Skip to content
2000
image of Adaptability of Thermotoga Maritima's Glycolysis Pathway in Both Oxic and Anoxic Environments

Abstract

Background

The phylum Thermotogae is composed of five families: Fervidobacteriaceae, Thermatogaceae, Kosmotogaceae, Petrotogaceae, and Mesoaciditogaceae; one class: Thermotogae; and four orders: Kosmotogales, Petrotogales, and Mesoaciditogales. There are thirteen genera in all. The physical and metabolic characteristics of the Thermotogae species reflect the extreme heat from which they were separated. Thermotogae members have a broad spectrum of metabolic capacities, resulting in a pool of valuable chemicals with potential uses in many different sectors.

Method

A 1.5-liter operating capacity bioreactor with a 2.3-liter double-jacket glass volume was utilised to culture in both oxic and anoxic conditions. In addition to temperature, pH, and redox potential, sensors that were installed within the fermentor monitored additional parameters. RNA extraction and cDNA synthesis A total of RNAs was extracted utilising Roche's High Pure RNA reagent. Analysis of glycolysis pathways in was performed by NMR spectroscopy

Result

Based on NMR analysis, our findings demonstrate that uses the EM route to metabolize 90% of glucose in anoxia and the ED pathway for 10%. On the other hand, continues to employ the EM and ED glycolysis routes concurrently when exposed to extended oxidative stress; however, the ED pathway's contribution drops from 10% to around 5%.

Conclusion

Compared to the EM route, the ED pathway has more strongly repressed transcripts that encode its unique enzymes.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073357899250126032044
2025-02-06
2025-09-14
Loading full text...

Full text loading...

References

  1. Romano A.H. Conway T. Evolution of carbohydrate metabolic pathways. Res. Microbiol. 1996 147 6-7 448 455 10.1016/0923‑2508(96)83998‑2 9084754
    [Google Scholar]
  2. Werner S. Diekert G. Schuster S. Revisiting the thermodynamic theory of optimal ATP stoichiometries by analysis of various ATP-producing metabolic pathways. J. Mol. Evol. 2010 71 5-6 346 355 10.1007/s00239‑010‑9389‑0 20922363
    [Google Scholar]
  3. Entner N. Doudoroff M. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. J. Biol. Chem. 1952 196 2 853 862 10.1016/S0021‑9258(19)52415‑2 12981024
    [Google Scholar]
  4. Conway T. The entner-doudoroff pathway: History, physiology and molecular biology. FEMS Microbiol. Rev. 1992 9 1 1 27 1389313
    [Google Scholar]
  5. Stettner A.I. Segrè D. The cost of efficiency in energy metabolism. Proc. Natl. Acad. Sci. USA 2013 110 24 9629 9630 10.1073/pnas.1307485110 23729810
    [Google Scholar]
  6. Flamholz A. Noor E. Bar-Even A. Liebermeister W. Milo R. Glycolytic strategy as a tradeoff between energy yield and protein cost. Proc. Natl. Acad. Sci. USA 2013 110 24 10039 10044 10.1073/pnas.1215283110 23630264
    [Google Scholar]
  7. Fuhrer T. Fischer E. Sauer U. Experimental identification and quantification of glucose metabolism in seven bacterial species. J. Bacteriol. 2005 187 5 1581 1590 10.1128/JB.187.5.1581‑1590.2005 15716428
    [Google Scholar]
  8. Pastor J.M. Bernal V. Salvador M. Argandoña M. Vargas C. Csonka L. Sevilla Á. Iborra J.L. Nieto J.J. Cánovas M. Role of central metabolism in the osmoadaptation of the halophilic bacterium Chromohalobacter salexigens. J. Biol. Chem. 2013 288 24 17769 17781 10.1074/jbc.M113.470567 23615905
    [Google Scholar]
  9. Sawyer M.H. Baumann P. Baumann L. Berman S.M. Cánovas J.L. Berman R.H. Pathways of D-fructose catabolism in species of Pseudomonas. Arch. Microbiol. 1977 112 1 49 55 10.1007/BF00446653 139135
    [Google Scholar]
  10. Stöveken N. Pittelkow M. Sinner T. Jensen R.A. Heider J. Bremer E. A specialized aspartokinase enhances the biosynthesis of the osmoprotectants ectoine and hydroxyectoine in Pseudomonas stutzeri A1501. J. Bacteriol. 2011 193 17 4456 4468 10.1128/JB.00345‑11 21725014
    [Google Scholar]
  11. He Y.Z. Gong J. Yu H.Y. Tao Y. Zhang S. Dong Z.Y. High production of ectoine from aspartate and glycerol by use of whole-cell biocatalysis in recombinant Escherichia coli. Microb. Cell Fact. 2015 14 1 55 10.1186/s12934‑015‑0238‑0 25886618
    [Google Scholar]
  12. Hungate R. Chapter IV A roll tube method for cultivation of strict anaerobes. In: Methods in Microbiology; Elsevier, 1969 10.1016/S0580‑9517(08)70503‑8
    [Google Scholar]
  13. Macy J.M. Snellen J.E. Hungate R.E. Use of syringe methods for anaerobiosis. Am. J. Clin. Nutr. 1972 25 12 1318 1323 10.1093/ajcn/25.12.1318 4565348
    [Google Scholar]
  14. Balch W.E. Fox G.E. Magrum L.J. Woese C.R. Wolfe R.S. Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 1979 43 2 260 296 10.1128/mr.43.2.260‑296.1979 390357
    [Google Scholar]
  15. Miller T.L. Wolin M.J. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 1974 27 5 985 987 10.1128/am.27.5.985‑987.1974 4598231
    [Google Scholar]
  16. Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001 29 9 45e 45 10.1093/nar/29.9.e45 11328886
    [Google Scholar]
  17. Schäfer T. Xavier K.B. Santos H. Schönheit P. Glucose fermentation to acetate and alanine in resting cell suspensions of Pyrococcus furiosus: Proposal of a novel glycolytic pathway based on 13C labelling data and enzyme activities. FEMS Microbiol. Lett. 1994 121 107 114 10.1111/j.1574‑6968.1994.tb07083.x
    [Google Scholar]
  18. Berger A. Dohnt K. Tielen P. Jahn D. Becker J. Wittmann C. Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosai. PLoS One 2014 9 4 e88368 10.1371/journal.pone.0088368 24709961
    [Google Scholar]
  19. Chavarría M. Nikel P.I. Pérez-Pantoja D. de Lorenzo V. The E ntner– D oudoroff pathway empowersP seudomonas putidaKT 2440 with a high tolerance to oxidative stress. Environ. Microbiol. 2013 15 6 1772 1785 10.1111/1462‑2920.12069 23301697
    [Google Scholar]
  20. Chen P.R. Brugarolas P. He C. Redox signaling in human pathogens. Antioxid. Redox Signal. 2011 14 6 1107 1118 10.1089/ars.2010.3374 20578795
    [Google Scholar]
  21. Storz G. Tartaglia L.A. Farr S.B. Ames B.N. Bacterial defenses against oxidative stress. Trends Genet. 1990 6 11 363 368 10.1016/0168‑9525(90)90278‑E 1965068
    [Google Scholar]
  22. Singh R. Mailloux R.J. Puiseux-Dao S. Appanna V.D. Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. J. Bacteriol. 2007 189 18 6665 6675 10.1128/JB.00555‑07 17573472
    [Google Scholar]
  23. Padron G.C. Shuppara A.M. Sharma A. Koch M.D. Palalay J.J.S. Radin J.N. Kehl-Fie T.E. Imlay J.A. Sanfilippo J.E. Shear rate sensitizes bacterial pathogens to H 2 O 2 stress. Proc. Natl. Acad. Sci. USA 2023 120 11 e2216774120 10.1073/pnas.2216774120 36888662
    [Google Scholar]
  24. He L. Fu Y. Lidstrom M.E. Quantifying methane and methanol metabolism of Methylotuvimicrobium buryatense 5GB1C under substrate limitation. mSystems 2019 4 6 10.1128/msystems.00748-19 10.1128/msystems.00748‑19 31822604
    [Google Scholar]
  25. Fuhrman L.K. Wanken A. Nickerson K.W. Conway T. Rapid accumulation of intracellular 2-keto-3-deoxy-6-phosphogluconate in an Entner-Doudoroff aldolase mutant results in bacteriostasis. FEMS Microbiol. Lett. 1998 159 2 261 266 10.1111/j.1574‑6968.1998.tb12870.x 9503620
    [Google Scholar]
  26. Fu Y. He L. Reeve J. Beck D.A.C. Lidstrom M.E. Core metabolism shifts during growth on methanol versus methane in the methanotroph Methylomicrobium buryatense 5GB1. MBio 2019 10 2 e00406 e00419 10.1128/mBio.00406‑19 30967465
    [Google Scholar]
  27. He L. Fu Y. Lidstrom M.E. Quantifying methane and methanol metabolism of “Methylotuvimicrobium buryatense” 5GB1C under substrate limitation. mSystems 2019 4 6 10.1128/msystems.00748-19 10.1128/msystems.00748‑19 31822604
    [Google Scholar]
  28. Schouten S. Strous M. Kuypers M.M.M. Rijpstra W.I.C. Baas M. Schubert C.J. Jetten M.S.M. Sinninghe Damsté J.S. Stable carbon isotopic fractionations associated with inorganic carbon fixation by anaerobic ammonium-oxidizing bacteria. Appl. Environ. Microbiol. 2004 70 6 3785 3788 10.1128/AEM.70.6.3785‑3788.2004 15184193
    [Google Scholar]
  29. Li F. Hagemeier C.H. Seedorf H. Gottschalk G. Thauer R.K. Re-citrate synthase from Clostridium kluyveri is phylogenetically related to homocitrate synthase and isopropylmalate synthase rather than to Si-citrate synthase. J. Bacteriol. 2007 189 11 4299 4304 10.1128/JB.00198‑07 17400742
    [Google Scholar]
  30. Au J. Choi J. Jones S.W. Venkataramanan K.P. Antoniewicz M.R. Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for 13C metabolic flux analysis. Metab. Eng. 2014 26 23 33 10.1016/j.ymben.2014.08.002 25183671
    [Google Scholar]
  31. van de Vossenberg J. Woebken D. Maalcke W.J. Wessels H.J.C.T. Dutilh B.E. Kartal B. Janssen-Megens E.M. Roeselers G. Yan J. Speth D. Gloerich J. Geerts W. van der Biezen E. Pluk W. Francoijs K.J. Russ L. Lam P. Malfatti S.A. Tringe S.G. Haaijer S.C.M. Op den Camp H.J.M. Stunnenberg H.G. Amann R. Kuypers M.M.M. Jetten M.S.M. The metagenome of the marine anammox bacterium ‘ Candidatus Scalindua profunda’ illustrates the versatility of this globally important nitrogen cycle bacterium. Environ. Microbiol. 2013 15 5 1275 1289 10.1111/j.1462‑2920.2012.02774.x 22568606
    [Google Scholar]
  32. Van De Vossenberg J. Rattray J.E. Geerts W. Kartal B. Van Niftrik L. Van Donselaar E.G. Sinninghe Damsté J.S. Strous M. Jetten M.S.M. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. Environ. Microbiol. 2008 10 11 3120 3129 10.1111/j.1462‑2920.2008.01643.x 18462401
    [Google Scholar]
  33. Pedroni P. Volpe A.D. Galli G. Mura G.M. Pratesi C. Grandi G. Characterization of the locus encoding the [Ni-Fe] sulfhydrogenase from the archaeon Pyrococcus furiosus: Evidence for a relationship to bacterial sulfite reductases. Microbiology (Reading) 1995 141 2 449 458 10.1099/13500872‑141‑2‑449 7704275
    [Google Scholar]
  34. Parey K. Demmer U. Warkentin E. Wynen A. Ermler U. Dahl C. Structural, biochemical and genetic characterization of dissimilatory ATP sulfurylase from Allochromatium vinosum. PLoS One 2013 8 9 e74707 10.1371/journal.pone.0074707 24073218
    [Google Scholar]
  35. Greening C. Biswas A. Carere C.R. Jackson C.J. Taylor M.C. Stott M.B. Cook G.M. Morales S.E. Genomic and metagenomic surveys of hydrogenase distribution indicate H2 is a widely utilised energy source for microbial growth and survival. ISME J. 2016 10 3 761 777 10.1038/ismej.2015.153 26405831
    [Google Scholar]
  36. Mosley O.E. Gios E. Weaver L. Close M. Daughney C. van der Raaij R. Martindale H. Handley K.M. Metabolic diversity and aero-tolerance in anammox bacteria from geochemically distinct aquifers. mSystems 2022 7 1 e01255 e21 10.1128/msystems.01255‑21 35191775
    [Google Scholar]
  37. Dawes E.A. Ribbons D.W. Large P.J. The route of ethanol formation in Zymomonas mobilis. Biochem. J. 1966 98 3 795 803 10.1042/bj0980795 4287842
    [Google Scholar]
  38. Bringer S. Finn R.K. Sahm H. Effect of oxygen on the metabolism of Zymomonas mobilis. Arch. Microbiol. 1984 139 4 376 381 10.1007/BF00408383
    [Google Scholar]
  39. Kalnenieks U. Galinina N. Strazdina I. Kravale Z. Pickford J.L. Rutkis R. Poole R.K. NADH dehydrogenase deficiency results in low respiration rate and improved aerobic growth of Zymomonas mobilis. Microbiology (Reading) 2008 154 3 989 994 10.1099/mic.0.2007/012682‑0 18310045
    [Google Scholar]
  40. Strazdina I. Kravale Z. Galinina N. Rutkis R. Poole R.K. Kalnenieks U. Electron transport and oxidative stress in Zymomonas mobilis respiratory mutants. Arch. Microbiol. 2012 194 6 461 471 10.1007/s00203‑011‑0785‑7 22228443
    [Google Scholar]
  41. Balodite E. Strazdina I. Galinina N. McLean S. Rutkis R. Poole R.K. Kalnenieks U. Structure of the Zymomonas mobilis respiratory chain: oxygen affinity of electron transport and the role of cytochrome c peroxidase. Microbiology (Reading) 2014 160 9 2045 2052 10.1099/mic.0.081612‑0 24980645
    [Google Scholar]
  42. Jones-Burrage S.E. Kremer T.A. McKinlay J.B. Cell aggregation and aerobic respiration are important for Zymomonas mobilis ZM4 survival in an aerobic minimal medium. Appl. Environ. Microbiol. 2019 85 10 e00193 e19 10.1128/AEM.00193‑19 30877116
    [Google Scholar]
  43. Richhardt J. Bringer S. Bott M. Role of the pentose phosphate pathway and the Entner–Doudoroff pathway in glucose metabolism of Gluconobacter oxydans 621H. Appl. Microbiol. Biotechnol. 2013 97 10 4315 4323 10.1007/s00253‑013‑4707‑2 23354449
    [Google Scholar]
  44. Hollinshead W.D. Rodriguez S. Martin H.G. Wang G. Baidoo E.E.K. Sale K.L. Keasling J.D. Mukhopadhyay A. Tang Y.J. Examining Escherichia coli glycolytic pathways, catabolite repression, and metabolite channeling using pfk mutants. Biotechnol. Biofuels 2016 9 1 212 10.1186/s13068‑016‑0630‑y 27766116
    [Google Scholar]
  45. Sanfilippo J.E. Lorestani A. Koch M.D. Bratton B.P. Siryaporn A. Stone H.A. Gitai Z. Microfluidic-based transcriptomics reveal force-independent bacterial rheosensing. Nat. Microbiol. 2019 4 8 1274 1281 10.1038/s41564‑019‑0455‑0 31086313
    [Google Scholar]
  46. Okano K. Zhu Q. Honda K. In vitro reconstitution of non-phosphorylative Entner–Doudoroff pathway for lactate production. J. Biosci. Bioeng. 2020 129 3 269 275 10.1016/j.jbiosc.2019.09.010 31594693
    [Google Scholar]
  47. Guterl J.K. Garbe D. Carsten J. Steffler F. Sommer B. Reiße S. Philipp A. Haack M. Rühmann B. Koltermann A. Kettling U. Brück T. Sieber V. Cell-free metabolic engineering: production of chemicals by minimized reaction cascades. ChemSusChem 2012 5 11 2165 2172 10.1002/cssc.201200365 23086730
    [Google Scholar]
  48. Ye X. Honda K. Sakai T. Okano K. Omasa T. Hirota R. Kuroda A. Ohtake H. Synthetic metabolic engineering-a novel, simple technology for designing a chimeric metabolic pathway. Microb. Cell Fact. 2012 11 1 120 10.1186/1475‑2859‑11‑120 22950411
    [Google Scholar]
  49. Krutsakorn B. Honda K. Ye X. Imagawa T. Bei X. Okano K. Ohtake H. In vitro production of n-butanol from glucose. Metab. Eng. 2013 20 84 91 10.1016/j.ymben.2013.09.006 24055789
    [Google Scholar]
  50. Bräsen C. Esser D. Rauch B. Siebers B. Carbohydrate metabolism in Archaea: Current insights into unusual enzymes and pathways and their regulation. Microbiol. Mol. Biol. Rev. 2014 78 1 89 175 10.1128/MMBR.00041‑13 24600042
    [Google Scholar]
  51. Altekar W. Rangaswamy V. Degradation of endogenous fructose during catabolism of sucrose and mannitol in halophilic archaebacteria. Arch. Microbiol. 1992 158 5 356 363 10.1007/BF00245365
    [Google Scholar]
  52. Johnsen U. Selig M. Xavier K.B. Santos H. Schönheit P. Different glycolytic pathways for glucose and fructose in the halophilic archaeon Halococcus saccharolyticus. Arch. Microbiol. 2001 175 1 52 61 10.1007/s002030000237 11271421
    [Google Scholar]
  53. Lanyi J.K. Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriol. Rev. 1974 38 3 272 290 10.1128/br.38.3.272‑290.1974 4607500
    [Google Scholar]
  54. Dennis P.P. Shimmin L.C. Evolutionary divergence and salinity-mediated selection in halophilic archaea. Microbiol. Mol. Biol. Rev. 1997 61 1 90 104 9106366
    [Google Scholar]
  55. de Crécy-Lagard V. Bouvet O.M. Lejeune P. Danchin A. Fructose catabolism in Xanthomonas campestris pv. campestris. Sequence of the PTS operon, characterization of the fructose-specific enzymes. J. Biol. Chem. 1991 266 27 18154 18161 10.1016/S0021‑9258(18)55249‑2 1655739
    [Google Scholar]
  56. Chavarría M. Kleijn R.J. Sauer U. Pflüger-Grau K. de Lorenzo V. Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. MBio 2012 3 2 e00028 e12 10.1128/mBio.00028‑12 22434849
    [Google Scholar]
  57. Nikel P.I. Chavarría M. Fuhrer T. Sauer U. de Lorenzo V. Pseudomonas putida KT2440 strain metabolizes glucose through a cycle formed by enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and pentose phosphate pathways. J. Biol. Chem. 2015 290 43 25920 25932 10.1074/jbc.M115.687749 26350459
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073357899250126032044
Loading
/content/journals/cchts/10.2174/0113862073357899250126032044
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test