Skip to content
2000
image of Astragalosides Promote MH7A Cell Apoptosis by Suppressing WTAP-mediated m6A Methylation of TRAIL-DR4

Abstract

Background

Astragaloside (AST), a natural saponin extracted from (Fisch.) Bunge., has been consistently utilized in the treatment of rheumatoid arthritis (RA). N6-methyladenosine (m6A), the most prevalent modification of mRNA, is associated with the progression of various diseases, including RA. Nonetheless, the effects of AST on m6A modification in RA remain to be elucidated.

Methods

The MH7A cell model was established through induction with TNF-α. The effects of AST on the expression levels of WTAP, BAX, BCL2, and TRAIL-DR4 were evaluated utilizing immunofluorescence, RT-qPCR, and Western blot analysis. Furthermore, CCK-8 and flow cytometry were used to assess MH7A cell viability, cell cycle, apoptosis, and proliferation. Then, the m6A modification of TRAIL-DR4 was elucidated MeRIP-qPCR.

Results

The optimal dose administration time was 50 μg/mL at 48 h. AST not only reduced the expression levels of WTAP, BCL2, BAX, TRAIL-DR4, and the m6A modification level of TRAIL-DR4 but also significantly enhanced apoptosis in MH7A cell, while inhibiting cell viability and proliferation. Furthermore, AST was capable of reversing the effect on MH7A cell proliferation and apoptosis induced by WTAP overexpression.

Conclusion

This study elucidates the protective role of AST on MH7A cells by attenuating m6A/WTAP-mediated apoptosis, offering novel insights into the mechanisms of AST.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073363967250308084008
2025-03-25
2025-10-30
Loading full text...

Full text loading...

References

  1. McInnes I.B. Schett G. The pathogenesis of rheumatoid arthritis. N. Engl. J. Med. 2011 365 23 2205 2219 10.1056/NEJMra1004965 22150039
    [Google Scholar]
  2. Neumann E. Lefèvre S. Zimmermann B. Gay S. Müller-Ladner U. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends Mol. Med. 2010 16 10 458 468 10.1016/j.molmed.2010.07.004 20739221
    [Google Scholar]
  3. Kuang Y. Li R. Wang J. Xu S. Qiu Q. Lin S. Liu D. Shen C. Liu Y. Xu M. Lin W. Zhang S. Liang L. Xu H. Xiao Y. ALKBH5 ‐MEDIATED RNA M 6 A Methylation Regulates the Migration, Invasion, and proliferation of rheumatoid FIBROBLAST‐LIKE synoviocytes. Arthritis Rheumatol. 2024 76 2 192 205 10.1002/art.42676 37584615
    [Google Scholar]
  4. Smith M.D. Barg E. Weedon H. Papengelis V. Smeets T. Tak P.P. Kraan M. Coleman M. Ahern M.J. Microarchitecture and protective mechanisms in synovial tissue from clinically and arthroscopically normal knee joints. Ann. Rheum. Dis. 2003 62 4 303 307 10.1136/ard.62.4.303 12634226
    [Google Scholar]
  5. Jia Y. Feng B. Ji X. Tian X. Zhao L. Zhou J. Zhang W. Li M. Fei Y. Wu X. Complement factor H attenuates TNF-α-induced inflammation by upregulating EIF3C in rheumatoid arthritis. J. Transl. Med. 2023 21 1 846 10.1186/s12967‑023‑04730‑2 37996918
    [Google Scholar]
  6. Akbari-Papkiadehi F. Saboor-Yaraghi A.A. Farhadi E. Tahmasebi M.N. Sharafat Vaziri A. Aghaghazvini L. Asgari M. Poursani S. Mansouri F. Jamshidi A. Mahmoudi M. Effect of curcumin on the expression of NOD2 receptor and pro-inflammatory cytokines in fibroblast-like synoviocytes (FLSs) of rheumatoid arthritis (RA) patients. Adv. Rheumatol. 2023 63 1 27 10.1186/s42358‑023‑00308‑0 37370181
    [Google Scholar]
  7. Kim K.M. Lee K.G. Lee S. Hong B.K. Yun H. Park Y.J. Yoo S.A. Kim W.U. The acute phase reactant orosomucoid-2 directly promotes rheumatoid inflammation. Exp. Mol. Med. 2024 56 4 890 903 10.1038/s12276‑024‑01188‑0 38556552
    [Google Scholar]
  8. Bottini N. Firestein G.S. Duality of fibroblast-like synoviocytes in RA: Passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 2013 9 1 24 33 10.1038/nrrheum.2012.190 23147896
    [Google Scholar]
  9. Bi X. Guo X.H. Mo B.Y. Wang M.L. Luo X.Q. Chen Y.X. Liu F. Olsen N. Pan Y.F. Zheng S.G. LncRNA PICSAR promotes cell proliferation, migration and invasion of fibroblast-like synoviocytes by sponging miRNA-4701-5p in rheumatoid arthritis. EBioMedicine 2019 50 408 420 10.1016/j.ebiom.2019.11.024 31791845
    [Google Scholar]
  10. Adib M. Taghadosi M. Tahmasebi M.N. Sharafat Vaziri A. Jamshidi A. Mahmoudi M. Farhadi E. Anti-inflammatory effects of PRIMA-1MET (mutant p53 reactivator) induced by inhibition of nuclear factor-κB on rheumatoid arthritis fibroblast-like synoviocytes. Inflammopharmacology 2023 31 1 385 394 10.1007/s10787‑022‑01094‑9 36350424
    [Google Scholar]
  11. He P.C. Wei J. Dou X. Harada B.T. Zhang Z. Ge R. Liu C. Zhang L.S. Yu X. Wang S. Lyu R. Zou Z. Chen M. He C. Exon architecture controls mRNA m 6 A suppression and gene expression. Science 2023 379 6633 677 682 10.1126/science.abj9090 36705538
    [Google Scholar]
  12. You X.J. Zhang S. Chen J.J. Tang F. He J. Wang J. Qi C.B. Feng Y.Q. Yuan B.F. Formation and removal of 1, N 6-dimethyladenosine in mammalian transfer RNA. Nucleic Acids Res. 2022 50 17 9858 9872 10.1093/nar/gkac770 36095124
    [Google Scholar]
  13. Li B. Xi W. Bai Y. Liu X. Zhang Y. Li L. Bian L. Liu C. Tang Y. Shen L. Yang L. Gu X. Xie J. Zhou Z. Wang Y. Yu X. Wang J. Chao J. Han B. Yao H. FTO-dependent m6A modification of Plpp3 in circSCMH1-regulated vascular repair and functional recovery following stroke. Nat. Commun. 2023 14 1 489 10.1038/s41467‑023‑36008‑y 36717587
    [Google Scholar]
  14. Zhou S. Hui X. Wang W. Zhao C. Jin M. Qin Y. Chen M. SARS-CoV-2 and HCoV-OC43 regulate host m6A modification via activation of the mTORC1 signaling pathway to facilitate viral replication. Emerg. Microbes Infect. 2025 ••• 2447620 10.1080/22221751.2024.2447620 39745173
    [Google Scholar]
  15. Zhang H. Chen Q. Han H. Guo C. Jiang X. Xia Y. Zhang Y. Zhou L. Zhang J. Tian X. Mao L. Qiu J. Zou Z. Chen C. SUMOylation modification of FTO facilitates oxidative damage response of arsenic by IGF2BP3 in an m6A-dependent manner. J. Hazard. Mater. 2024 472 134440 10.1016/j.jhazmat.2024.134440 38723480
    [Google Scholar]
  16. De Jesus D.F. Zhang Z. Brown N.K. Li X. Xiao L. Hu J. Gaffrey M.J. Fogarty G. Kahraman S. Wei J. Basile G. Rana T.M. Mathews C. Powers A.C. Parent A.V. Atkinson M.A. Dhe-Paganon S. Eizirik D.L. Qian W.J. He C. Kulkarni R.N. Redox regulation of m6A methyltransferase METTL3 in β-cells controls the innate immune response in type 1 diabetes. Nat. Cell Biol. 2024 26 3 421 437 10.1038/s41556‑024‑01368‑0 38409327
    [Google Scholar]
  17. Han Z. Wang X. Xu Z. Cao Y. Gong R. Yu Y. Yu Y. Guo X. Liu S. Yu M. Ma W. Zhao Y. Xu J. Li X. Li S. Xu Y. Song R. Xu B. Yang F. Bamba D. Sukhareva N. Lei H. Gao M. Zhang W. Zagidullin N. Zhang Y. Yang B. Pan Z. Cai B. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics 2021 11 6 3000 3016 10.7150/thno.47354 33456585
    [Google Scholar]
  18. Weng H. Huang F. Yu Z. Chen Z. Prince E. Kang Y. Zhou K. Li W. Hu J. Fu C. Aziz T. Li H. Li J. Yang Y. Han L. Zhang S. Ma Y. Sun M. Wu H. Zhang Z. Wunderlich M. Robinson S. Braas D. Hoeve J. Zhang B. Marcucci G. Mulloy J.C. Zhou K. Tao H.F. Deng X. Horne D. Wei M. Huang H. Chen J. The m6A reader IGF2BP2 regulates glutamine metabolism and represents a therapeutic target in acute myeloid leukemia. Cancer Cell 2022 40 12 1566 1582.e10 10.1016/j.ccell.2022.10.004 36306790
    [Google Scholar]
  19. Choe J. Lin S. Zhang W. Liu Q. Wang L. Ramirez-Moya J. Du P. Kim W. Tang S. Sliz P. Santisteban P. George R.E. Richards W.G. Wong K.K. Locker N. Slack F.J. Gregory R.I. mRNA circularization by METTL3–eIF3h enhances translation and promotes oncogenesis. Nature 2018 561 7724 556 560 10.1038/s41586‑018‑0538‑8 30232453
    [Google Scholar]
  20. Peng F. Xu J. Cui B. Liang Q. Zeng S. He B. Zou H. Li M. Zhao H. Meng Y. Chen J. Liu B. Lv S. Chu P. An F. Wang Z. Huang J. Zhan Y. Liao Y. Lu J. Xu L. Zhang J. Sun Z. Li Z. Wang F. Lam E.W.F. Liu Q. Oncogenic AURKA-enhanced N6-methyladenosine modification increases DROSHA mRNA stability to transactivate STC1 in breast cancer stem-like cells. Cell Res. 2021 31 3 345 361 10.1038/s41422‑020‑00397‑2 32859993
    [Google Scholar]
  21. Wang L. Wang J. Yu P. Feng J. Xu G. Zhao X. Wang T. Lehmann H.I. Li G. Sluijter J.P.G. Xiao J. METTL14 is required for exercise-induced cardiac hypertrophy and protects against myocardial ischemia-reperfusion injury. Nat. Commun. 2022 13 1 6762 10.1038/s41467‑022‑34434‑y 36351918
    [Google Scholar]
  22. Li X. Xu X. Zhang Q. Ling M. Li X. Tan X. METTL14 promotes fibroblast-like synoviocytes activation via the LASP1/SRC/AKT axis in rheumatoid arthritis. Am. J. Physiol. Cell Physiol. 2023 324 5 C1089 C1100 10.1152/ajpcell.00575.2022 36878846
    [Google Scholar]
  23. Li G. Fang Y. Xu N. Ding Y. Liu D. Fibroblast-like synoviocytes-derived exosomal circFTO deteriorates rheumatoid arthritis by enhancing N6-methyladenosine modification of SOX9 in chondrocytes. Arthritis Res. Ther. 2024 26 1 56 10.1186/s13075‑024‑03290‑0 38388473
    [Google Scholar]
  24. Li R. Kuang Y. Niu Y. Zhang S. Chen S. Su F. Wang J. Lin S. Liu D. Shen C. Liang L. Zheng S.G. Jie L. Xiao Y. Xu H. FTO-mediated RNA m6A methylation regulates synovial aggression and inflammation in rheumatoid arthritis. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 7 167341 10.1016/j.bbadis.2024.167341 39025373
    [Google Scholar]
  25. Jiang H. Cao K. Fan C. Cui X. Ma Y. Liu J. Transcriptome-wide high-throughput m6A sequencing of differential m6A methylation patterns in the human rheumatoid arthritis fibroblast-like synoviocytes cell line MH7A. J. Inflamm. Res. 2021 14 575 586 10.2147/JIR.S296006 33658830
    [Google Scholar]
  26. D’Avino D. Cerqua I. Ullah H. Spinelli M. Di Matteo R. Granato E. Capasso R. Maruccio L. Ialenti A. Daglia M. Roviezzo F. Rossi A. Beneficial effects of Astragalus membranaceus (Fisch.) Bunge extract in controlling inflammatory response and preventing asthma features. Int. J. Mol. Sci. 2023 24 13 10954 10.3390/ijms241310954 37446131
    [Google Scholar]
  27. Shen J. Zhao Y. Cui W. Astragalus mongholicus Bunge extract improves ulcerative colitis by promoting PLCB2 to inhibit colonic epithelial cell pyroptosis. J. Ethnopharmacol. 2024 334 118554 10.1016/j.jep.2024.118554 38992398
    [Google Scholar]
  28. Zhang Q. Gao W. Zhang Y. Chen B. Chen Z. Zhang W. Man S. Protective effects of astragalus extract against intermittent hypoxia-induced hippocampal neurons impairment in rats. Chin. Med. J. (Engl.) 2013 126 8 1551 1554 10.3760/cma.j.issn.0366‑6999.20122722 23595393
    [Google Scholar]
  29. Sheik A. Kim K. Varaprasad G.L. Lee H. Kim S. Kim E. Shin J.Y. Oh S.Y. Huh Y.S. The anti-cancerous activity of adaptogenic herb Astragalus membranaceus. Phytomedicine 2021 91 153698 10.1016/j.phymed.2021.153698 34479785
    [Google Scholar]
  30. Park Y.J. Thwe A.A. Li X. Kim Y.J. Kim J.K. Arasu M.V. Al-Dhabi N.A. Park S.U. Triterpene and flavonoid biosynthesis and metabolic profiling of hairy roots, adventitious roots, and seedling roots of Astragalus membranaceus. J. Agric. Food Chem. 2015 63 40 8862 8869 10.1021/acs.jafc.5b02525 26402168
    [Google Scholar]
  31. Wang C.J. He F. Huang Y.F. Ma H.L. Wang Y.P. Cheng C.S. Cheng J.L. Lao C.C. Chen D.A. Zhang Z.F. Sang Z. Luo P. Xiao S.Y. Xie Y. Zhou H. Discovery of chemical markers for identifying species, growth mode and production area of Astragali Radix by using ultra-high-performance liquid chromatography coupled to triple quadrupole mass spectrometry. Phytomedicine 2020 67 153155 10.1016/j.phymed.2019.153155 31901890
    [Google Scholar]
  32. Wang B. Chen M.Z. Astragaloside IV possesses antiarthritic effect by preventing interleukin 1β-induced joint inflammation and cartilage damage. Arch. Pharm. Res. 2014 37 6 793 802 10.1007/s12272‑014‑0336‑2 24469603
    [Google Scholar]
  33. Jiang H. Fan C. Lu Y. Cui X. Liu J. Astragaloside regulates lncRNA LOC100912373 and the miR 17 5p/PDK1 axis to inhibit the proliferation of fibroblast like synoviocytes in rats with rheumatoid arthritis. Int. J. Mol. Med. 2021 48 1 130 10.3892/ijmm.2021.4963 34013364
    [Google Scholar]
  34. Cui X. Wang J. Fan C. Jiang H. Li W. Astragalosides inhibit proliferation of fibroblast‐like synoviocytes in experimental arthritis by modulating LNCRNA S56464. 1/MIR ‐152‐3p/Wnt1 signaling axis. Int. J. Rheum. Dis. 2023 26 8 1547 1556 10.1111/1756‑185X.14782 37317788
    [Google Scholar]
  35. Gu X. Gu B. Lv X. Yu Z. Wang R. Zhou X. Qiao W. Mao Z. Zuo G. Li Q. Miao D. Jin J. 1, 25-dihydroxy-vitamin D3 with tumor necrosis factor-alpha protects against rheumatoid arthritis by promoting p53 acetylation-mediated apoptosis via Sirt1 in synoviocytes. Cell Death Dis. 2016 7 10 e2423 10.1038/cddis.2016.300 27763638
    [Google Scholar]
  36. Tsai S.W. Cheng Y.C. Chao Y.H. Yang D.H. Sinulariolide suppresses inflammation of fibroblast-like synoviocytes in rheumatoid arthritis and mitigates collagen-induced arthritis symptoms in mice. J. Inflamm. Res. 2024 17 8299 8311 10.2147/JIR.S476847 39525321
    [Google Scholar]
  37. Wang Y. Dai L. Wu H. Zhang Z. Wang W. Fu J. Deng R. Li F. Dai X. Zhan X. Novel anti-inflammatory target of geniposide: Inhibiting Itgβ1/Ras-Erk1/2 signal pathway via the miRNA-124a in rheumatoid arthritis synovial fibroblasts. Int. Immunopharmacol. 2018 65 284 294 10.1016/j.intimp.2018.09.049 30342345
    [Google Scholar]
  38. Varadi M. Bertoni D. Magana P. Paramval U. Pidruchna I. Radhakrishnan M. Tsenkov M. Nair S. Mirdita M. Yeo J. Kovalevskiy O. Tunyasuvunakool K. Laydon A. Žídek A. Tomlinson H. Hariharan D. Abrahamson J. Green T. Jumper J. Birney E. Steinegger M. Hassabis D. Velankar S. AlphaFold protein structure database in 2024: Providing structure coverage for over 214 million protein sequences. Nucleic Acids Res. 2024 52 D1 D368 D375 10.1093/nar/gkad1011 37933859
    [Google Scholar]
  39. Burley S.K. Piehl D.W. RCSB Protein Data Bank: Supporting research and education worldwide through explorations of experimentally determined and computationally predicted atomic level 3D biostructures. IUCrJ 2024 11 Pt 3 279 286
    [Google Scholar]
  40. Schäfer L. Meinert-Berning C. Kobus S. Höppner A. Smits S.H.J. Steinbüchel A. Crystal structure of the sugar acid‐binding protein CxaP from a TRAP transporter in Advenella mimigardefordensis strain DPN7 T. FEBS J. 2021 288 16 4905 4917 10.1111/febs.15789 33630388
    [Google Scholar]
  41. Zhou W. Yang B. Zou Y. Rahman K. Cao X. Lei Y. Lai R. Fu Z.F. Chen X. Cao G. Screening of compounds for anti-tuberculosis activity, and in vitro and in vivo evaluation of potential candidates. Front. Microbiol. 2021 12 658637 10.3389/fmicb.2021.658637 34276592
    [Google Scholar]
  42. Kim S. Chen J. Cheng T. PubChem 2025 update. Nucleic Acids Res. 2024 53 D1 D1516 D1525 39558165
    [Google Scholar]
  43. Kim S. Chen J. Cheng T. Gindulyte A. He J. He S. Li Q. Shoemaker B.A. Thiessen P.A. Yu B. Zaslavsky L. Zhang J. Bolton E.E. PubChem 2023 update. Nucleic Acids Res. 2023 51 D1 D1373 D1380 10.1093/nar/gkac956 36305812
    [Google Scholar]
  44. Zhang X. Cheng T. Cho E. Lu W. Denoyer D. McMillan P. Shobhana K. Varshney S. Williamson N.A. Stewart A. Nutritionally physiological cell culture medium and 3D culture influence breast tumour proteomics and anti-cancer drug effectiveness. Pharmacol. Res. 2024 210 107519 10.1016/j.phrs.2024.107519 39603575
    [Google Scholar]
  45. Sahoo S. Rath D. Kar D.M. Pattanaik S. Hepatoprotective potency of Litsea glutinosa (L.) C.B. Rob. leaf methanol extract on H2O2-induced toxicity in HepG2 cells. J. Ethnopharmacol. 2023 304 116076 10.1016/j.jep.2022.116076 36567040
    [Google Scholar]
  46. Zhang D. Duan S. He Z. Zhu Z. Li Z. Yi Q. Cai T. Li J. Chen N. Guo S. Sijunzi decoction targets IL1B and TNF to reduce neutrophil extracellular traps (NETs) in ulcerative colitis: Evidence from silicon prediction and experiment validation. Drug Des. Devel. Ther. 2023 17 3103 3128 10.2147/DDDT.S428814 37868820
    [Google Scholar]
  47. Zhou J. Chen X. Chen Q. Pan B. Lou J. Jia Z. Du Y. Xu W. Zhang L. Feng X. Jin L. Shi M. Li X. Huang Z. Sun J. Novel muscle-homing peptide FGF1 conjugate based on alphafold for type 2 diabetes mellitus. acs appl. mater. interfaces, 2023 15 5 6397 6410 10.1021/acsami.2c18461 36625595
  48. Liu Y. Sun W. Shen N. Hao W. Xin H. Che F. Cui Y. Network pharmacology and molecular docking combined with widely targeted metabolomics to elucidate the potential compounds and targets of Euphorbia helioscopia seeds for the treatment of pulmonary fibrosis. Comput. Biol. Med. 2023 160 107007 10.1016/j.compbiomed.2023.107007 37150086
    [Google Scholar]
  49. Lu L. Kang X. Yi B. Jiang C. Yan X. Chen B. Sun Y. Shi F. Luo Y. Chen Y. Shi R. Exploring the mechanism of Yiqi Qingre Ziyin method in regulating neuropeptide expression for the treatment of atrophic Rhinitis. Dis. Markers 2022 2022 1 12 10.1155/2022/4416637 35299869
    [Google Scholar]
  50. Mishra A. Dey S. Molecular docking studies of a cyclic octapeptide-Cyclosaplin from sandalwood. Biomolecules 2019 9 11 740 10.3390/biom9110740 31731771
    [Google Scholar]
  51. Hu X. An S. Chu J. Liang B. Liao Y. Jiang J. Lin Y. Ye L. Liang H. Potential inhibitors of Monkeypox virus revealed by molecular modeling approach to viral DNA Topoisomerase I. Molecules 2023 28 3 1444 10.3390/molecules28031444 36771105
    [Google Scholar]
  52. Dadsena S. Cuevas Arenas R. Vieira G. Brodesser S. Melo M.N. García-Sáez A.J. Lipid unsaturation promotes BAX and BAK pore activity during apoptosis. Nat. Commun. 2024 15 1 4700 10.1038/s41467‑024‑49067‑6 38830851
    [Google Scholar]
  53. Chen X. Gao M. Xia Y. Wang X. Qin J. He H. Liu W. Zhang X. Peng S. Zeng Z. Su Y. Zhang X. Phase separation of Nur77 mediates XS561-induced apoptosis by promoting the formation of Nur77/Bcl-2 condensates. Acta Pharm. Sin. B 2024 14 3 1204 1221 10.1016/j.apsb.2023.11.017 38486987
    [Google Scholar]
  54. Chen S. Fu L. Raja S.M. Yue P. Khuri F.R. Sun S.Y. Dissecting the roles of DR4, DR5 and c-FLIP in the regulation of Geranylgeranyltransferase I inhibition-mediated augmentation of TRAIL-induced apoptosis. Mol. Cancer 2010 9 1 23 10.1186/1476‑4598‑9‑23 20113484
    [Google Scholar]
  55. Tang S. Duan Y. Yuan T. Hu Y. Yuan L. Shen N. Fu Y. Pu C. Wang X. Xu J. Lan X. Zheng Y. Zhou Y. Zhu H. Ding J. Geng M. Huang M. Tetrandrine synergizes with MAPK inhibitors in treating KRAS-mutant pancreatic ductal adenocarcinoma via collaboratively modulating the TRAIL-death receptor axis. Pharmacol. Res. 2023 197 106955 10.1016/j.phrs.2023.106955 37820855
    [Google Scholar]
  56. de Seabra Rodrigues Dias I.R. Lo H.H. Zhang K. Law B.Y.K. Nasim A.A. Chung S.K. Wong V.K.W. Liu L. Potential therapeutic compounds from traditional Chinese medicine targeting endoplasmic reticulum stress to alleviate rheumatoid arthritis. Pharmacol. Res. 2021 170 105696 10.1016/j.phrs.2021.105696 34052360
    [Google Scholar]
  57. Liu H. Deng R. Zhu C. Han H. Zong G. Ren L. Cheng P. Wei Z. Zhao Y. Yu S. Lu Y. Rosmarinic acid in combination with ginsenoside Rg1 suppresses colon cancer metastasis via co-inhition of COX-2 and PD1/PD-L1 signaling axis. Acta Pharmacol. Sin. 2024 45 1 193 208 10.1038/s41401‑023‑01158‑8 37749237
    [Google Scholar]
  58. Li J. Deng H. Yao Y. Wang W. Hu J. Dong Y. Wang P. Liu L. Liu Z. Xie Y. Lu L. Zhou H. Sinomenine ameliorates collagen-induced arthritis in mice by targeting GBP5 and regulating the P2X7 receptor to suppress NLRP3-related signaling pathways. Acta Pharmacol. Sin. 2023 44 12 2504 2524 10.1038/s41401‑023‑01124‑4 37482570
    [Google Scholar]
  59. Guo B. Zhao C. Zhang C. Xiao Y. Yan G. Liu L. Pan H. Elucidation of the anti-inflammatory mechanism of Er Miao San by integrative approach of network pharmacology and experimental verification. Pharmacol. Res. 2022 175 106000 10.1016/j.phrs.2021.106000 34838694
    [Google Scholar]
  60. Xie Y. Mai C.T. Zheng D.C. He Y.F. Feng S.L. Li Y.Z. Liu C.X. Zhou H. Liu L. Wutou decoction ameliorates experimental rheumatoid arthritis via regulating NF-kB and Nrf2: Integrating efficacy-oriented compatibility of traditional Chinese medicine. Phytomedicine 2021 85 153522 10.1016/j.phymed.2021.153522 33799223
    [Google Scholar]
  61. Fan B. Liu Q. Yang Y. Wu W. Wei Q. Yang J. Hu C. Sun X. Cao P. Soufeng sanjie formula alleviates osteoarthritis by inhibiting macrophage M1 polarization and modulating intestinal metabolites. J. Ethnopharmacol. 2025 339 119147 10.1016/j.jep.2024.119147 39592076
    [Google Scholar]
  62. Hua D. Yang J. Meng Q. Ling Y. Wei Q. Wang Z. Wei Q. Chen J. Ye J. Han X. Su K. Kong W. Xu C. Cao P. Hu C. Soufeng sanjie formula alleviates collagen-induced arthritis in mice by inhibiting Th17 cell differentiation. Chin. Med. 2021 16 1 39 10.1186/s13020‑021‑00448‑9 33985537
    [Google Scholar]
  63. Meng Q. Du X. Wang H. Astragalus polysaccharides inhibits cell growth and pro-inflammatory response in IL-1β-stimulated fibroblast-like synoviocytes by enhancement of autophagy via PI3K/AKT/mTOR inhibition. Apoptosis 2017 22 9 1138 1146
    [Google Scholar]
  64. Luo H Wei J Wu, S Exploring CircRNA N6-methyladenosine in human rheumatoid arthritis: Hyper-methylated hsa_circ_0007259 as a potential biomarker and its involvement in the hsa_circ_0007259/hsa_miR-21-5p/STAT3 axis. Int Immunopharmacol, 2023 124 Pt A 110938
  65. Tan L. Kong W. Zhou K. Wang S. Liang J. Hou Y. Dou H. FOXO1 deficiency in monocytic myeloid‐derived suppressor cells exacerbates B cell dysfunction in systemic lupus erythematosus. Arthritis Rheumatol. 2024 ••• 43046 10.1002/art.43046 39492682
    [Google Scholar]
  66. Su Y. Wu Z. Liu Y. Liu X. Kang J. Jia J. Zhang L. Increased m6A RNA methylation and METTL3 expression may contribute to the synovitis progression of rheumatoid arthritis. Exp. Cell Res. 2024 442 2 114237 10.1016/j.yexcr.2024.114237 39245197
    [Google Scholar]
  67. Tang J. Yu Z. Xia J. Jiang R. Chen S. Ye D. Sheng H. Lin J. METTL14‐MEDIATED M6A modification of TNFAIP3 involved in inflammation in patients with active rheumatoid arthritis. Arthritis Rheumatol. 2023 75 12 2116 2129 10.1002/art.42629 37327357
    [Google Scholar]
  68. Liu D. Li R. Xu S. Shi M. Kuang Y. Wang J. Shen C. Qiu Q. Liang L. Xiao Y. Xu H. SMOC2 promotes aggressive behavior of fibroblast-like synoviocytes in rheumatoid arthritis through transcriptional and post-transcriptional regulating MYO1C. Cell Death Dis. 2022 13 12 1035 10.1038/s41419‑022‑05479‑0 36513634
    [Google Scholar]
  69. Ping X.L. Sun B.F. Wang L. Xiao W. Yang X. Wang W.J. Adhikari S. Shi Y. Lv Y. Chen Y.S. Zhao X. Li A. Yang Y. Dahal U. Lou X.M. Liu X. Huang J. Yuan W.P. Zhu X.F. Cheng T. Zhao Y.L. Wang X. Danielsen J.M.R. Liu F. Yang Y.G. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014 24 2 177 189 10.1038/cr.2014.3 24407421
    [Google Scholar]
  70. Gao Y. Yuan L. Ke C. Pei Z. Liu X. Wu R. Kui X. Zhang Y. Caprin-1 plays a role in cell proliferation and Warburg metabolism of esophageal carcinoma by regulating METTL3 and WTAP. J. Transl. Med. 2023 21 1 159 10.1186/s12967‑023‑04001‑0 36855123
    [Google Scholar]
  71. Ge Y. Chen R. Ling T. Liu B. Huang J. Cheng Y. Lin Y. Chen H. Xie X. Xia G. Luo G. Yuan S. Xu A. Elevated WTAP promotes hyperinflammation by increasing m6A modification in inflammatory disease models. J. Clin. Invest. 2024 134 14 e177932 10.1172/JCI177932 39007267
    [Google Scholar]
  72. Miyazaki T. Reed J.C. A GTP-binding adapter protein couples TRAIL receptors to apoptosis-inducing proteins. Nat. Immunol. 2001 2 6 493 500 10.1038/88684 11376335
    [Google Scholar]
  73. Kischkel F.C. Lawrence D.A. Chuntharapai A. Schow P. Kim K.J. Ashkenazi A. Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 2000 12 6 611 620 10.1016/S1074‑7613(00)80212‑5 10894161
    [Google Scholar]
  74. Chaudhary P.M. Eby M. Jasmin A. Bookwalter A. Murray J. Hood L. Death receptor 5, a new member of the TNFR family, and DR4 induce FADD-dependent apoptosis and activate the NF-kappaB pathway. Immunity 1997 7 6 821 830 10.1016/S1074‑7613(00)80400‑8 9430227
    [Google Scholar]
  75. Suliman A. Lam A. Datta R. Srivastava R.K. Intracellular mechanisms of TRAIL: Apoptosis through mitochondrial-dependent and -independent pathways. Oncogene 2001 20 17 2122 2133 10.1038/sj.onc.1204282 11360196
    [Google Scholar]
  76. Petak I. Vernes R. Szucs K.S. Anozie M. Izeradjene K. Douglas L. Tillman D.M. Phillips D.C. Houghton J.A. A caspase-8-independent component in TRAIL/Apo-2L-induced cell death in human rhabdomyosarcoma cells. Cell Death Differ. 2003 10 6 729 739 10.1038/sj.cdd.4401232 12761581
    [Google Scholar]
  77. Marin J.J.G. Hernandez A. Revuelta I.E. Gonzalez-Sanchez E. Gonzalez-Buitrago J.M. Perez M.J. Mitochondrial genome depletion in human liver cells abolishes bile acid-induced apoptosis: Role of the Akt/mTOR survival pathway and Bcl-2 family proteins. Free Radic. Biol. Med. 2013 61 218 228 10.1016/j.freeradbiomed.2013.04.002 23597504
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073363967250308084008
Loading
/content/journals/cchts/10.2174/0113862073363967250308084008
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: MH7A cell ; N6-methyladenosine ; Astragalosides ; rheumatoid arthritis ; TRAIL-DR4 ; WTAP ; apoptosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test