Skip to content
2000
image of Identification of NR4A2 as a Potential Predictive Biomarker for Atherosclerosis

Abstract

Introduction/Objective

Atherosclerosis, a leading cause of death globally, is characterized by the buildup of immune cells and lipids in medium to large-sized arteries. However, its precise mechanism remains unclear. The purpose of this study is to explore innovative and reliable biomarkers as a viable approach for the identification and management of atherosclerosis.

Methods

The atherosclerosis-related datasets GSE100927 and GSE66360 were retrieved from the Gene Expression Omnibus (GEO) database. The Limma package in the R programming language was utilized, applying the criteria of |logFC| > 1 and < 0.05. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the 127 identified DEGs using R. Machine learning techniques were then applied to these data to explore and pinpoint potential biomarkers. The diagnostic potential of these markers was assessed via Receiver Operating Characteristic (ROC) curve analysis. Finally, western blot, real-time quantitative PCR (qRT-PCR), and immunohistochemistry (IHC) were employed to confirm the key biomarkers.

Results

Our research indicated that a total of 127 DEGs linked to atherosclerosis were successfully identified. Through the application of machine learning methods, eight critical genes were highlighted. Among these, Nuclear Receptor Subfamily 4 Group A Member-2 (NR4A2) emerged as the most promising marker for further investigation. CIBERSORT analysis revealed that NR4A2 expression levels were significantly correlated with multiple immune cell types, including B cells, plasma cells, and macrophages. Additional validation experiments confirmed that NR4A2 expression was indeed elevated in atherosclerotic plaques, supporting its potential as a biomarker for atherosclerosis.

Conclusion

Our study identified NR4A2 as a potential immune-related biomarker for the diagnosis and treatment of atherosclerosis.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073357411250127080814
2025-02-10
2025-09-12
Loading full text...

Full text loading...

References

  1. Stubbs J.R. House J.A. Ocque A.J. Zhang S. Johnson C. Kimber C. Schmidt K. Gupta A. Wetmore J.B. Nolin T.D. Spertus J.A. Yu A.S. Serum Trimethylamine-N-oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J. Am. Soc. Nephrol. 2016 27 1 305 313 10.1681/ASN.2014111063 26229137
    [Google Scholar]
  2. Kong W. Ma J. Lin Y. Chen W. Positive association of plasma trimethylamine-N-oxide and atherosclerosis in patient with acute coronary syndrome. Cardiovasc. Ther. 2022 2022 1 9 10.1155/2022/2484018 36420057
    [Google Scholar]
  3. Momiyama Y. Ohmori R. Fayad Z.A. Kihara T. Tanaka N. Kato R. Taniguchi H. Nagata M. Nakamura H. Ohsuzu F. Associations between plasma C-reactive protein levels and the severities of coronary and aortic atherosclerosis. J. Atheroscler. Thromb. 2010 17 5 460 467 10.5551/jat.2931 20134100
    [Google Scholar]
  4. Ridker P.M. From C-reactive protein to interleukin-6 to interleukin-1. Circ. Res. 2016 118 1 145 156 10.1161/CIRCRESAHA.115.306656 26837745
    [Google Scholar]
  5. Schindhelm R.K. van der Zwan L.P. Teerlink T. Scheffer P.G. Myeloperoxidase: A useful biomarker for cardiovascular disease risk stratification? Clin. Chem. 2009 55 8 1462 1470 10.1373/clinchem.2009.126029 19556446
    [Google Scholar]
  6. McMillen T.S. Heinecke J.W. LeBoeuf R.C. Expression of human myeloperoxidase by macrophages promotes atherosclerosis in mice. Circulation 2005 111 21 2798 2804 10.1161/CIRCULATIONAHA.104.516278 15911707
    [Google Scholar]
  7. Shobeiri N. Bendeck M.P. Interleukin-1β Is a Key biomarker and mediator of inflammatory vascular calcification. Arterioscler. Thromb. Vasc. Biol. 2017 37 2 179 180 10.1161/ATVBAHA.116.308724 28122774
    [Google Scholar]
  8. Deo R. Khera A. McGuire D.K. Murphy S.A. Meo Neto J.P. Morrow D.A. de Lemos J.A. Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis. J. Am. Coll. Cardiol. 2004 44 9 1812 1818 10.1016/j.jacc.2004.07.047 15519012
    [Google Scholar]
  9. Wu L.L. Chiou C.C. Chang P.Y. Wu J.T. Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. Chim. Acta 2004 339 1-2 1 9 10.1016/j.cccn.2003.09.010 14687888
    [Google Scholar]
  10. Verras G.I. Mulita F. Butyrylcholinesterase levels correlate with surgical site infection risk and severity after colorectal surgery: A prospective single-center study. Front. Surg. 2024 11 1379410 10.3389/fsurg.2024.1379410 39229253
    [Google Scholar]
  11. Meng Q. Liu H. Liu J. Pang Y. Liu Q. Advances in immunotherapy modalities for atherosclerosis. Front. Pharmacol. 2023 13 1079185 10.3389/fphar.2022.1079185 36703734
    [Google Scholar]
  12. Nie H. Yan C. Zhou W. Li T. Analysis of immune and inflammation characteristics of atherosclerosis from different sample sources. Oxid. Med. Cell. Longev. 2022 2022 1 31 10.1155/2022/5491038 35509837
    [Google Scholar]
  13. Bienstock S. Lee S.E. Lin F. Blankstein R. Leipsic J. Patel K. Narula J. Chandrashekhar Y.S. Fuster V. Shaw L.J. Systemic inflammation with high-sensitivity C-reactive protein and atherosclerotic plaque progression. JACC Cardiovasc. Imaging 2024 17 2 212 213 10.1016/j.jcmg.2023.08.019 37921719
    [Google Scholar]
  14. Lee H.S. Lee J.H. Early elevation of high-sensitivity C-reactive protein as a predictor for cardiovascular disease incidence and all-cause mortality: A landmark analysis. Sci. Rep. 2023 13 1 14118 10.1038/s41598‑023‑41081‑w 37644061
    [Google Scholar]
  15. Pearson T.A. Mensah G.A. Alexander R.W. Anderson J.L. Cannon R.O. III Criqui M. Fadl Y.Y. Fortmann S.P. Hong Y. Myers G.L. Rifai N. Smith S.C. Jr Taubert K. Tracy R.P. Vinicor F. Centers for Disease Control and Prevention American Heart Association Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the centers for disease control and prevention and the American Heart Association. Circulation 2003 107 3 499 511 10.1161/01.CIR.0000052939.59093.45 12551878
    [Google Scholar]
  16. Boisvert W.A. Curtiss L.K. Terkeltaub R.A. Interleukin-8 and its receptor CXCR2 in atherosclerosis. Immunol. Res. 2000 21 2-3 129 138 10.1385/IR:21:2‑3:129 10852110
    [Google Scholar]
  17. González L. Rivera K. Andia M.E. Martínez Rodriguez G. The IL-1 family and its role in atherosclerosis. Int. J. Mol. Sci. 2022 24 1 17 10.3390/ijms24010017 36613465
    [Google Scholar]
  18. Tousoulis D. Oikonomou E. Economou E.K. Crea F. Kaski J.C. Inflammatory cytokines in atherosclerosis: Current therapeutic approaches. Eur. Heart J. 2016 37 22 1723 1732 10.1093/eurheartj/ehv759 26843277
    [Google Scholar]
  19. Xing Y Lin X Challenges and advances in the management of inflammation in atherosclerosis. J Adv Res. 2024 Epub ahead of print. 38909884
    [Google Scholar]
  20. Gilani S.T.A. Khan D.A. Rauf A. Haroon Z.H. Khan K.A. Hassan F.U. Early diagnosis of coronary artery disease by inflammatory biomarkers of atherosclerosis in patients with angina. J. Interferon Cytokine Res. 2022 42 9 493 500 10.1089/jir.2022.0110 36121373
    [Google Scholar]
  21. Fan Y. He R. Man C. Gong D. Utility of elevated pentraxin-3 level as inflammatory marker for predicting adverse outcomes in patients with acute coronary syndrome: A meta-analysis. Front. Cardiovasc. Med. 2022 8 736868 10.3389/fcvm.2021.736868 35127844
    [Google Scholar]
  22. Otani T. Moriguchi-Goto S. Nishihira K. Oguri N. Shibata Y. Matsuura Y. Kodama T. Asada Y. Hatakeyama K. Yamashita A. Intralesional pentraxin 3 increases with atherosclerotic disease progression, but may protect from thrombosis: Friend or foe? Thromb. Res. 2024 234 134 141 10.1016/j.thromres.2024.01.004 38218110
    [Google Scholar]
  23. Ito T Yokoi M Kitada S Kawada Y Mizoguchi T Kikuchi S Goto T. Seo Y. Increased circulating levels of malondialdehyde-modified low-density lipoprotein in patients with coronary microvascular dysfunction. J Clin Lipidol. 2024 18 5 e756 e763 10.1016/j.jacl.2024.08.002
    [Google Scholar]
  24. Olejarz W. Łacheta D. Kubiak-Tomaszewska G. Matrix metalloproteinases as biomarkers of atherosclerotic plaque instability. Int. J. Mol. Sci. 2020 21 11 3946 10.3390/ijms21113946 32486345
    [Google Scholar]
  25. Shi Y. Patel S. Niculescu R. Chung W. Desrochers P. Zalewski A. Role of matrix metalloproteinases and their tissue inhibitors in the regulation of coronary cell migration. Arterioscler. Thromb. Vasc. Biol. 1999 19 5 1150 1155 10.1161/01.ATV.19.5.1150 10323763
    [Google Scholar]
  26. Laloux P. Galanti L. Jamart J. Lipids in ischemic stroke subtypes. Acta Neurol. Belg. 2004 104 1 13 19 15143957
    [Google Scholar]
  27. Bang O.Y. Saver J.L. Liebeskind D.S. Pineda S. Ovbiagele B. Association of serum lipid indices with large artery atherosclerotic stroke. Neurology 2008 70 11 841 847 10.1212/01.wnl.0000294323.48661.a9 18160673
    [Google Scholar]
  28. Soehnlein O. Libby P. Targeting inflammation in atherosclerosis from experimental insights to the clinic. Nat. Rev. Drug Discov. 2021 20 8 589 610 10.1038/s41573‑021‑00198‑1 33976384
    [Google Scholar]
  29. Fredman G. MacNamara K.C. Atherosclerosis is a major human killer and non-resolving inflammation is a prime suspect. Cardiovasc. Res. 2021 117 13 cvab309 10.1093/cvr/cvab309 34609505
    [Google Scholar]
  30. Wolf D. Ley K. Immunity and inflammation in atherosclerosis. Circ. Res. 2019 124 2 315 327 10.1161/CIRCRESAHA.118.313591 30653442
    [Google Scholar]
  31. Lusis A.J. Atherosclerosis. Nature 2000 407 6801 233 241 10.1038/35025203 11001066
    [Google Scholar]
  32. Glass C.K. Witztum J.L. Atherosclerosis. Cell 2001 104 4 503 516 10.1016/S0092‑8674(01)00238‑0 11239408
    [Google Scholar]
  33. Li A.C. Glass C.K. The macrophage foam cell as a target for therapeutic intervention. Nat. Med. 2002 8 11 1235 1242 10.1038/nm1102‑1235 12411950
    [Google Scholar]
  34. Hamada M. Nakamura M. Tran M.T.N. Moriguchi T. Hong C. Ohsumi T. Dinh T.T.H. Kusakabe M. Hattori M. Katsumata T. Arai S. Nakashima K. Kudo T. Kuroda E. Wu C.H. Kao P.H. Sakai M. Shimano H. Miyazaki T. Tontonoz P. Takahashi S. MafB promotes atherosclerosis by inhibiting foam-cell apoptosis. Nat. Commun. 2014 5 1 3147 10.1038/ncomms4147 24445679
    [Google Scholar]
  35. Kim H. The transcription factor MafB promotes anti-inflammatory M2 polarization and cholesterol efflux in macrophages. Sci. Rep. 2017 7 1 7591 10.1038/s41598‑017‑07381‑8 28790455
    [Google Scholar]
  36. Santos-Gallego C.G. MafB and the role of macrophage apoptosis in atherosclerosis: A time to kill, a time to heal. Atherosclerosis 2016 252 194 196 10.1016/j.atherosclerosis.2016.06.026 27338219
    [Google Scholar]
  37. Cowan K.N. Jones P.L. Rabinovitch M. Elastase and matrix metalloproteinase inhibitors induce regression, and tenascin-C antisense prevents progression, of vascular disease. J. Clin. Invest. 2000 105 1 21 34 10.1172/JCI6539 10619858
    [Google Scholar]
  38. Jeon S. Kim T.K. Jeong S.J. Jung I.H. Kim N. Lee M.N. Sonn S.K. Seo S. Jin J. Kweon H.Y. Kim S. Shim D. Park Y.M. Lee S.H. Kim K.W. Cybulsky M.I. Shim H. Roh T.Y. Park W.Y. Lee H.O. Choi J.H. Park S.H. Oh G.T. Anti-inflammatory actions of soluble ninjurin-1 ameliorate atherosclerosis. Circulation 2020 142 18 1736 1751 10.1161/CIRCULATIONAHA.120.046907 32883094
    [Google Scholar]
  39. Su W. Zhao Y. Wei Y. Zhang X. Ji J. Yang S. Exploring the pathogenesis of psoriasis complicated with atherosclerosis via microarray data analysis. Front. Immunol. 2021 12 667690 10.3389/fimmu.2021.667690 34122426
    [Google Scholar]
  40. Liu C. Zhou Y. Zhou Y. Tang X. Tang L. Wang J. Identification of crucial genes for predicting the risk of atherosclerosis with system lupus erythematosus based on comprehensive bioinformatics analysis and machine learning. Comput. Biol. Med. 2023 152 106388 10.1016/j.compbiomed.2022.106388 36470144
    [Google Scholar]
  41. Sukhova G.K. Schönbeck U. Rabkin E. Schoen F.J. Poole A.R. Billinghurst R.C. Libby P. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques. Circulation 1999 99 19 2503 2509 10.1161/01.CIR.99.19.2503 10330380
    [Google Scholar]
  42. Austin K.M. Covic L. Kuliopulos A. Matrix metalloproteases and PAR1 activation. Blood 2013 121 3 431 439 10.1182/blood‑2012‑09‑355958 23086754
    [Google Scholar]
  43. Rana R. Huang T. Koukos G. Fletcher E.K. Turner S.E. Shearer A. Gurbel P.A. Rade J.J. Kimmelstiel C.D. Bliden K.P. Covic L. Kuliopulos A. Noncanonical matrix metalloprotease 1–protease-activated receptor 1 signaling drives progression of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2018 38 6 1368 1380 10.1161/ATVBAHA.118.310967 29622563
    [Google Scholar]
  44. Slobodin B. Bahat A. Sehrawat U. Becker-Herman S. Zuckerman B. Weiss A.N. Han R. Elkon R. Agami R. Ulitsky I. Shachar I. Dikstein R. Transcription dynamics regulate poly(A) tails and expression of the RNA degradation machinery to balance mRNA levels. Mol. Cell 2020 78 3 434 444.e5 10.1016/j.molcel.2020.03.022 32294471
    [Google Scholar]
  45. Haller F. Moskalev E.A. Kuck S. Bieg M. Winkelmann C. Müller S.K. Ihrler S. Märkl B. Eils R. Wiemann S. Iro H. Hartmann A. Agaimy A. Nuclear NR4A2 (Nurr1) immunostaining is a novel marker for acinic cell carcinoma of the salivary glands lacking the classic NR4A3 (NOR-1) upregulation. Am. J. Surg. Pathol. 2020 44 9 1290 1292 10.1097/PAS.0000000000001494 32341238
    [Google Scholar]
  46. Yao H. Yang L. Tian L. Guo Y. Li Y. LncRNA MSC-AS1 aggravates nasopharyngeal carcinoma progression by targeting miR-524-5p/nuclear receptor subfamily 4 group A member 2 (NR4A2). Cancer Cell Int. 2020 20 1 138 10.1186/s12935‑020‑01202‑1 32368184
    [Google Scholar]
  47. Safe S. Karki K. The paradoxical roles of orphan nuclear receptor 4A (NR4A) in cancer. Mol. Cancer Res. 2021 19 2 180 191 10.1158/1541‑7786.MCR‑20‑0707 33106376
    [Google Scholar]
  48. Myers S.A. Eriksson N. Burow R. Wang S.C.M. Muscat G.E.O. β-Adrenergic signaling regulates NR4A nuclear receptor and metabolic gene expression in multiple tissues. Mol. Cell. Endocrinol. 2009 309 1-2 101 108 10.1016/j.mce.2009.05.006 19465082
    [Google Scholar]
  49. Medzikovic L. Schumacher C.A. Verkerk A.O. van Deel E.D. Wolswinkel R. van der Made I. Bleeker N. Cakici D. van den Hoogenhof M.M.G. Meggouh F. Creemers E.E. Remme C.A. Baartscheer A. de Winter R.J. de Vries C.J.M. Arkenbout E.K. de Waard V. Orphan nuclear receptor Nur77 affects cardiomyocyte calcium homeostasis and adverse cardiac remodelling. Sci. Rep. 2015 5 1 15404 10.1038/srep15404 26486271
    [Google Scholar]
  50. Rodríguez-Calvo R. Tajes M. Vázquez-Carrera M. The NR4A subfamily of nuclear receptors: Potential new therapeutic targets for the treatment of inflammatory diseases. Expert Opin. Ther. Targets 2017 21 3 291 304 10.1080/14728222.2017.1279146 28055275
    [Google Scholar]
  51. Bonta P.I. van Tiel C.M. Vos M. Pols T.W.H. van Thienen J.V. Ferreira V. Arkenbout E.K. Seppen J. Spek C.A. van der Poll T. Pannekoek H. de Vries C.J.M. Nuclear receptors Nur77, Nurr1, and NOR-1 expressed in atherosclerotic lesion macrophages reduce lipid loading and inflammatory responses. Arterioscler. Thromb. Vasc. Biol. 2006 26 10 2288 2294 10.1161/01.ATV.0000238346.84458.5d 16873729
    [Google Scholar]
  52. Miao H. Li X. Zhou C. Liang Y. Li D. Ji Q. NR4A2 alleviates cardiomyocyte loss and myocardial injury in rats by transcriptionally suppressing CCR5 and inducing M2 polarization of macrophages. Microvasc. Res. 2022 140 104279 10.1016/j.mvr.2021.104279 34774582
    [Google Scholar]
  53. Hamers A.A.J. Hanna R.N. Nowyhed H. Hedrick C.C. de Vries C.J.M. NR4A nuclear receptors in immunity and atherosclerosis. Curr. Opin. Lipidol. 2013 24 5 381 385 10.1097/MOL.0b013e3283643eac 24005216
    [Google Scholar]
  54. Schaftenaar F. Frodermann V. Kuiper J. Lutgens E. Atherosclerosis. Curr. Opin. Lipidol. 2016 27 3 209 215 10.1097/MOL.0000000000000302 27031276
    [Google Scholar]
  55. Hansson G.K. Hermansson A. The immune system in atherosclerosis. Nat. Immunol. 2011 12 3 204 212 10.1038/ni.2001 21321594
    [Google Scholar]
  56. Legein B. Temmerman L. Biessen E.A.L. Lutgens E. Inflammation and immune system interactions in atherosclerosis. Cell. Mol. Life Sci. 2013 70 20 3847 3869 10.1007/s00018‑013‑1289‑1 23430000
    [Google Scholar]
  57. Libby P. Lichtman A.H. Hansson G.K. Immune effector mechanisms implicated in atherosclerosis: From mice to humans. Immunity 2013 38 6 1092 1104 10.1016/j.immuni.2013.06.009 23809160
    [Google Scholar]
  58. Taleb S. Tedgui A. IL-17 in atherosclerosis: The good and the bad. Cardiovasc. Res. 2018 114 1 7 9 10.1093/cvr/cvx225 29228116
    [Google Scholar]
  59. Taleb S. Tedgui A. Mallat Z. IL-17 and Th17 cells in atherosclerosis: Subtle and contextual roles. Arterioscler. Thromb. Vasc. Biol. 2015 35 2 258 264 10.1161/ATVBAHA.114.303567 25234818
    [Google Scholar]
  60. Lu X. The impact of IL-17 in atherosclerosis. Curr. Med. Chem. 2017 24 21 2345 2358 28425862
    [Google Scholar]
  61. Marchini T. Hansen S. Wolf D. ApoB-specific CD4+ T cells in mouse and human atherosclerosis. Cells 2021 10 2 446 10.3390/cells10020446 33669769
    [Google Scholar]
  62. Freuchet A. Roy P. Armstrong S.S. Oliaeimotlagh M. Kumar S. Orecchioni M. Ali A.J. Khan A. Makings J. Lyu Q. Winkels H. Wang E. Durant C. Ghosheh Y. Gulati R. Nettersheim F. Ley K. Identification of human exTreg cells as CD16+CD56+ cytotoxic CD4+ T cells. Nat. Immunol. 2023 24 10 1748 1761 10.1038/s41590‑023‑01589‑9 37563308
    [Google Scholar]
  63. Selathurai A. Deswaerte A. Kanellakis P. Tipping P. Toh B.H. Bobik A. Kyaw T. Natural killer (NK) cells augment atherosclerosis by cytotoxic-dependent mechanisms. Cardiovasc Res. 2017 102 1 128 137 10.1093/cvr/cvu016. 24469537
    [Google Scholar]
  64. Getz G.S. Reardon C.A. Natural killer T cells in atherosclerosis. Nat. Rev. Cardiol. 2017 14 5 304 314 10.1038/nrcardio.2017.2 28127028
    [Google Scholar]
  65. Jaipersad A.S. Lip G.Y.H. Silverman S. Shantsila E. The role of monocytes in angiogenesis and atherosclerosis. J. Am. Coll. Cardiol. 2014 63 1 1 11 10.1016/j.jacc.2013.09.019 24140662
    [Google Scholar]
  66. Groh L. Keating S.T. Joosten L.A.B. Netea M.G. Riksen N.P. Monocyte and macrophage immunometabolism in atherosclerosis. Semin. Immunopathol. 2018 40 2 203 214 10.1007/s00281‑017‑0656‑7 28971272
    [Google Scholar]
  67. Laurat E. Poirier B. Tupin E. Caligiuri G. Hansson G.K. Bariéty J. Nicoletti A. In vivo downregulation of T helper cell 1 immune responses reduces atherogenesis in apolipoprotein E-knockout mice. Circulation 2001 104 2 197 202 10.1161/01.CIR.104.2.197 11447086
    [Google Scholar]
  68. Buono C. Binder C.J. Stavrakis G. Witztum J.L. Glimcher L.H. Lichtman A.H. T-bet deficiency reduces atherosclerosis and alters plaque antigen-specific immune responses. Proc. Natl. Acad. Sci. USA 2005 102 5 1596 1601 10.1073/pnas.0409015102 15665085
    [Google Scholar]
  69. Tsiantoulas D. Diehl C.J. Witztum J.L. Binder C.J. B cells and humoral immunity in atherosclerosis. Circ. Res. 2014 114 11 1743 1756 10.1161/CIRCRESAHA.113.301145 24855199
    [Google Scholar]
  70. Tacke F. Alvarez D. Kaplan T.J. Jakubzick C. Spanbroek R. Llodra J. Garin A. Liu J. Mack M. van Rooijen N. Lira S.A. Habenicht A.J. Randolph G.J. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 2007 117 1 185 194 10.1172/JCI28549 17200718
    [Google Scholar]
  71. Rogacev K.S. Seiler S. Zawada A.M. Reichart B. Herath E. Roth D. Ulrich C. Fliser D. Heine G.H. CD14++CD16+ monocytes and cardiovascular outcome in patients with chronic kidney disease. Eur. Heart J. 2011 32 1 84 92 10.1093/eurheartj/ehq371 20943670
    [Google Scholar]
  72. Kokkonen J.O. Kovanen P.T. Low-density-lipoprotein binding by mast-cell granules. Demonstration of binding of apolipoprotein B to heparin proteoglycan of exocytosed granules. Biochem. J. 1987 241 2 583 589 10.1042/bj2410583 3593208
    [Google Scholar]
  73. Kokkonen J.O. Kovanen P.T. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein. Proc. Natl. Acad. Sci. USA 1987 84 8 2287 2291 10.1073/pnas.84.8.2287 3470793
    [Google Scholar]
  74. Kokkonen J. Stimulation of rat peritoneal mast cells enhances uptake of low density lipoproteins by rat peritoneal macrophages in vivo. Atherosclerosis 1989 79 2-3 213 223 10.1016/0021‑9150(89)90126‑3 2597229
    [Google Scholar]
  75. Kaartinen M. Penttilä A. Kovanen P.T. Extracellular mast cell granules carry apolipoprotein B-100-containing lipoproteins into phagocytes in human arterial intima. Functional coupling of exocytosis and phagodytosis in neighboring cells. Arterioscler. Thromb. Vasc. Biol. 1995 15 11 2047 2054 10.1161/01.ATV.15.11.2047 7583588
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073357411250127080814
Loading
/content/journals/cchts/10.2174/0113862073357411250127080814
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: GEO ; Atherosclerosis ; NR4A2 ; immune ; biomarker ; DEGs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test