Skip to content
2000
image of Exploring Mechanisms of Ephx2 in Treating Atherosclerosis Using Independent Cascade Model and Adverse Outcome Pathways

Abstract

Background

Atherosclerosis (AS) is a leading cause of cardiovascular diseases, characterized by lipid accumulation in arterial walls. The gene Ephx2, which encodes soluble epoxide hydrolase (sEH), is implicated in AS development, but its precise mechanisms and therapeutic potential are not fully understood.

Objectives

This study aimed to analyze gene expression data from low-density lipoprotein receptor knockout (LDLR−/−) and LDLR−/−sEH−/− mice to identify significant genes associated with AS.

Methods

A directed compound-protein interaction network was constructed based on these genes and related pathways from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. In the end, through resistance distance (RD) between any two nodes in this network, the Independent Cascade (IC) model was applied to explore Ephx2 mechanisms in AS, such as important Adverse Outcome Pathways (AOPs).

Results

Several AOPs were identified as critical in AS treatment Ephx2. The key AOPs included inflammatory response and cytokine release, cholesterol deposition and oxidation, disruption of plaque stability, smooth muscle cell proliferation and migration, and platelet activation and coagulation. Within the top AOPs of inflammatory response and cytokine release, potential target genes were identified, such as Mapk3, Pik3cd, Gnai2, Mapk10, Arnt, and RhoA. Critical paths from Ephx2 to these target genes were established, suggesting mechanisms by which Ephx2 may influence AS pathogenesis.

Conclusion

By defining the AS network and corresponding RD, this study elucidates potential mechanisms by which Ephx2 affects AS through specific KEGG pathways, AOPs, and target genes. These findings enhanced the understanding of AS pathogenesis and highlighte potential targets like Mapk3 for developing therapeutic strategies in AS prevention and treatment.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073345542250220051427
2025-03-27
2025-09-14
Loading full text...

Full text loading...

References

  1. Zhang L.N. Velichko S. Vincelette J. Fitch R.M. Vergona R. Sullivan M.E. Croze E. Wang Y.X. Interferon-beta attenuates angiotensin II-accelerated atherosclerosis and vascular remodeling in apolipoprotein E deficient mice. Atherosclerosis 2008 197 1 204 211 10.1016/j.atherosclerosis.2007.03.019 17466308
    [Google Scholar]
  2. Zhou M. Wang H. Zeng X. Yin P. Zhu J. Chen W. Li X. Wang L. Wang L. Liu Y. Liu J. Zhang M. Qi J. Yu S. Afshin A. Gakidou E. Glenn S. Krish V.S. Miller-Petrie M.K. Mountjoy-Venning W.C. Mullany E.C. Redford S.B. Liu H. Naghavi M. Hay S.I. Wang L. Murray C.J.L. Liang X. Mortality, morbidity, and risk factors in China and its provinces, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2019 394 10204 1145 1158 10.1016/S0140‑6736(19)30427‑1 31248666
    [Google Scholar]
  3. Gheorghe A. Griffiths U. Murphy A. Legido-Quigley H. Lamptey P. Perel P. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: A systematic review. BMC Public Health 2018 18 1 975 10.1186/s12889‑018‑5806‑x 30081871
    [Google Scholar]
  4. Arnett D.K. Blumenthal R.S. Albert M.A. Buroker A.B. Goldberger Z.D. Hahn E.J. Himmelfarb C.D. Khera A. Lloyd-Jones D. McEvoy J.W. Michos E.D. Miedema M.D. Muñoz D. Smith S.C. Jr Virani S.S. Williams K.A. Sr Yeboah J. Ziaeian B. 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: Executive summary: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation 2019 140 11 e563 e595 10.1161/CIR.0000000000000677 30879339
    [Google Scholar]
  5. Libby P. The changing landscape of atherosclerosis. Nature 2021 592 7855 524 533 10.1038/s41586‑021‑03392‑8 33883728
    [Google Scholar]
  6. Fredman G. MacNamara K.C. Atherosclerosis is a major human killer and non-resolving inflammation is a prime suspect. Cardiovasc. Res. 2021 117 13 cvab309 10.1093/cvr/cvab309 34609505
    [Google Scholar]
  7. Björkegren J.L.M. Lusis A.J. Atherosclerosis: Recent developments. Cell 2022 185 10 1630 1645 10.1016/j.cell.2022.04.004 35504280
    [Google Scholar]
  8. Campbell W.B. Gebremedhin D. Pratt P.F. Harder D.R. Identification of epoxyeicosatrienoic acids as endothelium-derived hyperpolarizing factors. Circ. Res. 1996 78 3 415 423 10.1161/01.RES.78.3.415 8593700
    [Google Scholar]
  9. Herrington W. Lacey B. Sherliker P. Armitage J. Lewington S. Epidemiology of atherosclerosis and the potential to reduce the global burden of atherothrombotic disease. Circ. Res. 2016 118 4 535 546 10.1161/CIRCRESAHA.115.307611 26892956
    [Google Scholar]
  10. Kobiyama K. Ley K. Atherosclerosis. Circ. Res. 2018 123 10 1118 1120 10.1161/CIRCRESAHA.118.313816 30359201
    [Google Scholar]
  11. Gill S.S. Hammock B.D. Casida J.E. Mammalian metabolism and environmental degradation of the juvenoid 1-(4′-ethylphenoxy)-3,7-dimethyl-6,7-epoxy-trans-2-octene and related compounds. J. Agric. Food Chem. 1974 22 3 386 395 10.1021/jf60193a058 4840500
    [Google Scholar]
  12. Wang M. Song W.L. Cheng Y. FitzGerald G.A. Microsomal prostaglandin E synthase‐1 inhibition in cardiovascular inflammatory disease. J. Intern. Med. 2008 263 5 500 505 10.1111/j.1365‑2796.2008.01938.x 18410593
    [Google Scholar]
  13. Zhang L.N. Vincelette J. Cheng Y. Mehra U. Chen D. Anandan S.K. Gless R. Webb H.K. Wang Y.X.J. Inhibition of soluble epoxide hydrolase attenuated atherosclerosis, abdominal aortic aneurysm formation, and dyslipidemia. Arterioscler. Thromb. Vasc. Biol. 2009 29 9 1265 1270 10.1161/ATVBAHA.109.186064 19667112
    [Google Scholar]
  14. El-Sherbeni A.A. El-Kadi A.O.S. The role of epoxide hydrolases in health and disease. Arch. Toxicol. 2014 88 11 2013 2032 10.1007/s00204‑014‑1371‑y 25248500
    [Google Scholar]
  15. González-Giraldo Y. Barreto G.E. Fava C. Forero D.A. Ischemic stroke and six genetic variants in CRP, EPHX2, FGA, and NOTCH3 genes: A meta-analysis. J. Stroke Cerebrovasc. Dis. 2016 25 9 2284 2289 10.1016/j.jstrokecerebrovasdis.2016.05.020 27266621
    [Google Scholar]
  16. Ulu A. Davis B.B. Tsai H.J. Kim I.H. Morisseau C. Inceoglu B. Fiehn O. Hammock B.D. Weiss R.H. Soluble epoxide hydrolase inhibitors reduce the development of atherosclerosis in apolipoprotein e-knockout mouse model. J. Cardiovasc. Pharmacol. 2008 52 4 314 323 10.1097/FJC.0b013e318185fa3c 18791465
    [Google Scholar]
  17. Fleming I. The factor in EDHF: Cytochrome P450 derived lipid mediators and vascular signaling. Vascul. Pharmacol. 2016 86 31 40 10.1016/j.vph.2016.03.001 26975734
    [Google Scholar]
  18. Fry J.L. Shiraishi Y. Turcotte R. Yu X. Gao Y.Z. Akiki R. Bachschmid M. Zhang Y. Morgan K.G. Cohen R.A. Seta F. Vascular smooth muscle sirtuin‐1 protects against aortic dissection during angiotensin II–induced hypertension. J. Am. Heart Assoc. 2015 4 9 e002384 10.1161/JAHA.115.002384 26376991
    [Google Scholar]
  19. Tacconelli S. Patrignani P. Inside epoxyeicosatrienoic acids and cardiovascular disease. Front. Pharmacol. 2014 5 239 10.3389/fphar.2014.00239 25426071
    [Google Scholar]
  20. Fleming I. DiscrEET regulators of homeostasis: Epoxyeicosatrienoic acids, cytochrome P450 epoxygenases and vascular inflammation. Trends Pharmacol. Sci. 2007 28 9 448 452 10.1016/j.tips.2007.08.002 17764757
    [Google Scholar]
  21. Kim S.A. Lee A.S. Lee H.B. Hur H.J. Lee S.H. Sung M.J. Soluble epoxide hydrolase inhibitor, TPPU, attenuates progression of atherosclerotic lesions and vascular smooth muscle cell phenotypic switching. Vascul. Pharmacol. 2022 145 107086 10.1016/j.vph.2022.107086 35752378
    [Google Scholar]
  22. Li P.L. Campbell W.B. Epoxyeicosatrienoic acids activate K+ channels in coronary smooth muscle through a guanine nucleotide binding protein. Circ. Res. 1997 80 6 877 884 10.1161/01.RES.80.6.877 9168791
    [Google Scholar]
  23. Li D. Liu Y. Zhang X. Lv H. Pang W. Sun X. Gan L.M. Hammock B.D. Ai D. Zhu Y. Inhibition of soluble epoxide hydrolase alleviated atherosclerosis by reducing monocyte infiltration in Ldlr−/− mice. J. Mol. Cell. Cardiol. 2016 98 128 137 10.1016/j.yjmcc.2016.08.001 27496380
    [Google Scholar]
  24. Kitano H. Systems biology: a brief overview. Science 2002 295 5560 1662 1664 10.1126/science.1069492 11872829
    [Google Scholar]
  25. Cao B. Jin J. Tang Z. Luo Q. An J. Pang W. Exploring mechanisms of houshiheisan in treating ischemic stroke with network pharmacology and independent cascade model. Comb. Chem. High Throughput Screen. 2024 27 7 959 968 37565556
    [Google Scholar]
  26. Holme P. Kim B.J. Yoon C.N. Han S.K. Attack vulnerability of complex networks. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 2002 65 5 056109 10.1103/PhysRevE.65.056109 12059649
    [Google Scholar]
  27. Lu F. Zhang W. Shao L. Jiang X. Xu P. Jin H. Scalable influence maximization under independent cascade model. J. Netw. Comput. Appl. 2017 86 15 23 10.1016/j.jnca.2016.10.020
    [Google Scholar]
  28. Klein D.J. Randić M. Resistance distance. J. Math. Chem. 1993 12 1 81 95 10.1007/BF01164627
    [Google Scholar]
  29. Carmona A. Encinas A.M. Mitjana M. Resistance distances on networks. Appl. Ana. Discrete Math. 2017 11 1 136 147 10.2298/AADM1701136C
    [Google Scholar]
  30. Love M.I. Huber W. Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014 15 12 550 10.1186/s13059‑014‑0550‑8 25516281
    [Google Scholar]
  31. Ankley G.T. Bennett R.S. Erickson R.J. Hoff D.J. Hornung M.W. Johnson R.D. Mount D.R. Nichols J.W. Russom C.L. Schmieder P.K. Serrrano J.A. Tietge J.E. Villeneuve D.L. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 2010 29 3 730 741 10.1002/etc.34 20821501
    [Google Scholar]
  32. Villeneuve D.L. Crump D. Garcia-Reyero N. Hecker M. Hutchinson T.H. LaLone C.A. Landesmann B. Lettieri T. Munn S. Nepelska M. Ottinger M.A. Vergauwen L. Whelan M. Adverse outcome pathway (AOP) development I: Strategies and principles. Toxicol. Sci. 2014 142 2 312 320 10.1093/toxsci/kfu199 25466378
    [Google Scholar]
  33. Hu M. Palić D. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biol. 2020 37 101620 10.1016/j.redox.2020.101620 32863185
    [Google Scholar]
  34. Srivastava R.A.K. A review of progress on targeting LDL receptor-dependent and -independent pathways for the treatment of hypercholesterolemia, a major risk factor of ASCVD. Cells 2023 12 12 1648 10.3390/cells12121648 37371118
    [Google Scholar]
  35. Amberger J.S. Bocchini C.A. Scott A.F. Hamosh A. OMIM.org: Leveraging knowledge across phenotype–gene relationships. Nucleic Acids Res. 2019 47 D1 D1038 D1043 10.1093/nar/gky1151 30445645
    [Google Scholar]
  36. Piñero J. Ramírez-Anguita J.M. Saüch-Pitarch J. Ronzano F. Centeno E. Sanz F. Furlong L.I. The DisGeNET knowledge platform for disease genomics: 2019 Update. Nucleic Acids Res. 2020 48 D1 D845 D855 31680165
    [Google Scholar]
  37. Knox C. Law V. Jewison T. Liu P. Ly S. Frolkis A. Pon A. Banco K. Mak C. Neveu V. Djoumbou Y. Eisner R. Guo A.C. Wishart D.S. DrugBank 3.0: A comprehensive resource for ‘Omics’ research on drugs. Nucleic Acids Res. 2011 39 Database D1035 D1041 10.1093/nar/gkq1126 21059682
    [Google Scholar]
  38. Stelzer G. Rosen N. Plaschkes I. Zimmerman S. Twik M. Fishilevich S. Stein T.I. Nudel R. Lieder I. Mazor Y. Kaplan S. Dahary D. Warshawsky D. Guan-Golan Y. Kohn A. Rappaport N. Safran M. Lancet D. The genecards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics. 2016 54 1.30.1 1.30.33
    [Google Scholar]
  39. Subramanian A. Tamayo P. Mootha V.K. Mukherjee S. Ebert B.L. Gillette M.A. Paulovich A. Pomeroy S.L. Golub T.R. Lander E.S. Mesirov J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005 102 43 15545 15550 10.1073/pnas.0506580102 16199517
    [Google Scholar]
  40. Telcs A. Random Walks on graphs, electric networks and fractals. Probab. Theory Relat. Fields 1989 82 3 435 449 10.1007/BF00339997
    [Google Scholar]
  41. Zhu M. Xu W. Zhang Z. Kan H. Chen G. Resistance distances in simplicial networks. Comput. J. 2023 66 8 1922 1935 10.1093/comjnl/bxac052
    [Google Scholar]
  42. Merris R. Laplacian matrices of graphs: A survey. Linear Algebra Appl. 1994 197-198 143 176 10.1016/0024‑3795(94)90486‑3
    [Google Scholar]
  43. Xiao W. Gutman I. Resistance distance and Laplacian spectrum. Theor. Chem. Acc. 2003 110 4 284 289 10.1007/s00214‑003‑0460‑4
    [Google Scholar]
  44. Wang Y. Li G. Tang N. Querying shortest paths on time dependent road networks. Proc. VLDB Endow 2019 12 11 1249 1261 10.14778/3342263.3342265
    [Google Scholar]
  45. Ugusman A. Hisam N.S.N. Othman N.S. Anuar N.N.M. Hamid A.A. Kumar J. Razmi M.M. Aminuddin A. Pharmacological interventions for intraplaque neovascularization in atherosclerosis. Pharmacol. Ther. 2024 261 108685 10.1016/j.pharmthera.2024.108685 38977083
    [Google Scholar]
  46. Li C. Zhang W.J. Choi J. Frei B. Quercetin affects glutathione levels and redox ratio in human aortic endothelial cells not through oxidation but formation and cellular export of quercetin-glutathione conjugates and upregulation of glutamate-cysteine ligase. Redox Biol. 2016 9 220 228 10.1016/j.redox.2016.08.012 27572418
    [Google Scholar]
  47. Prasad A. Andrews N.P. Padder F.A. Husain M. Quyyumi A.A. Glutathione reverses endothelial dysfunction and improves nitric oxide bioavailability. J. Am. Coll. Cardiol. 1999 34 2 507 514 10.1016/S0735‑1097(99)00216‑8 10440166
    [Google Scholar]
  48. Anagnostis P. Efstathiadou Z. Gougoura S. Polyzos S. Karathanasi E. Dritsa P. Kita M. Koukoulis G. Oxidative stress and reduced antioxidative status, along with endothelial dysfunction in acromegaly. Horm. Metab. Res. 2012 45 4 314 318 10.1055/s‑0032‑1323765 23093460
    [Google Scholar]
  49. Swiatlowska P. Sit B. Feng Z. Marhuenda E. Xanthis I. Zingaro S. Ward M. Zhou X. Xiao Q. Shanahan C. Jones G.E. Yu C. Iskratsch T. Pressure and stiffness sensing together regulate vascular smooth muscle cell phenotype switching. Sci. Adv. 2022 8 15 eabm3471 10.1126/sciadv.abm3471 35427166
    [Google Scholar]
  50. Chistiakov D.A. Orekhov A.N. Bobryshev Y.V. Vascular smooth muscle cell in atherosclerosis. Acta Physiol. (Oxf.) 2015 214 1 33 50 10.1111/apha.12466 25677529
    [Google Scholar]
  51. Minamino T. Yoshida T. Tateno K. Miyauchi H. Zou Y. Toko H. Komuro I. Ras induces vascular smooth muscle cell senescence and inflammation in human atherosclerosis. Circulation 2003 108 18 2264 2269 10.1161/01.CIR.0000093274.82929.22 14557365
    [Google Scholar]
  52. Brasier A.R. Recinos A. III Eledrisi M.S. Vascular inflammation and the renin-angiotensin system. Arterioscler. Thromb. Vasc. Biol. 2002 22 8 1257 1266 10.1161/01.ATV.0000021412.56621.A2 12171785
    [Google Scholar]
  53. Husain K. Hernández W. Ansari R.A. Ferder L. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis. World J. Biol. Chem. 2015 6 3 209 217 10.4331/wjbc.v6.i3.209 26322175
    [Google Scholar]
  54. Poeckel D. Zemski Berry K.A. Murphy R.C. Funk C.D. Dual 12/15- and 5-lipoxygenase deficiency in macrophages alters arachidonic acid metabolism and attenuates peritonitis and atherosclerosis in ApoE knock-out mice. J. Biol. Chem. 2009 284 31 21077 21089 10.1074/jbc.M109.000901 19509298
    [Google Scholar]
  55. Badimón L. Vilahur G. Rocca B. Patrono C. The key contribution of platelet and vascular arachidonic acid metabolism to the pathophysiology of atherothrombosis. Cardiovasc. Res. 2021 117 9 2001 2015 10.1093/cvr/cvab003 33484117
    [Google Scholar]
  56. Lubrano V. Ndreu R. Balzan S. Classes of lipid mediators and their effects on vascular inflammation in atherosclerosis. Int. J. Mol. Sci. 2023 24 2 1637 10.3390/ijms24021637 36675152
    [Google Scholar]
  57. Leonarduzzi G. Gamba P. Gargiulo S. Biasi F. Poli G. Inflammation-related gene expression by lipid oxidation-derived products in the progression of atherosclerosis. Free Radic. Biol. Med. 2012 52 1 19 34 10.1016/j.freeradbiomed.2011.09.031 22037514
    [Google Scholar]
  58. Henein M.Y. Vancheri S. Longo G. Vancheri F. The role of inflammation in cardiovascular disease. Int. J. Mol. Sci. 2022 23 21 12906 10.3390/ijms232112906 36361701
    [Google Scholar]
  59. Jiang J. Zhang S. Liu Y. Lin X. Sun Y. Shen H. Yan X. Xie Q. EETs alleviate ox-LDL-induced inflammation by inhibiting LOX-1 receptor expression in rat pulmonary arterial endothelial cells. Eur. J. Pharmacol. 2014 727 43 51 10.1016/j.ejphar.2014.01.045 24486707
    [Google Scholar]
  60. Stocker R. Keaney J.F. Jr Role of oxidative modifications in atherosclerosis. Physiol. Rev. 2004 84 4 1381 1478 10.1152/physrev.00047.2003 15383655
    [Google Scholar]
  61. Holvoet P. Endothelial dysfunction, oxidation of low-density lipoprotein, and cardiovascular disease. Ther. Apher. 1999 3 4 287 293 10.1046/j.1526‑0968.1999.00169.x 10608719
    [Google Scholar]
  62. Ishigaki Y. Katagiri H. Gao J. Yamada T. Imai J. Uno K. Hasegawa Y. Kaneko K. Ogihara T. Ishihara H. Sato Y. Takikawa K. Nishimichi N. Matsuda H. Sawamura T. Oka Y. Impact of plasma oxidized low-density lipoprotein removal on atherosclerosis. Circulation 2008 118 1 75 83 10.1161/CIRCULATIONAHA.107.745174 18559699
    [Google Scholar]
  63. Deng Y. Theken K.N. Lee C.R. Cytochrome P450 epoxygenases, soluble epoxide hydrolase, and the regulation of cardiovascular inflammation. J. Mol. Cell. Cardiol. 2010 48 2 331 341 10.1016/j.yjmcc.2009.10.022 19891972
    [Google Scholar]
  64. Wang Q. Huo L. He J. Ding W. Su H. Tian D. Welch C. Hammock B.D. Ai D. Zhu Y. Soluble epoxide hydrolase is involved in the development of atherosclerosis and arterial neointima formation by regulating smooth muscle cell migration. Am. J. Physiol. Heart Circ. Physiol. 2015 309 11 H1894 H1903 10.1152/ajpheart.00289.2015 26453326
    [Google Scholar]
  65. Imig J.D. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol. Rev. 2012 92 1 101 130 10.1152/physrev.00021.2011 22298653
    [Google Scholar]
  66. Zhang H. Wang T. Zhang K. Liu Y. Huang F. Zhu X. Liu Y. Wang M.H. Tang W. Wang J. Huang H. Deletion of soluble epoxide hydrolase attenuates cardiac hypertrophy via down-regulation of cardiac fibroblasts-derived fibroblast growth factor-2. Crit. Care Med. 2014 42 5 e345 e354 10.1097/CCM.0000000000000226 24448199
    [Google Scholar]
  67. Imig J.D. Cardiovascular therapeutic aspects of soluble epoxide hydrolase inhibitors. Cardiovasc. Drug Rev. 2006 24 2 169 188 10.1111/j.1527‑3466.2006.00169.x 16961727
    [Google Scholar]
  68. Li X. Wu X. Soluble epoxide hydrolase (Ephx2) silencing attenuates the hydrogen peroxide-induced oxidative damage in IEC-6 cells. Arch. Med. Sci. 2021 17 4 1075 1086 10.5114/aoms.2019.87137 34336035
    [Google Scholar]
  69. Yao X. Yan C. Zhang L. Li Y. Wan Q. LncRNA ENST00113 promotes proliferation, survival, and migration by activating PI3K/Akt/mTOR signaling pathway in atherosclerosis. Medicine (Baltimore) 2018 97 16 e0473 10.1097/MD.0000000000010473 29668625
    [Google Scholar]
  70. Aoyagi T. Matsui T. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Curr. Pharm. Des. 2011 17 18 1818 1824 10.2174/138161211796390976 21631421
    [Google Scholar]
  71. Sumara G. Belwal M. Ricci R. “Jnking” atherosclerosis. Cell. Mol. Life Sci. 2005 62 21 2487 2494 10.1007/s00018‑005‑5253‑6 16231089
    [Google Scholar]
  72. Imig J.D. Cervenka L. Neckar J. Epoxylipids and soluble epoxide hydrolase in heart diseases. Biochem. Pharmacol. 2022 195 114866 10.1016/j.bcp.2021.114866 34863976
    [Google Scholar]
  73. He Z. Yang Y. Wen Z. Chen C. Xu X. Zhu Y. Wang Y. Wang D.W. CYP2J2 metabolites, epoxyeicosatrienoic acids, attenuate Ang II-induced cardiac fibrotic response by targeting Gα12/13. J. Lipid Res. 2017 58 7 1338 1353 10.1194/jlr.M074229 28554983
    [Google Scholar]
  74. Luo A. Wu Z. Li S. McReynolds C.B. Wang D. Liu H. Huang C. He T. Zhang X. Wang Y. Liu C. Hammock B.D. Hashimoto K. Yang C. The soluble epoxide hydrolase inhibitor TPPU improves comorbidity of chronic pain and depression via the AHR and TSPO signaling. J. Transl. Med. 2023 21 1 71 10.1186/s12967‑023‑03917‑x 36732752
    [Google Scholar]
  75. Moens U. Kostenko S. Sveinbjørnsson B. The role of mitogen-activated protein kinase-activated protein kinases (MAPKAPKs) in inflammation. Genes 2013 4 2 101 133 10.3390/genes4020101 24705157
    [Google Scholar]
  76. Jagavelu K. Tietge U.J.F. Gaestel M. Drexler H. Schieffer B. Bavendiek U. Systemic deficiency of the MAP kinase-activated protein kinase 2 reduces atherosclerosis in hypercholesterolemic mice. Circ. Res. 2007 101 11 1104 1112 10.1161/CIRCRESAHA.107.156075 17885219
    [Google Scholar]
  77. Ichijo H. Nishida E. Irie K. Dijke P. Saitoh M. Moriguchi T. Takagi M. Matsumoto K. Miyazono K. Gotoh Y. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997 275 5296 90 94 10.1126/science.275.5296.90 8974401
    [Google Scholar]
  78. Liu L. Puri K.D. Penninger J.M. Kubes P. Leukocyte PI3Kγ and PI3Kδ have temporally distinct roles for leukocyte recruitment in vivo. Blood 2007 110 4 1191 1198 10.1182/blood‑2006‑11‑060103 17488877
    [Google Scholar]
  79. Fung-Leung W.P. Phosphoinositide 3-kinase delta (PI3Kδ) in leukocyte signaling and function. Cell. Signal. 2011 23 4 603 608 10.1016/j.cellsig.2010.10.002 20940048
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073345542250220051427
Loading
/content/journals/cchts/10.2174/0113862073345542250220051427
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article. Supplementary material 1: Significance analysis results: Result_Sig.rda Supplementary material 2: Genes related to Ephx2, their resistance distance, and depth Supplementary material 3: Genes in five AOPs Supplementary material 4: Adjacency matrix named as Adjacency_Ephx.rda

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test