Skip to content
2000
image of Herbal Mucoadhesive Gels for Canker Sores: Analysis of Physicochemical Properties, Efficacy, and Safety

Abstract

Aim

The goal of this research was to formulate mucoadhesive gels using hydroglyceric extracts of L. and (L.) Aiton, either separately or in combination, utilizes carboxymethyl cellulose and detects their physicochemical characteristics and safety for oromucosal cells and antimicrobial (antibacterial, antifungal, and antiviral) efficacy to assess their performance.

Methods

Using LC-HRMS, the extracts of and were examined. Evaluations were conducted on the formulations' viscosity, cytotoxicity-cell proliferation controls, texture, antibacterial activity, pH, and organoleptic properties. The minimal inhibitory concentrations and microbroth dilution tests were used to assess the effectiveness of the formulations.

Results

The pH, organoleptic, and physical characteristics of each formulation have been determined to be appropriate. The research results demonstrated that contributed antiviral efficacy to the formulations linked to dose-dependent activities against all examined mouth pathogens, whereas provided antibacterial and antifungal efficacy. The formulation containing extract alone was the most cytotoxic, whereas the formulation including extract alone was the least cytotoxic against gingival fibroblast cells, according to the findings of tests on cell proliferation and cytotoxicity.

Conclusion

The formulation contained a 32% 1:1 mixture of and hydroglyceric extracts was detected as safe with acceptable cytotoxicity along with antibacterial and antiviral effectiveness, were encouraging for future investigations.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073341539241223195855
2025-01-20
2026-01-01
Loading full text...

Full text loading...

References

  1. Charde K. Upadhye K.P. Gholse Y.N. Chaple D.R. Current updates on recurrent aphthous stomatitis: Etiology, pathogenesis and management. World J. Pharm. Pharm. Sci. 2020 9 5 448 462
    [Google Scholar]
  2. Deshmane S. A review on oral mouth ulceration. Int. J. Pharm. 2014 1 1 216 229
    [Google Scholar]
  3. Stehlikova Z. Tlaskal V. Galanova N. Roubalova R. Kreisinger J. Dvorak J. Prochazkova P. Kostovcikova K. Bartova J. Libanska M. Cermakova R. Schierova D. Fassmann A. Borilova Linhartova P. Coufal S. Kverka M. Izakovicova-Holla L. Petanova J. Tlaskalova-Hogenova H. Jiraskova Zakostelska Z. Oral microbiota composition and antimicrobial antibody response in patients with recurrent aphthous stomatitis. Microorganisms 2019 7 12 636 10.3390/microorganisms7120636 31805744
    [Google Scholar]
  4. Kim Y. Choi Y.S. Baek K.J. Yoon S.H. Park H.K. Choi Y. Mucosal and salivary microbiota associated with recurrent aphthous stomatitis. BMC Microbiol. 2016 16 1 57 10.1186/s12866‑016‑0673‑z 27036492
    [Google Scholar]
  5. Belenguer-Guallar I. Jiménez-Soriano Y. Claramunt-Lozano A. Treatment of recurrent aphthous stomatitis. A literature review. J. Clin. Exp. Dent. 2014 6 2 e168 e174 10.4317/jced.51401 24790718
    [Google Scholar]
  6. Suharyani I. Fouad Abdelwahab Mohammed A. Muchtaridi M. Wathoni N. Abdassah M. Evolution of drug delivery systems for recurrent aphthous stomatitis. Drug Des. Devel. Ther. 2021 15 4071 4089 10.2147/DDDT.S328371 34616142
    [Google Scholar]
  7. Ozkan E. Pehlivan Karakas F. Birinci Yildirim A.B. Tas I. Eker I. Zeynep Yavuz M. Ucar Turker A. Promising medicinal plant Inula viscosa L.: Antiproliferative, antioxidant, antibacterial and phenolic profiles. Prog. Nutr. 2019 21 3 652 661 10.23751/pn.v21i3.7186
    [Google Scholar]
  8. Canli Taşar Ö. Inulinase production capability of a promising medicinal plant: Inula viscosa. Commagene J. Biol. 2020 4 1 67 73 10.31594/commagene.747618
    [Google Scholar]
  9. Mohti H. Taviano M.F. Cacciola F. Dugo P. Mondello L. Marino A. Crisafi G. Benameur Q. Zaid A. Miceli N. Inula viscosa (L.) Aiton leaves and flower buds: Effect of extraction solvent/technique on their antioxidant ability, antimicrobial properties and phenolic profile. Nat. Prod. Res. 2020 34 1 46 52 10.1080/14786419.2019.1569659 30822145
    [Google Scholar]
  10. Kheyar-Kraouche N. Boucheffa S. Bellik Y. Farida K. Brahmi-Chendouh N. Exploring the potential of Inula viscosa extracts for antioxidant, antiproliferative and apoptotic effects on human liver cancer cells and a molecular docking study. Biotechnologia (Pozn.) 2023 104 2 183 198 10.5114/bta.2023.127207 37427027
    [Google Scholar]
  11. Sevgi E. Dag A. Kızılarslan-Hançer Ç. Atasoy S. Kurt B.Z. Aksakal Ö. Evaluation of cytotoxic and antioxidant potential of Dittrichia viscosa (L.) Greuter used in traditional medicine. J. Ethnopharmacol. 2021 276 114211 10.1016/j.jep.2021.114211 34015367
    [Google Scholar]
  12. Lounis H. Bergheim I. Bouhaimi A. Guigonis J.M. Belhamel K. Anti-inflammatory and antioxidant activities of Inula viscosa and Senecio anteuphorbium. Orient. Pharm. Exp. Med. 2018 18 3 225 236 10.1007/s13596‑018‑0307‑0
    [Google Scholar]
  13. Yildirim B.A. Gedikli S. Kordali S. Kucukaydin S. Apoptotic and antiproliferative effects of Inula viscosa L. water extract in the expression of microRnas on HCT 116 cell line: An in vitro study. Int. J. Environ. Health Res. 2023 ••• 1 12 36998228
    [Google Scholar]
  14. Ait Lahcen S. El Hattabi L. Benkaddour R. Chahboun N. Ghanmi M. Satrani B. Tabyaoui M. Zarrouk A. Chemical composition, antioxidant, antimicrobial and antifungal activity of Moroccan Cistus Creticus leaves. Chem. Data Collect. 2020 26 100346 10.1016/j.cdc.2020.100346
    [Google Scholar]
  15. Lukas B. Bragagna L. Starzyk K. Labedz K. Stolze K. Novak J. Polyphenol diversity and antioxidant activity of european Cistus creticus L.(cistaceae) compared to six further, partly sympatric Cistus species. Plants 2021 10 4 615 10.3390/plants10040615 33804933
    [Google Scholar]
  16. Christodoulakis N.S. Georgoudi M. Fasseas C. Leaf structure of Cistus creticus L.(rock rose), a medicinal plant widely used in folk remedies since ancient times. J. Herbs Spices Med. Plants 2014 20 2 103 114 10.1080/10496475.2013.839018
    [Google Scholar]
  17. Amaç Ş. Cistus creticus (Pembe Laden) Türünün Farmakolojik Özellikleri. Med. Rec. 2021 3 2 161 163 10.37990/medr.818750
    [Google Scholar]
  18. Rebensburg S. Helfer M. Schneider M. Koppensteiner H. Eberle J. Schindler M. Gürtler L. Brack-Werner R. Potent in vitro antiviral activity of Cistus incanus extract against HIV and Filoviruses targets viral envelope proteins. Sci. Rep. 2016 6 1 20394 10.1038/srep20394 26833261
    [Google Scholar]
  19. Zalegh I. Akssira M. Bourhia M. Mellouki F. Rhallabi N. Salamatullah A.M. Alkaltham M.S. Khalil Alyahya H. Mhand R.A. A review on cistus sp.: Phytochemical and antimicrobial activities. Plants 2021 10 6 1214 10.3390/plants10061214 34203720
    [Google Scholar]
  20. Mocan A. Fernandes Â. Calhelha R.C. Gavrilaş L. Ferreira I.C.F.R. Ivanov M. Sokovic M. Barros L. Babotă M. Bioactive compounds and functional properties of herbal preparations of cystus creticus L. collected from rhodes island. Front. Nutr. 2022 9 881210 10.3389/fnut.2022.881210 35677542
    [Google Scholar]
  21. Rahman M.S. Hasan M.S. Nitai A.S. Nam S. Karmakar A.K. Ahsan M.S. Shiddiky M.J.A. Ahmed M.B. Recent developments of carboxymethyl cellulose. Polymers 2021 13 8 1345 10.3390/polym13081345 33924089
    [Google Scholar]
  22. Esentürk-Güzel I. Algın Yapar E. Cavalu S. Şeker İ.T. İnal E. Kartal M. Koç R.Ç. Öztürk R.Y. Göksu F. Bölek S. Türkmen A. Design and evaluation of propolis-HPC/PVP electrospun nanofibers for possible cutaneous applications. Farmacia 2024 72 1 200 213 10.31925/farmacia.2024.1.22
    [Google Scholar]
  23. Kızıltaş H. Bingöl Z. Gören A.C. Alwasel S.H. Gülçin İ. Anticholinergic, antidiabetic and antioxidant activities of Ferula orientalis L. determination of its polyphenol contents by LC-HRMS. Rec. Nat. Prod. 2021 15 6 513 528 10.25135/rnp.236.21.02.1983
    [Google Scholar]
  24. Venugopal D.C. Senthilnathan R.D. Maanvizhi S. Madhavan Y. Sankarapandian S. Ramshankar V. Kalachaveedu M. Preparation and characterization of silymarin gel: A novel topical mucoadhesive formulation for potential applicability in oral pathologies. Gels 2023 9 2 139 10.3390/gels9020139 36826309
    [Google Scholar]
  25. Andrews G.P. Gorman S.P. Jones D.S. Rheological characterisation of primary and binary interactive bioadhesive gels composed of cellulose derivatives designed as ophthalmic viscosurgical devices. Biomaterials 2005 26 5 571 580 10.1016/j.biomaterials.2004.02.062 15276365
    [Google Scholar]
  26. Andrews G.P. Jones D.S. Rheological characterization of bioadhesive binary polymeric systems designed as platforms for drug delivery implants. Biomacromolecules 2006 7 3 899 906 10.1021/bm050620y 16529429
    [Google Scholar]
  27. Maslii Y. Ruban O. Kasparaviciene G. Kalveniene Z. Materiienko A. Ivanauskas L. Mazurkeviciute A. Kopustinskiene D.M. Bernatoniene J. The influence of pH values on the rheological, textural and release properties of carbomer polacril® 40P-based dental gel formulation with plant-derived and synthetic active components. Molecules 2020 25 21 5018 10.3390/molecules25215018 33138200
    [Google Scholar]
  28. O’Farrell C. Hall T.J. Grover L.M. Cox S.C. Formulation of an antibacterial topical cream containing bioengineered honey that generates reactive oxygen species. Biomater. Adv. 2022 133 112664 10.1016/j.msec.2022.112664 35086770
    [Google Scholar]
  29. Reference Method for Broth Dilution Antifungal Susceptbility Testing of Yeasts; Approved Standart M27-A NCCLS. CLSI Wayne, PA 2000
    [Google Scholar]
  30. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved Standard M7-A5. Wayne, PA CLSI 2006
    [Google Scholar]
  31. Liu Ai-Lin. Antiviral properties of phytochemicals. Dietary Phytochemicals and Microbes 2012 93 126 10.1007/978‑94‑007‑3926‑0_3
    [Google Scholar]
  32. Chiang L.C. Chiang W. Chang M.Y. Ng L.T. Lin C.C. Antiviral activity of Plantago major extracts and related compounds in vitro. Antiviral Res. 2002 55 1 53 62 10.1016/S0166‑3542(02)00007‑4 12076751
    [Google Scholar]
  33. Elkousy R.H. Said Z.N.A. Abd El-Baseer M.A. Abu El wafa S.A. Antiviral activity of castor oil plant (Ricinus communis) leaf extracts. J. Ethnopharmacol. 2021 271 113878 10.1016/j.jep.2021.113878 33515683
    [Google Scholar]
  34. Oyardi O. Savage P.B. Guzel C.B. Effects of ceragenins and antimicrobial peptides on the A549 cell line and an in vitro co-culture model of A549 cells and Pseudomonas aeruginosa. Pathogens 2022 11 9 1044 10.3390/pathogens11091044 36145476
    [Google Scholar]
  35. Amirinia F. Salehi rad H. Pourhajibagher M. In vitro antimicrobial and cytotoxicity activities of some medicinal plant extracts against oral microbial pathogens. Folia Med. 2021 63 6 932 940 10.3897/folmed.63.e56840 35851234
    [Google Scholar]
  36. McHugh M.L. Multiple comparison analysis testing in ANOVA. Biochem. Med. 2011 21 3 203 209 10.11613/BM.2011.029 22420233
    [Google Scholar]
  37. Xu S. Chen S. Xia W. Sui H. Fu X. Hyperoside: A review of its structure, synthesis, pharmacology, pharmacokinetics and toxicity. Molecules 2022 27 9 3009 10.3390/molecules27093009 35566359
    [Google Scholar]
  38. Piao M.J. Kang K.A. Zhang R. Ko D.O. Wang Z.H. You H.J. Kim H.S. Kim J.S. Kang S.S. Hyun J.W. Hyperoside prevents oxidative damage induced by hydrogen peroxide in lung fibroblast cells via an antioxidant effect. Biochim. Biophys. Acta, Gen. Subj. 2008 1780 12 1448 1457 10.1016/j.bbagen.2008.07.012 18761393
    [Google Scholar]
  39. Tagrida M. Palamae S. Saetang J. Ma L. Hong H. Benjakul S. Comparative study of quercetin and hyperoside: Antimicrobial potential towards food spoilage bacteria, mode of action and molecular docking. Foods 2023 12 22 4051 10.3390/foods12224051 38002109
    [Google Scholar]
  40. Xue J.C. Yuan S. Meng H. Hou X.T. Li J. Zhang H.M. Chen L.L. Zhang C.H. Zhang Q.G. The role and mechanism of flavonoid herbal natural products in ulcerative colitis. Biomed. Pharmacother. 2023 158 114086 10.1016/j.biopha.2022.114086 36502751
    [Google Scholar]
  41. Wang T. Hu L. Li R. Ren H. Li S. Sun Q. Ding X. Li Y. Wang C. Li L. Hyperoside inhibits EHV-8 infection via alleviating oxidative stress and IFN production through activating JNK/Keap1/Nrf2/HO-1 signaling pathways. J. Virol. 2024 98 4 e00159-24 10.1128/jvi.00159‑24 38499512
    [Google Scholar]
  42. Wu L. Yang X. Huang Z. Liu H. Wu G. In vivo and in vitro antiviral activity of hyperoside extracted from Abelmoschus manihot (L) medik. Acta Pharmacol. Sin. 2007 28 3 404 409 10.1111/j.1745‑7254.2007.00510.x 17303004
    [Google Scholar]
  43. Nitthikan N. Preedalikit W. Supadej K. Chaichit S. Leelapornpisid P. Kiattisin K. Exploring the wound healing potential of a cuscuta chinensis extract-loaded nanoemulsion-based gel. Pharmaceutics 2024 16 5 573 10.3390/pharmaceutics16050573 38794235
    [Google Scholar]
  44. Selvakumar G. Lonchin S. A bio-polymeric scaffold incorporated with p-Coumaric acid enhances diabetic wound healing by modulating MMP-9 and TGF-β3 expression. Colloids Surf. B Biointerfaces 2023 225 113280 10.1016/j.colsurfb.2023.113280 36989817
    [Google Scholar]
  45. Aldaba-Muruato L. Ventura-Juárez J. Perez-Hernandez A. Hernández-Morales A. Muñoz-Ortega M. Martínez-Hernández S. Alvarado-Sánchez B. Macías-Pérez J. Therapeutic perspectives of p ‑coumaric acid: Anti‑necrotic, anti‑cholestatic and anti‑amoebic activities. World Acad. Sci. J. 2021 3 5 47 10.3892/wasj.2021.118
    [Google Scholar]
  46. Lou Z. Wang H. Rao S. Sun J. Ma C. Li J. p-Coumaric acid kills bacteria through dual damage mechanisms. Food Control 2012 25 2 550 554 10.1016/j.foodcont.2011.11.022
    [Google Scholar]
  47. Boz H. p ‐Coumaric acid in cereals: Presence, antioxidant and antimicrobial effects. Int. J. Food Sci. Technol. 2015 50 11 2323 2328 10.1111/ijfs.12898
    [Google Scholar]
  48. Zhu H. Liang Q. Xiong X. Wang Y. Zhang Z. Sun M. Lu X. Wu D. Anti‐inflammatory effects of p‐coumaric acid, a natural compound of Oldenlandia diffusa, on arthritis model rats. Evid. Based Complement. Alternat. Med. 2018 2018 1 5198594 10.1155/2018/5198594 29681976
    [Google Scholar]
  49. Khatkar A. Nanda A. Kumar P. Narasimhan B. Synthesis, antimicrobial evaluation and QSAR studies of p-coumaric acid derivatives. Arab. J. Chem. 2017 10 S3804 S3815 10.1016/j.arabjc.2014.05.018
    [Google Scholar]
  50. Shakya A. Singh G. Chatterjee S. Kumar V. Role of fumaric acid in anti-inflammatory and analgesic activities of a Fumaria indica extracts. J. Intercult. Ethnopharmacol. 2014 3 4 173 178 10.5455/jice.20140912021115 26401369
    [Google Scholar]
  51. Chang Liang H. Ben Dong F. Hai Qing S. Xiao Lin J. Xu Bin W. Fumaric acid, an antibacterial component of Aloe vera L. Afr. J. Biotechnol. 2011 10 15 2973 2977 10.5897/AJB10.1497
    [Google Scholar]
  52. Akao M. Kuroda K. Antifungal activity of fumaric acid in mice infected with Candida albicans. Chem. Pharm. Bull. 1991 39 11 3077 3078 10.1248/cpb.39.3077 1799950
    [Google Scholar]
  53. Linker R.A. Lee D.H. Ryan S. van Dam A.M. Conrad R. Bista P. Zeng W. Hronowsky X. Buko A. Chollate S. Ellrichmann G. Brück W. Dawson K. Goelz S. Wiese S. Scannevin R.H. Lukashev M. Gold R. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 2011 134 3 678 692 10.1093/brain/awq386 21354971
    [Google Scholar]
  54. Basha S.I. Ghosh S. Vinothkumar K. Ramesh B. kumari P.H. Mohan K.V.M. Sukumar E. Fumaric acid incorporated Ag/agar-agar hybrid hydrogel: A multifunctional avenue to tackle wound healing. Mater. Sci. Eng. C 2020 111 110743 10.1016/j.msec.2020.110743 32279739
    [Google Scholar]
  55. Alhafez M. Kheder F. Aljoubbeh M. Synthesis, antioxidant activity and antibacterial study of EGCG complexes with iron(III) ions. Results Chem. 2022 4 100638 10.1016/j.rechem.2022.100638
    [Google Scholar]
  56. Xu Y.Q. Gao Y. Granato D. Effects of epigallocatechin gallate, epigallocatechin and epicatechin gallate on the chemical and cell-based antioxidant activity, sensory properties, and cytotoxicity of a catechin-free model beverage. Food Chem. 2021 339 128060 10.1016/j.foodchem.2020.128060 32950901
    [Google Scholar]
  57. Zhang Y. Zhang Y. Ma R. Sun W. Ji Z. Antibacterial activity of epigallocatechin gallate (EGCG) against Shigella flexneri. Int. J. Environ. Res. Public Health 2023 20 6 4676 10.3390/ijerph20064676 36981585
    [Google Scholar]
  58. Muravieva V.V. Bembeeva B.O. Priputnevich T.V. Kiselev V.I. Analysis of the antimicrobial activity of epigallocatechin-3-gallate (EGCG). Bull. Exp. Biol. Med. 2024 177 1 88 92 10.1007/s10517‑024‑06137‑5 38960956
    [Google Scholar]
  59. Abou Taleb S. Moatasim Y. GabAllah M. Asfour M.H. Quercitrin loaded cyclodextrin based nanosponge as a promising approach for management of lung cancer and COVID-19. J. Drug Deliv. Sci. Technol. 2022 77 103921 10.1016/j.jddst.2022.103921 36338534
    [Google Scholar]
  60. Cincin Z.B. Unlu M. Kiran B. Bireller E.S. Baran Y. Cakmakoglu B. Molecular mechanisms of quercitrin-induced apoptosis in non-small cell lung cancer. Arch. Med. Res. 2014 45 6 445 454 10.1016/j.arcmed.2014.08.002 25193878
    [Google Scholar]
  61. Hasan M.S. Ahmed M.I. Mondal S. Masud M.M. Sadhu S.K. Ishibashi M. Uddin S.J. Antioxidant, antinociceptive activity and general toxicity study of Dendrophthoe falcata and isolation of quercitrin as the major component. Orient. Pharm. Exp. Med. 2006 6 4 355 360 10.3742/OPEM.2006.6.4.355
    [Google Scholar]
  62. Hardiyanti R. Marpaung L. Adnyana I.K. Simanjuntak P. Isolation of quercitrin from dendrophthoe pentandra (L.) Miq leaves and its antioxidant and antibacterial activities. Rasayan J. Chem. 2019 12 4 1822 1827 10.31788/RJC.2019.1235353
    [Google Scholar]
  63. Materska M. Quercetin and its derivatives: chemical structure and bioactivity-a review. Pol. J. Food Nutr. Sci. 2008 58 4
    [Google Scholar]
  64. Ding Y. Cao Z. Cao L. Ding G. Wang Z. Xiao W. Antiviral activity of chlorogenic acid against influenza A (H1N1/H3N2) virus and its inhibition of neuraminidase. Sci. Rep. 2017 7 1 45723 10.1038/srep45723 28393840
    [Google Scholar]
  65. Wang L. Pan X. Jiang L. Chu Y. Gao S. Jiang X. Zhang Y. Chen Y. Luo S. Peng C. The biological activity mechanism of chlorogenic acid and its applications in food industry: A review. Front. Nutr. 2022 9 943911 10.3389/fnut.2022.943911 35845802
    [Google Scholar]
  66. Nguyen V. Taine E.G. Meng D. Cui T. Tan W. Chlorogenic acid: A systematic review on the biological functions, mechanistic actions, and therapeutic potentials. Nutrients 2024 16 7 924 10.3390/nu16070924 38612964
    [Google Scholar]
  67. Lou Z. Wang H. Zhu S. Ma C. Wang Z. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 2011 76 6 M398 M403 10.1111/j.1750‑3841.2011.02213.x 22417510
    [Google Scholar]
  68. Misni N. Mohamed Nor Z. Ahmad R. Ithnin N.R. Zasmy Unyah N. Microencapsulation preservation of the stability and efficacy of citrus grandis oil-based repellent formulation against aedes aegypti during storage. Molecules 2021 26 12 3599 10.3390/molecules26123599 34208408
    [Google Scholar]
  69. Vieillard V. Paul M. Physicochemical stability study of a biosimilar of Bevacizumab in vials and after dilution in 0.9% NaCl in polyolefin intravenous bags. Pharm. Technol. Hosp. Pharm. 2023 8 1 20220007 10.1515/pthp‑2022‑0007
    [Google Scholar]
  70. Kolimi P. Youssef A.A.A. Narala S. Nyavanandi D. Dudhipala N. Bandari S. Repka M.A. Development and characterization of itraconazole non-aqueous creams for the treatment of topical fungal infections. J. Drug Deliv. Sci. Technol. 2022 76 103818 10.1016/j.jddst.2022.103818
    [Google Scholar]
  71. Grassiri B. Zambito Y. Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv. Colloid Interface Sci. 2021 288 102342 10.1016/j.cis.2020.102342 33444845
    [Google Scholar]
  72. Çağlar E.Ş. Karaotmarli Güven G. Üstündağ Okur N. Preparation and characterization of carbopol based hydrogels containing dexpanthenol. Ankara Universitesi Eczacilik Fakultesi Dergisi 2023 47 3 6 10.33483/jfpau.1195397
    [Google Scholar]
  73. Baptista S. Freitas F. Formulation of the polysaccharide fucopol into novel emulsified creams with improved physicochemical properties. Molecules 2022 27 22 7759 10.3390/molecules27227759 36431860
    [Google Scholar]
  74. Kamal N.S. Krishnaiah Y.S.R. Xu X. Zidan A.S. Raney S. Cruz C.N. Ashraf M. Identification of critical formulation parameters affecting the in vitro release, permeation, and rheological properties of the acyclovir topical cream. Int. J. Pharm. 2020 590 119914 10.1016/j.ijpharm.2020.119914 32979451
    [Google Scholar]
  75. Rohmani S. Miararani N. Yugatama A. Ermawati D.E. Prihapsara F. Formulation and the release of eugenol from cream using glycerin base. IOP Conf. Ser.: Mater. Sci. Eng. 2019 10.1088/1757‑899X/578/1/012052
    [Google Scholar]
  76. Performance standards for antimicrobial susceptibility testing. Wayne, PA CLSI 2022 M100 Ed32
    [Google Scholar]
  77. Marsh P.D. Dental plaque as a biofilm and a microbial community—Implications for health and disease. Nat. Rev. Microbiol. 2010 8 9 634 640 10.1038/nrmicro2395 20694026
    [Google Scholar]
  78. Podschun R. Ullmann U. Klebsiella spp. as nosocomial pathogens: Epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 1998 11 4 589 603 10.1128/CMR.11.4.589 9767057
    [Google Scholar]
  79. Al-Maweri S.A. Management of recurrent aphthous stomatitis: A systematic review. Mol. Oral Microbiol. 2018 33 3 233 240 10.1111/omi.12235
    [Google Scholar]
  80. Sudhakara M.S. Bhat K. Candidiasis and oral health: A review. J. Oral Pathol. Med. 2019 48 8 693 698 10.1111/jop.12928
    [Google Scholar]
  81. Khan M.I. Prasad S.K. Evaluation of the antimicrobial activity of Cistus creticus. Asian Pac. J. Trop. Biomed. 2018 8 9 438 443 10.4103/2221‑1691.243857
    [Google Scholar]
  82. Yıldız G. Yıldırım S. The antimicrobial activity of Inula viscosa against oral pathogens. J. Med. Plants Res. 2020 14 3 56 62 10.5897/JMPR2019.6873
    [Google Scholar]
  83. Meyer S.J. Rollinger J.M. Plant-derived compounds in oral health. Int. J. Mol. Sci. 2020 21 11 4041 10.3390/ijms21114041 32516946
    [Google Scholar]
  84. Choudhury S.R. Safety and efficacy of herbal extracts in clinical applications: A review. J. Herb. Med. 2019 16 100249 10.1016/j.hermed.2019.100249
    [Google Scholar]
  85. Falsey A.R. Walsh E.E. Respiratory syncytial virus infection in adults. Clin. Microbiol. Rev. 2000 13 3 371 384 10.1128/CMR.13.3.371 10885982
    [Google Scholar]
  86. Rota P.A. Bellini W.J. Parainfluenza viruses. Infect. Dis. Clin. North Am. 1998 12 2 313 323 10.1016/S0891‑5520(05)70090‑3
    [Google Scholar]
  87. Arguello E. Viral infections and mucosal health. Front. Microbiol. 2017 8 2084 10.3389/fmicb.2017.02084
    [Google Scholar]
  88. Takanami K. Evaluation of cytotoxicity and cell proliferation of gingival fibroblasts with various herbal extracts. J. Periodontal Res. 2018 53 1 53 60 10.1111/jre.12470 30298515
    [Google Scholar]
  89. Bhat S.K. The role of human gingival fibroblasts in the repair and regeneration of oral mucosa. J. Oral Sci. 2020 62 3 277 284 10.2334/josnusd.20‑0332
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073341539241223195855
Loading
/content/journals/cchts/10.2174/0113862073341539241223195855
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test