Skip to content
2000
image of Mechanism Analysis of the Effect of Cordycepin on Colorectal Cancer via Network Pharmacology and Experiment

Abstract

Objective

Colorectal Cancer (CRC) has attracted much attention due to its high mortality and morbidity. Cordycepin, also known as 3'-deoxyadenosine (3'-dA), exhibits many biological functions, including antibacterial, anti-inflammatory, antiviral, anti-tumor, and immunomodulatory effects. It has been proven to show anticancer activity in both laboratory research studies and living organisms. However, the molecular mechanism of the effect of cordycepin on CRC remains unclear.

Methods

The genes associated with cordycepin and colorectal cancer have been identified by comparing the toxicogenomics database (CTD) and GeneCards database. The common genes between cordycepin and CRC have been identified using the Venny tool. The Protein-protein Interaction (PPI) network has been drawn using the STRING database. GO and KEGG enrichment analyses of the intersecting genes have been followed by experimental validation, both and .

Results

24 drug targets have been screened using the CTD database and 1490 disease targets have been obtained from the GeneCards database and GO and KEGG analyses. The effect of cordycepin on the proliferation of SW480 cells has been assessed using CCK-8. The related results have indicated cordycepin to inhibit the proliferation of SW480 cells, promote apoptosis, and activate the p53 signal pathway. The findings obtained from experiments have been found to be consistent with those obtained from studies.

Conclusion

Our findings have elucidated an effective way to search for cordycepin’s potential mechanism of effect on CRC therapy by employing the network pharmacology and experiment. We have predicted that cordycepin can inhibit tumor growth by regulating the apoptosis pathway. This study has offered valuable insights into the potential mechanism of the effect of cordycepin on CRC and provided a theoretical basis for further validation of its clinical application.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073322771241119101357
2025-01-14
2025-09-14
Loading full text...

Full text loading...

References

  1. Chen W. Zheng R. Baade P.D. Zhang S. Zeng H. Bray F. Jemal A. Yu X.Q. He J. Cancer statistics in China, 2015. CA Cancer J. Clin. 2016 66 2 115 132 10.3322/caac.21338 26808342
    [Google Scholar]
  2. Brenner H. Kloor M. Pox C.P. Colorectal cancer. Lancet 2014 383 9927 1490 1502 10.1016/S0140‑6736(13)61649‑9 24225001
    [Google Scholar]
  3. Winardi D. Wu C.H. Chiang J.H. Chen Y.H. Hsieh C.L. Yang J.C. Wu Y.C. The use of san-huang-xie-xin-tang reduces the mortality rate among breast cancer patients. Cancers (Basel) 2023 15 4 1213 10.3390/cancers15041213 36831555
    [Google Scholar]
  4. Xu W. Li B. Xu M. Yang T. Hao X. 2022 Traditional Chinese medicine for precancerous lesions of gastric cancer: A review. Biomed. Pharmacother. 146 112542 10.1016/j.biopha.2021.112542 34929576
    [Google Scholar]
  5. Wei C. Yao X. Jiang Z. Wang Y. Zhang D. Chen X. Fan X. Xie C. Cheng J. Fu J. Leung E.L.H. Cordycepin inhibits drug-resistance non-small cell lung cancer progression by activating AMPK signaling pathway. Pharmacol. Res. 2019 144 79 89 10.1016/j.phrs.2019.03.011 30974169
    [Google Scholar]
  6. Zeng Y. Lian S. Li D. Lin X. Chen B. Wei H. Yang T. Anti-hepatocarcinoma effect of cordycepin against NDEA-induced hepatocellular carcinomas via the PI3K/Akt/mTOR and Nrf2/HO-1/NF-κB pathway in mice. Biomed. Pharmacother. 95 1868 1875 2017 10.1016/j.biopha.2017.09.069 28968944
    [Google Scholar]
  7. Lee D. Lee W.Y. Jung K. Kwon Y. Kim D. Hwang G. Kim C.E. Lee S. Kang K. The inhibitory effect of cordycepin on the proliferation of MCF-7 breast cancer cells, and its mechanism: An investigation using network pharmacology-based analysis. Biomolecules 2019 9 9 414 10.3390/biom9090414 31454995
    [Google Scholar]
  8. Dong J. Li Y. Xiao H. Luo D. Zhang S. Zhu C. Jiang M. Cui M. Lu L. Fan S. Cordycepin sensitizes breast cancer cells toward irradiation through elevating ROS production involving Nrf2. Toxicol. Appl. Pharmacol. 2019 364 12 21 10.1016/j.taap.2018.12.006 30529626
    [Google Scholar]
  9. Kashyap D. Garg V.K. Goel N. Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv. Protein Chem. Struct. Biol. 2021 125 73 120 10.1016/bs.apcsb.2021.01.003 33931145
    [Google Scholar]
  10. Singh R. Letai A. Sarosiek K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 2019 20 3 175 193 10.1038/s41580‑018‑0089‑8 30655609
    [Google Scholar]
  11. Pistritto G. Trisciuoglio D. Ceci C. Garufi A. D’Orazi G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2016 8 4 603 619 10.18632/aging.100934 27019364
    [Google Scholar]
  12. Davis A.P. Wiegers T.C. Johnson R.J. Sciaky D. Wiegers J. Mattingly C.J. Comparative Toxicogenomics Database (CTD): Update 2023. Nucleic Acids Res. 2023 51 D1 D1257 D1262 10.1093/nar/gkac833 36169237
    [Google Scholar]
  13. Chen Y. Jiang Y. Huang X. Chen L. Yang H. Zhao J. Liang B. 2022 Cordycepin inhibits the growth of hepatocellular carcinoma by regulating the pathway of aerobic glycolysis. Evid. Based Complement. Alternat. Med. 2022 6454482 10.1155/2022/6454482 36467556
    [Google Scholar]
  14. Chen X. Li T.H. Zhao Y. Wang C.C. Zhu C.C. Deep-belief network for predicting potential miRNA-disease associations. Brief. Bioinform. 2021 22 3 bbaa186 10.1093/bib/bbaa186 34020550
    [Google Scholar]
  15. Ha J. Park C. Park C. Park S. IMIPMF: Inferring miRNA-disease interactions using probabilistic matrix factorization. J. Biomed. Inform. 2020 102 103358 10.1016/j.jbi.2019.103358 31857202
    [Google Scholar]
  16. Ha J. Park S. NCMD: Node2vec-based neural collaborative filtering for predicting MiRNA-disease association. IEEE/ACM Trans. Comput. Biol. Bioinformatics 2023 20 2 1257 1268 10.1109/TCBB.2022.3191972 35849666
    [Google Scholar]
  17. Ha J. MDMF: Predicting miRNA–disease association based on matrix factorization with disease similarity constraint. J. Pers. Med. 2022 12 6 885 10.3390/jpm12060885 35743670
    [Google Scholar]
  18. Wang H. Guo M. Wei H. Chen Y. Targeting p53 pathways: Mechanisms, structures and advances in therapy. Signal Transduct. Target. Ther. 2023 8 1 92 10.1038/s41392‑023‑01347‑1 36859359
    [Google Scholar]
  19. Ghosh M. Saha S. Li J. Montrose D.C. Martinez L.A. p53 engages the cGAS/STING cytosolic DNA sensing pathway for tumor suppression. Mol. Cell 2023 83 2 266 280.e6 10.1016/j.molcel.2022.12.023 36638783
    [Google Scholar]
  20. Wang C.K. Chen T.J. Tan G.Y.T. Chang F.P. Sridharan S. Yu C.H.A. Chang Y.H. Chen Y.J. Cheng L.T. Hwang-Verslues W.W. MEX3A mediates p53 degradation to suppress ferroptosis and facilitate ovarian cancer tumorigenesis. Cancer Res. 2023 83 2 251 263 10.1158/0008‑5472.CAN‑22‑1159 36354374
    [Google Scholar]
  21. Marvalim C. Datta A. Lee S.C. Role of p53 in breast cancer progression: An insight into p53 targeted therapy. Theranostics 2023 13 4 1421 1442 10.7150/thno.81847 36923534
    [Google Scholar]
  22. Levine A.J. The p53 tumor-suppressor gene. N. Engl. J. Med. 1992 326 20 1350 1352 10.1056/NEJM199205143262008 1565147
    [Google Scholar]
  23. Kabir M. Sun N. Hu X. Martin T.C. Yi J. Zhong Y. Xiong Y. Kaniskan H.Ü. Gu W. Parsons R. Jin J. Acetylation targeting chimera enables acetylation of the tumor suppressor p53. J. Am. Chem. Soc. 2023 145 27 14932 14944 10.1021/jacs.3c04640 37365684
    [Google Scholar]
  24. Müller I. Strozyk E. Schindler S. Beissert S. Oo H.Z. Sauter T. Lucarelli P. Raeth S. Hausser A. Al Nakouzi N. Fazli L. Gleave M.E. Liu H. Simon H.U. Walczak H. Green D.R. Bartek J. Daugaard M. Kulms D. Cancer cells employ nuclear caspase-8 to overcome the p53-dependent G2/M checkpoint through cleavage of USP28. Mol. Cell 2020 77 5 970 984.e7 10.1016/j.molcel.2019.12.023 31982308
    [Google Scholar]
  25. Ehrhardt H. Häcker S. Wittmann S. Maurer M. Borkhardt A. Toloczko A. Debatin K-M. Fulda S. Jeremias I. Editorial expression of concern: Cytotoxic drug-induced, p53-mediated upregulation of caspase-8 in tumor cells. Oncogene 2024 43 32 2490 10.1038/s41388‑024‑03093‑2 38965344
    [Google Scholar]
  26. Zhaojun C. Lulin T. Xin F. Abdel-nasser S. Zunguo L. Xiong L. Hydroxy-γ-sanshool from Zanthoxylum bungeanum (prickly ash) induces apoptosis of human colorectal cancer cell by activating P53 and Caspase 8. Front. Nutr. 2022 9 914638 10.3389/fnut.2022.914638 35978957
    [Google Scholar]
  27. Pak J.N. Jung J.H. Park J.E. Hwang J. Lee H.J. Shim B.S. Kim S.H. p53 dependent LGR5 inhibition and caspase 3 activation are critically involved in apoptotic effect of compound K and its combination therapy potential in HCT116 cells. Phytother. Res. 2020 34 10 2745 2755 10.1002/ptr.6717 32403193
    [Google Scholar]
  28. Liang Z. Chen Y. Gu R. Guo Q. Nie X. Asiaticoside prevents oxidative stress and apoptosis in endothelial cells by activating ROS-dependent p53/Bcl-2/caspase-3 signaling pathway. Curr. Mol. Med. 2023 23 10 1116 1129 10.2174/1566524023666221024120825 36284389
    [Google Scholar]
  29. Song A. Zhang S. Zhao X. Wu S. Qi X. Gao S. Qi J. Li P. Tan J. Exosomes derived from menstrual blood stromal cells ameliorated premature ovarian insufficiency and granulosa cell apoptosis by regulating SMAD3/AKT/MDM2/P53 pathway via delivery of thrombospondin-1. Biomed. Pharmacother. 2023 166 115319 37573658 10.1016/j.biopha.2023.115319
    [Google Scholar]
  30. Jiang P. Zhai Z. Zhao L. Zhang K. Duan L. α‐Lipoic acid alleviates dextran sulfate sodium salt‐induced ulcerative colitis via modulating the Keap1–Nrf2 signaling pathway and inhibiting ferroptosis. J. Sci. Food Agric. 2024 104 3 1679 1690 10.1002/jsfa.13053 37850313
    [Google Scholar]
  31. Chen M. Luo J. Jiang W. Chen L. Miao L. Han C. Cordycepin: A review of strategies to improve the bioavailability and efficacy. Phytother. Res. 2023 37 9 3839 3858 10.1002/ptr.7921 37329165
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073322771241119101357
Loading
/content/journals/cchts/10.2174/0113862073322771241119101357
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: network pharmacology ; colorectal cancer ; Cordycepin ; SW480 ; p53 ; target prediction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test