Skip to content
2000
image of Mechanism of Qilong Capsule against Myocardial Ischemia-Reperfusion Injury Based on Network Pharmacology and Experimental Validation

Abstract

Introduction

Qilong capsule (QC) has been used clinically to treat ischemic stroke in China. This study evaluated the therapeutic effects of QC on myocardial ischemia-reperfusion injury (MIRI) and its potential mechanisms.

Method

The components and candidate targets of QC against MIRI were predicted by network pharmacology relevant databases such as TCMSP, BATMAN-TCM, GeneCards. The potential mechanisms were predicted by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and verified by enzyme-linked immunosorbent assay (ELISA) and Western blot.

Results

Network pharmacology analysis indicated that the cardioprotective effect of QC against MIRI was associated with inflammatory pathways. We further confirmed that QC effectively decreased the levels of inflammatory factors, including hs-CRP and MCP-1, and suppressed the expression of TNF-α and the phosphorylation of STAT3.

Conclusion

This study provides evidence for further clinical applications of QC for MIRI therapy.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073332431241120044411
2025-01-10
2025-08-19
Loading full text...

Full text loading...

References

  1. Hausenloy D.J. Yellon D.M. Ischaemic conditioning and reperfusion injury. Nat. Rev. Cardiol. 2016 13 4 193 209 10.1038/nrcardio.2016.5 26843289
    [Google Scholar]
  2. Ibáñez B. Heusch G. Ovize M. Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J. Am. Coll. Cardiol. 2015 65 14 1454 1471 10.1016/j.jacc.2015.02.032 25857912
    [Google Scholar]
  3. Lyu J. Gao Y. Wei R. Cai Y. Shen X. Zhao D. Zhao X. Xie Y. Yu H. Chai Y. Xie Y. Clinical effectiveness of Qilong capsule in patients with ischemic stroke: A prospective, multicenter, non-randomized controlled trial. Phytomedicine 2022 104 154278 10.1016/j.phymed.2022.154278 35780589
    [Google Scholar]
  4. Yang G. Fang Z. Liu Y. Zhang H. Shi X. Ji Q. Lin Q. Lin R. Protective effects of Chinese traditional medicine buyang huanwu decoction on myocardial injury. Evid. Based Complement. Alternat. Med. 2011 2011 1 930324 10.1093/ecam/nep013 19204010
    [Google Scholar]
  5. Zhu M. Wei J. Li Y. Wang Y. Ren J. Li B. Ma B. Wang X. Qiao L. Zhou C. Liu J. Efficacy and mechanism of Buyang Huanwu decoction in patients with ischemic heart failure: A randomized, double-blind, placebo-controlled trial combined with proteomic analysis. Front. Pharmacol. 2022 13 831208 10.3389/fphar.2022.831208 35370712
    [Google Scholar]
  6. Zhang H. Wang W.R. Lin R. Zhang J.Y. Ji Q.L. Lin Q.Q. Yang L.N. Buyang Huanwu decoction ameliorates coronary heart disease with Qi deficiency and blood stasis syndrome by reducing CRP and CD40 in rats. J. Ethnopharmacol. 2010 130 1 98 102 10.1016/j.jep.2010.04.017 20420893
    [Google Scholar]
  7. Wang W.R. Lin R. Zhang H. Lin Q.Q. Yang L.N. Zhang K.F. Ren F. The effects of Buyang Huanwu Decoction on hemorheological disorders and energy metabolism in rats with coronary heart disease. J. Ethnopharmacol. 2011 137 1 214 220 10.1016/j.jep.2011.05.008 21605653
    [Google Scholar]
  8. Zhu J.Z. Bao X.Y. Zheng Q. Tong Q. Zhu P.C. Zhuang Z. Wang Y. Buyang Huanwu decoction exerts cardioprotective effects through targeting Angiogenesis via Caveolin-1/VEGF signaling pathway in Mice with Acute Myocardial infarction. Oxid. Med. Cell. Longev. 2019 2019 1 15 10.1155/2019/4275984 31178960
    [Google Scholar]
  9. Weng J. Li J. Yuan M. Yao T. Zhang J. Zeng Y. Zhao J. Li Y. Xu K. Shen X. Effects of Buyang Huanwu Decoction on Intestinal barrier, Intestinal Flora, and Trimethylamine Oxide in rats with heart failure. Chin. J. Integr. Med. 2023 29 2 155 161 10.1007/s11655‑022‑2898‑z 36369611
    [Google Scholar]
  10. Lyu J. Liu Y. Liu F. Liu G. Gao Y. Wei R. Cai Y. Shen X. Zhao D. Zhao X. Xie Y. Yu H. Chai Y. Zhang J. Zhang Y. Xie Y. Therapeutic effect and mechanisms of traditional Chinese medicine compound (Qilong capsule) in the treatment of ischemic stroke. Phytomedicine 2024 132 155781 10.1016/j.phymed.2024.155781 38870749
    [Google Scholar]
  11. Gao J.M. Guo H. Zhang Y.H. Yao M.J. Wen J. You Y. Fu J.H. Liu J.X. Effects of Qilong Capsules on myocardial fibrosis and insufficient blood circulation in ischemic cardiomyopathy with Qi deficiency and blood stasis. Zhongguo Zhongyao Zazhi 2022 47 5 1327 1335 35343161
    [Google Scholar]
  12. Ma H. Study on the mechanism of Qilong capsule promoting angiogenesis based on zebrafish model. PHD thesis. Qilu University of Technology 2024
    [Google Scholar]
  13. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  14. Shannon P. Markiel A. Ozier O. Baliga N.S. Wang J.T. Ramage D. Amin N. Schwikowski B. Ideker T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003 13 11 2498 2504 10.1101/gr.1239303 14597658
    [Google Scholar]
  15. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  16. Huang D.W. Sherman B.T. Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009 4 1 44 57 10.1038/nprot.2008.211 19131956
    [Google Scholar]
  17. Wang R. Wang M. Zhou J. Dai Z. Sun G. Sun X. Calenduloside E suppresses calcium overload by promoting the interaction between L-type calcium channels and Bcl2-associated athanogene 3 to alleviate myocardial ischemia/reperfusion injury. J. Adv. Res. 2021 34 173 186 10.1016/j.jare.2020.10.005 35024189
    [Google Scholar]
  18. Wang M. Li L. Tang S. Liu J. Liu S. Ye J. Ding G. Sun G. Qilong capsule prevents myocardial ischemia/reperfusion injury by inhibiting platelet activation via the platelet CD36 signaling pathway. J. Ethnopharmacol. 2024 330 118211 10.1016/j.jep.2024.118211 38636580
    [Google Scholar]
  19. Wang M. Wang R. Zhou J. Xie X. Sun G. Sun X. Calenduloside E Ameliorates Myocardial Ischemia-Reperfusion injury through regulation of AMPK and Mitochondrial OPA1. Oxid. Med. Cell. Longev. 2020 2020 1 12 10.1155/2020/2415269 32934760
    [Google Scholar]
  20. Xing N. Long X.T. Zhang H.J. Fu L.D. Huang J.Y. Chaurembo A.I. Chanda F. Xu Y.J. Shu C. Lin K.X. Yang K. Lin H.B. Research progress on effects of traditional Chinese medicine on myocardial ischemia–reperfusion injury: A review. Front. Pharmacol. 2022 13 1055248 10.3389/fphar.2022.1055248 36561346
    [Google Scholar]
  21. Li J. Liu A. Li H. Wang Y. Shang H.C. Zheng G. Buyang huanwu decoction for healthcare: Evidence-based theoretical interpretations of treating different diseases with the same method and target of vascularity. Evid. Based Complement. Alternat. Med. 2014 2014 1 506783 10.1155/2014/506783 25126100
    [Google Scholar]
  22. Luo T. Lu Y. Yan S. Xiao X. Rong X. Guo J. Network pharmacology in research of Chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med. 2020 26 1 72 80 10.1007/s11655‑019‑3064‑0 30941682
    [Google Scholar]
  23. Toldo S. Mauro A.G. Cutter Z. Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol. 2018 315 6 H1553 H1568 10.1152/ajpheart.00158.2018 30168729
    [Google Scholar]
  24. Ullah A. Razzaq A. Alfaifi M.Y. Elbehairi S.E.I. Menaa F. Ullah N. Shehzadi S. Nawaz T. Iqbal H. Sanguinarine attenuates lung cancer progression via oxidative stress-induced cell apoptosis. Curr. Mol. Pharmacol. 2024 17 e18761429269383 10.2174/0118761429269383231119062233 38389415
    [Google Scholar]
  25. Zhang D. Wu H. Liu D. Li Y.Z. Zhou G. Research progress on the mechanism and treatment of inflammatory response in Myocardial Ischemia-Reperfusion injury. Heart Surg. Forum 2022 25 3 E462 E468 10.1532/hsf.4725 35787748
    [Google Scholar]
  26. Liu Y. Lin R. Shi X. Fang Z. Wang W. Lin Q. Zhang J. Zhang H. Ji Q. The roles of buyang huanwu decoction in anti-inflammation, antioxidation and regulation of lipid metabolism in rats with myocardial ischemia. Evid. Based Complement. Alternat. Med. 2011 2011 1 561396 10.1093/ecam/neq028 21792360
    [Google Scholar]
  27. Nossuli T.O. Frangogiannis N.G. Knuefermann P. Lakshminarayanan V. Dewald O. Evans A.J. Peschon J. Mann D.L. Michael L.H. Entman M.L. Brief murine myocardial I/R induces chemokines in a TNF-α-independent manner: Role of oxygen radicals. Am. J. Physiol. Heart Circ. Physiol. 2001 281 6 H2549 H2558 10.1152/ajpheart.2001.281.6.H2549 11709422
    [Google Scholar]
  28. Zhang W. Zhu T. Chen L. Luo W. Chao J. MCP-1 mediates ischemia-reperfusion-induced cardiomyocyte apoptosis via MCPIP1 and CaSR. Am. J. Physiol. Heart Circ. Physiol. 2020 318 1 H59 H71 10.1152/ajpheart.00308.2019 31774703
    [Google Scholar]
  29. Lecour S. Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? J. Mol. Cell. Cardiol. 2009 47 1 32 40 10.1016/j.yjmcc.2009.03.019 19344728
    [Google Scholar]
  30. Hadebe N. Cour M. Lecour S. The SAFE pathway for cardioprotection: Is this a promising target? Basic Res. Cardiol. 2018 113 2 9 10.1007/s00395‑018‑0670‑5 29335904
    [Google Scholar]
  31. Kurdi M. Zgheib C. Booz G.W. Recent developments on the crosstalk between STAT3 and inflammation in heart function and disease. Front. Immunol. 2018 9 3029 10.3389/fimmu.2018.03029 30619368
    [Google Scholar]
  32. Harhous Z. Booz G.W. Ovize M. Bidaux G. Kurdi M. An update on the multifaceted roles of STAT3 in the heart. Front. Cardiovasc. Med. 2019 6 150 10.3389/fcvm.2019.00150 31709266
    [Google Scholar]
  33. Mahdiani S. Omidkhoda N. Rezaee R. Heidari S. Karimi G. Induction of JAK2/STAT3 pathway contributes to protective effects of different therapeutics against myocardial ischemia/reperfusion. Biomed. Pharmacother. 2022 155 113751 10.1016/j.biopha.2022.113751 36162372
    [Google Scholar]
  34. Wu F. Ye B. Wu X. Lin X. Li Y. Wu Y. Tong L. Paeoniflorin on rat Myocardial ischemia reperfusion injury of protection and mechanism research. Pharmacology 2020 105 5-6 281 288 10.1159/000503583 31618740
    [Google Scholar]
  35. Shi H. Zhou P. Gao G. Liu P. Wang S. Song R. Zou Y. Yin G. Wang L. Astragaloside IV prevents acute myocardial infarction by inhibiting the TLR4/MyD88/NF‐κB signaling pathway. J. Food Biochem. 2021 45 7 e13757 10.1111/jfbc.13757 34032295
    [Google Scholar]
  36. Ullah A. Aziz T. Ullah N. Nawaz T. Molecular mechanisms of sanguinarine in cancer prevention and treatment. Anticancer. Agents Med. Chem. 2023 23 7 765 778 10.2174/1871520622666220831124321 36045531
    [Google Scholar]
  37. Chen X. Qian J. Wang L. Li J. Zhao Y. Han J. Khan Z. Chen X. Wang J. Liang G. Kaempferol attenuates hyperglycemia-induced cardiac injuries by inhibiting inflammatory responses and oxidative stress. Endocrine 2018 60 1 83 94 10.1007/s12020‑018‑1525‑4 29392616
    [Google Scholar]
  38. Liu C.J. Yao L. Hu Y.M. Zhao B.T. Effect of Quercetin-loaded Mesoporous Silica nanoparticles on Myocardial Ischemia-Reperfusion injury in rats and its mechanism. Int. J. Nanomedicine 2021 16 741 752 10.2147/IJN.S277377 33564233
    [Google Scholar]
  39. Dong F. Xue C. Wang Y. Peng Y. Zhang Y. Jin M. Zang B. Hydroxysafflor yellow A attenuates the expression of inflammatory cytokines in acute soft tissue injury. Sci. Rep. 2017 7 1 40584 10.1038/srep40584 28074914
    [Google Scholar]
  40. Zheng Q. Huang Y. Zhu P. Tong Q. Bao X. Zhang Q. Zheng G. Wang Y. Ligustrazine exerts Cardioprotection in animal models of Myocardial Ischemia/Reperfusion injury: Preclinical evidence and possible mechanisms. Front. Pharmacol. 2018 9 729 10.3389/fphar.2018.00729 30090062
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073332431241120044411
Loading
/content/journals/cchts/10.2174/0113862073332431241120044411
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test