Skip to content
2000
Volume 28, Issue 18
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Dental root canal failure is a disease caused by gram-positive bacteria, . The disease is caused by the bacterial cell wall consisting of a peptidoglycan layer that protects the bacteria from internal osmotic pressure. Peptidoglycan biosynthesis includes many enzymes, such as MurA, Penicillin-binding protein (PBP), and SrtA. Herbal plants are a source of bioactive compounds, including antibacterial agents. There is information that red betel leaves, also known as , contain active substances such as flavonoids, terpenoids, and steroids. However, there is no additional information on the antibacterial properties of and the molecular mechanisms that affect the cell wall of bacteria.

Objective

This study aims to determine the antibacterial activity of the extract , screen and study the antibacterial compounds of red betel leaves against oral pathogenic bacteria, namely through molecular docking.

Methods

The n-hexan:ea (9:1) fraction of extract was tested for inhibition zones against bacteria, fractions that had positive results were then identified using the LC-MS method. The LC-MS resulting compounds were tested using .

Results

Antibacterial in the n-hexane: ethyl acetate (9:1) fraction of Red Betel Leaf has the best concentration of 10% with a moderate inhibition zone category. LC-MS test results identified compounds including Longicamphenylone, m/z 207, Nootkatone m/z 219, and Tridecanal m/z 221. Molecular interactions between these compounds with target proteins, namely MurA, PBP, and SrtA, show lower binding affinity values than natural ligands and positive controls for each protein.

Conclusion

Nootkatone compounds demonstrated potential as MurA and PBP inhibitors, while Longicamphenylone compounds showed potential as SrtA inhibitors. Both compounds have the potential to inhibit peptidoglycan biosynthesis and bacterial cell wall formation through docking simulations.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073344642241120041947
2025-01-10
2025-12-23
Loading full text...

Full text loading...

References

  1. MulyawatiE. Peran Bahan Disinfeksi pada Perawatan Saluran Akar.Majalah Kedokteran Gigi Indonesia201618220520910.22146/majkedgiind.15427
    [Google Scholar]
  2. JajuS. JajuP.P. Newer root canal irrigants in horizon: A review.Int. J. Dent.2011201110.1155/2011/85135922190936
    [Google Scholar]
  3. ThawreS. JoshiR. BhardwajS.B. BhushanJ. Comparison of the antibacterial efficacy of teatree oil, nisin and calcium hydroxide against Enterococcus faecalis In.Mater. Today Proc.2020281477148010.1016/j.matpr.2020.04.824
    [Google Scholar]
  4. NakajoK. KomoriR. IshikawaS. UenoT. SuzukiY. IwamiY. TakahashiN. Resistance to acidic and alkaline environments in the endodontic pathogen Enterococcus faecalis.Oral Microbiol. Immunol.200621528328810.1111/j.1399‑302X.2006.00289.x 16922926
    [Google Scholar]
  5. SmithC.A. Structure, function and dynamics in the mur family of bacterial cell wall ligases.J. Mol. Biol.2006362464065510.1016/j.jmb.2006.07.066 16934839
    [Google Scholar]
  6. WalshC.T. WencewiczT.A. Prospects for new antibiotics:] A molecule-centered perspective.J. Antibiot. (Tokyo)201467172210.1038/ja.2013.49 23756684
    [Google Scholar]
  7. MoonT.M. D’AndréaÉ.D. LeeC.W. SoaresA. JakoncicJ. DesbonnetC. Garcia-SolacheM. RiceL.B. PageR. PetiW. The structures of penicillin-binding protein 4 (PBP4) and PBP5 from Enterococci provide structural insights into β-lactam resistance.J. Biol. Chem.201829348185741858410.1074/jbc.RA118.006052 30355734
    [Google Scholar]
  8. LiH. ZhouY. WangN. XinY. TangL. MaY. Identification and characterization of a MurA, UDP-N-acetylglucosamine enolpyruvyl transferase from cariogenic Streptococcus mutans.J. Hard Tissue Biol.2012211172410.2485/jhtb.21.17
    [Google Scholar]
  9. LuoH. LiangD.F. BaoM.Y. SunR. LiY.Y. LiJ.Z. WangX. LuK.M. BaoJ.K. In silico identification of potential inhibitors targeting Streptococcus mutans sortase A.Int. J. Oral Sci.201791536210.1038/ijos.2016.58 28358034
    [Google Scholar]
  10. BensenD.C. RodriguezS. NixJ. CunninghamM.L. TariL.W. Structure of MurA (UDP- N -acetylglucosamine enolpyruvyl transferase) from Vibrio fischeri in complex with substrate UDP- N -acetylglucosamine and the drug fosfomycin.Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun.201268438238510.1107/S1744309112006720 22505403
    [Google Scholar]
  11. BarreteauH. KovačA. BonifaceA. SovaM. GobecS. BlanotD. Cytoplasmic steps of peptidoglycan biosynthesis.FEMS Microbiol. Rev.200832216820710.1111/j.1574‑6976.2008.00104.x 18266853
    [Google Scholar]
  12. NikolaidisI. Favini-StabileS. DessenA. Resistance to antibiotics targeted to the bacterial cell wall.Protein Sci.201423324325910.1002/pro.2414 24375653
    [Google Scholar]
  13. DaiH.J. ParkerC.N. BaoJ.J. Characterization and inhibition study of MurA enzyme by capillary electrophoresis.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.2002766112313210.1016/S0378‑4347(01)00461‑3 11820287
    [Google Scholar]
  14. SpirigT. WeinerE.M. ClubbR.T. Sortase enzymes in Gram‐positive bacteria.Mol. Microbiol.20118251044105910.1111/j.1365‑2958.2011.07887.x 22026821
    [Google Scholar]
  15. ArbainD. NofrizalN. IsmedF. YousufS. ChoudharyM.I. Bicyclo[3.2.1]octanoid neolignans from Indonesian red betle leaves (Piper crocatum Ruiz & Pav.).Phytochem. Lett.20182416316610.1016/j.phytol.2018.02.006
    [Google Scholar]
  16. ChairunisaF. SafithriM. BintangM. antibacterial activity of ethanol extract of red betel leaves (Piper crocatum) and Its Fractions against Escherichia coli pBR322.Curr. Biochem.20229111510.29244/cb.9.1.1
    [Google Scholar]
  17. PuspitaP.J. SafithriM. SugihartiN.P. Antibacterial Activities of Sirih Merah (Piper crocatum).Leaf Extracts. Curr. Biochem.20195311010.29244/cb.5.3.1‑10
    [Google Scholar]
  18. RachmawatyF.J. JuliantoT.S. TamhidH.A. Preliminary study on fractions’ activities of red betel vine (Piper crocatum Ruiz and Pav) leaves ethanol extract toward Mycobacterium tuberculosis. AIP Conf. Proc.2018195403000410.1063/1.5033384
    [Google Scholar]
  19. SuriM.A. AzizahZ. AsraR.A. Review: Traditional Use, Phytochemical and Pharmacological Review of Red Betel Leaves (Piper Crocatum Ruiz & Pav).Asian J. Pharmaceut. Res. Develop.20219115916310.22270/ajprd.v9i1.926
    [Google Scholar]
  20. HadiS. Screening of Rhodomyrtus tomentosa (Aiton) Wight (Karamunting) Compounds that Have the Potential for Breast Cancer202310.33394/hjkk.v11i2.7189
    [Google Scholar]
  21. GherairiaN. BoukercheS. ChouikhA. KhoudirS. ChefrourA. Antibacterial Activity of Essential Oils From Two Species of Genus Thymus Growing in Different Sites of North Eastern Algerian, Analele Univ. din Oradea.Fasc. Biol.2019262100104
    [Google Scholar]
  22. KimE.E. S. ChenJ. ChengT. GindulyteA. HeJ. HeS. LiQ. ShoemakerB. A. ThiessenP. A. YuB. ZaslavskyL. ZhangJ. Bolton, “PubChem 2023 updateNucleic Acids Res.202351D1D1 36624667
    [Google Scholar]
  23. BIOVIA WorkbookRelease 2020; BIOVIA Pipeline Pilot, Release 2020.San DiegoDassault Systèmes2020
    [Google Scholar]
  24. HataiB. BanerjeeS.K. Molecular docking interaction between superoxide dismutase (receptor) and phytochemicals (ligand) from Heliotropium indicum Linn for detection of potential phytoconstituents: New drug design for releasing oxidative stress condition/inflammation of osteoar, ~ 1700 ~.J. Pharmacogn. Phytochem.20198217001706Available from: www.ncbi.nlm.nih.gov/pubchem
    [Google Scholar]
  25. MukaiA. TakahashiK. AshitaniT. Antifungal activity of longifolene and its autoxidation products.Eur. J. Wood Wood Prod20187631079108210.1007/s00107‑017‑1281‑9
    [Google Scholar]
  26. El SoudaS.S. AboutablE.A. MaamounA.A. HashemF.A. Volatile constituents and cytotoxic activity of Khaya grandifoliola and Khaya senegalensis flower extracts.J. Herbs Spices Med. Plants201622218318910.1080/10496475.2016.1138269
    [Google Scholar]
  27. YamaguchiT. Antibacterial properties of nootkatone against Gram-positive bacteria.Nat. Prod. Commun.20191461934578X1985999910.1177/1934578X19859999
    [Google Scholar]
  28. BounabS. LogradaT. RamdaniM. ChalardP. FigueredoG. Phytochemical investigations and antibacterial and antioxidant properties of thymelaea microphylla essential oil.Indian Res. J. Pharm. Sci.2017441205121510.21276/irjps.2017.4.4.7
    [Google Scholar]
  29. WuM.Y. DaiD.Q. YanH. PRL‐dock: Protein‐ligand docking based on hydrogen bond matching and probabilistic relaxation labeling.Proteins20128092137215310.1002/prot.24104 22544808
    [Google Scholar]
  30. QiuW. Application-of-AntibioticsAntimicrobial-Agents-on-Dental-CariesBioMed-Research-International.pdf.BioMed Res. Int.20202020111
    [Google Scholar]
  31. PantsarT. PosoA. Binding affinity via docking: Fact and fiction.201810.3390/molecules23081899
    [Google Scholar]
  32. YuntaM. Docking and {Ligand} {Binding} {Affinity}: {Uses} and {Pitfalls}.Am. J. Model. Optim.20164October7411410.12691/ajmo‑4‑3‑2
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073344642241120041947
Loading
/content/journals/cchts/10.2174/0113862073344642241120041947
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test