian H. ACT001 attenuates microglia-mediated neuroinflammation after traumatic brain injury via inhibiting AKT/NFκB/NLRP3 pathway. Cell Commun. Signal. 2022 20 1 56 10.1186/s12964‑022‑00862‑y 35461293
    [Google Scholar]
  45. Meng X. Yan X. Xue P. Xi Z. Xuebijing exerts protective effects on myocardial cells by upregulating trim16 and inhibiting oxidative stress and apoptosis. Curr. Comput Aided. Drug Des. 2024 1 6 10.2174/0115734099318323241122184120
    [Google Scholar]
  46. Kang X.F. Lu X.L. Bi C.F. Hu X.D. Li Y. Li J.K. Yang L.S. Liu J. Ma L. Zhang J.F. Xuebijing injection protects sepsis induced myocardial injury by mediating TLR4/NF-κB/IKKα and JAK2/STAT3 signaling pathways. Aging 2023 15 16 8501 8517 10.18632/aging.204990 37650558
    [Google Scholar]
  47. Bi C.F. Liu Hao S.W. Xu Z.X. Ma X. Kang X.F. Yang L.S. Zhang J.F. Xuebijing injection protects against sepsis-induced myocardial injury by regulating apoptosis and autophagy via mediation of PI3K/AKT/mTOR signaling pathway in rats. Aging 2023 15 10 4374 4390 10.18632/aging.204740 37219401
    [Google Scholar]
  48. Chen F. Yan S. Xu J. Jiang Y. Wang J. Deng H. Wang J. Zou L. Liu Y. Zhu Y. Exploring the potential mechanism of Xuebijing injection against sepsis based on metabolomics and network pharmacology. Anal. Biochem. 2023 682 115332 10.1016/j.ab.2023.115332 37816419
    [Google Scholar]
  49. Tang A. Li Y. Sun L. Liu X. Gao N. Yan S. Zhang G. Xuebijing improves intestinal microcirculation dysfunction in septic rats by regulating the VEGF-A/PI3K/Akt signaling pathway. World J. Emerg. Med. 2024 15 3 206 213 10.5847/wjem.j.1920‑8642.2024.035 38855370
    [Google Scholar]
  50. Wang L. Ye B. Liu Y. Li J. Li C. Wen M. Li H. Xuebijing injection attenuates heat stroke-induced brain injury through oxidative stress blockage and parthanatos modulation via PARP-1/AIF signaling. ACS Omega 2023 8 37 33392 33402 10.1021/acsomega.3c03084 37744847
    [Google Scholar]
  51. Zhang Y. Li H. Ma P. [Effects of Xuebijing on hypothalamus-pituitary-adrenal axis in early stage of septic rats]. Zhonghua Yi Xue Za Zhi 2014 94 32 2549 2552 25410931
    [Google Scholar]
  52. Li L. Jiang W. Yu B. Liang H. Mao S. Hu X. Feng Y. Xu J. Chu L. Quercetin improves cerebral ischemia/reperfusion injury by promoting microglia/macrophages M2 polarization via regulating PI3K/Akt/NF-kappaB signaling pathway. Biomed. Pharmacother. 2023 168 115653 10.1016/j.biopha.2023.115653
    [Google Scholar]
  53. Zhao N. Wu M. Velu P. Annamalai V. Zhang J. Sanggenol L alleviates rotenone-induced parkinson's disease and inhibits mitochondrial complex I by apoptosis via P13K/AKT/mTOR signalling. Comb. Chem. High Throughput Screen. 2024 1 6 10.2174/0113862073358649241128053921
    [Google Scholar]
  54. Merighi S. Nigro M. Travagli A. Gessi S. Microglia and Alzheimer’s Disease. Int. J. Mol. Sci. 2022 23 21 12990 10.3390/ijms232112990 36361780
    [Google Scholar]
  55. Ma H. Wang C. Han L. Kong F. Liu Z. Zhang B. Chu W. Wang H. Wang L. Li Q. Peng W. Yang H. Han C. Lu X. Tofacitinib promotes functional recovery after spinal cord injury by regulating microglial polarization via jak/stat signaling pathway. Int. J. Biol. Sci. 2023 19 15 4865 4882 10.7150/ijbs.84564 37781508
    [Google Scholar]
  56. Ma K. Wu H.Y. Wang S.Y. Li B.X. The Keap1/Nrf2-ARE signaling pathway is involved in atrazine induced dopaminergic neurons degeneration via microglia activation. Ecotoxicol. Environ. Saf. 2021 226 112862 10.1016/j.ecoenv.2021.112862 34624533
    [Google Scholar]
  57. Zhao M. Wang L.F.S. Hu X. Chen F. Chan H.M. Acrylamide-induced neurotoxicity in primary astrocytes and microglia: Roles of the Nrf2-ARE and NF-κB pathways. Food Chem. Toxicol. 2017 106 Pt A 25 35 10.1016/j.fct.2017.05.007 28526328
    [Google Scholar]
  58. Tian Y. Liu B. Li Y. Zhang Y. Shao J. Wu P. Xu C. Chen G. Shi H. Activation of rarα receptor attenuates neuroinflammation after sah via promoting M1-to-M2 phenotypic polarization of microglia and regulating Mafb/Msr1/PI3K-Akt/NF-κB pathway. Front. Immunol. 2022 13 839796 10.3389/fimmu.2022.839796 35237277
    [Google Scholar]
  59. Chu E. Mychasiuk R. Hibbs M.L. Semple B.D. Dysregulated phosphoinositide 3-kinase signaling in microglia: Shaping chronic neuroinflammation. J. Neuroinflammat. 2021 18 1 276 10.1186/s12974‑021‑02325‑6 34838047
    [Google Scholar]
  60. Ding W. Cai C. Zhu X. Wang J. Jiang Q. Parthenolide ameliorates neurological deficits and neuroinflammation in mice with traumatic brain injury by suppressing STAT3/NF-κB and inflammasome activation. Int. Immunopharmacol. 2022 108 108913 10.1016/j.intimp.2022.108913 35729839
    [Google Scholar]
  61. Singh N.K. Singh A. Mayank Nuclear factor kappa B: A nobel therapeutic target of flavonoids against parkinson’s disease. Comb. Chem. High Throughput Screen. 2024 27 14 2062 2077 10.2174/0113862073295568240105025006 38243959
    [Google Scholar]
  62. Xie P. Jin X. Li C. Lv K. Deng M. Huazhi rougan granule alleviates liver and intestinal damage in non-alcoholic fatty liver disease by regulating miR-122 expression and TLR4/MyD88/NF-kappab pathway activation. Comb. Chem. High Throughput Screen. 2024 1 9 10.2174/0113862073290372240603090844
    [Google Scholar]
  63. Park S.H. Kang J.S. Yoon Y.D. Lee K. Kim K.J. Lee K.H. Lee C.W. Moon E.Y. Han S.B. Kim B.H. Kim H.M. Park S.K. Glabridin inhibits lipopolysaccharide‐induced activation of a microglial cell line, BV‐2, by blocking NF‐κB and AP‐1. Phytother. Res. 2010 24 S1 S29 S34 10.1002/ptr.2872 19455572
    [Google Scholar]
  64. Jiang M. Zhou M. Han Y. Xing L. Zhao H. Dong L. Bai G. Luo G. Identification of NF-κB Inhibitors in Xuebijing injection for sepsis treatment based on bioactivity-integrated UPLC-Q/TOF. J. Ethnopharmacol. 2013 147 2 426 433 10.1016/j.jep.2013.03.032 23524166
    [Google Scholar]
  65. Liu M. Su M. Zhang W. Wang Y. Chen M. Wang L. Qian C. Protective effect of Xuebijing injection on paraquat-induced pulmonary injury via down-regulating the expression of p38 MAPK in rats. BMC Complement. Altern. Med. 2014 14 1 498 10.1186/1472‑6882‑14‑498 25511395
    [Google Scholar]
  66. Liu M.W. Liu R. Wu H.Y. Zhang W. Xia J. Dong M.N. Yu W. Wang Q. Xie F.M. Wang R. Huang Y.Q. Qian C.Y. Protective effect of Xuebijing injection on D-galactosamine- and lipopolysaccharide-induced acute liver injury in rats through the regulation of p38 MAPK, MMP-9 and HO-1 expression by increasing TIPE2 expression. Int. J. Mol. Med. 2016 38 5 1419 1432 10.3892/ijmm.2016.2749 27666960
    [Google Scholar]
  67. Liu H.Q. Zhang W.Y. Luo X.T. Ye Y. Zhu X.Z. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease by activation of adenosine A 1 receptor. Br. J. Pharmacol. 2006 148 3 314 325 10.1038/sj.bjp.0706732 16582933
    [Google Scholar]
  68. Hu Y. Wang Y. Liang S. Yu X. Zhang L. Feng L. Feng Y. Senkyunolide I attenuates oxygen-glucose deprivation/reoxygenation-induced inflammation in microglial cells. Brain Res. 2016 1649 Pt A 123 131 10.1016/j.brainres.2016.08.012 27524398
    [Google Scholar]
  69. Zhang Z. Wu Z. Zhu X. Hui X. Pan J. Xu Y. Hydroxy-safflor yellow A inhibits neuroinflammation mediated by Abeta(1)(-)(4)(2) in BV-2 cells. Neurosci. Lett. 2014 562 39 44 10.1016/j.neulet.2014.01.005 24412680
    [Google Scholar]
  70. Ren Z. Li H. Zhang M. Zhao Y. Fang X. Li X. Chen W. Zhang H. Wang Y. Pan L.L. Sun J. A novel derivative of the natural product danshensu suppresses inflammatory responses to alleviate caerulein-induced acute pancreatitis. Front. Immunol. 2018 9 2513 10.3389/fimmu.2018.02513 30425719
    [Google Scholar]
  71. Doss H.M. Dey C. Sudandiradoss C. Rasool M.K. Targeting inflammatory mediators with ferulic acid, a dietary polyphenol, for the suppression of monosodium urate crystal-induced inflammation in rats. Life Sci. 2016 148 201 210 10.1016/j.lfs.2016.02.004 26851531
    [Google Scholar]
  72. Ji L. Huang H. Jiang M. Bai G. Luo G. [Simultaneous HPLC determination of 11 essential compounds in Xuebijing injection]. Zhongguo Zhongyao Zazhi 2010 35 18 2395 2398 21141485
    [Google Scholar]
  73. Hameren V.G. Aboghazleh R. Parker E. Dreier J.P. Kaufer D. Friedman A. From spreading depolarization to blood–brain barrier dysfunction: Navigating traumatic brain injury for novel diagnosis and therapy. Nat. Rev. Neurol. 2024 20 7 408 425 10.1038/s41582‑024‑00973‑9 38886512
    [Google Scholar]
  74. Chodobski A. Zink B.J. Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury. Transl. Stroke Res. 2011 2 4 492 516 10.1007/s12975‑011‑0125‑x 22299022
    [Google Scholar]
  75. Shlosberg D. Benifla M. Kaufer D. Friedman A. Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat. Rev. Neurol. 2010 6 7 393 403 10.1038/nrneurol.2010.74 20551947
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073364997250324231219
Loading
/content/journals/cchts/10.2174/0113862073364997250324231219
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: microglia ; traumatic brain injury ; network pharmacology ; neuroinflammation ; Xuebijing ; NF-κB
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test