Skip to content
2000
image of Bushen Daozhuo Granules Alleviate Chronic Non-Bacterial Prostatitis in Rats through p38 MAPK and Akt Signaling Pathways Based on Tandem Mass Tag-Based Quantitative Proteomics and Network Pharmacology Analyses

Abstract

Introduction

The traditional Chinese medicine formula, Bushen Daozhuo Granules (BSDZG), is used to treat chronic non-bacterial prostatitis (CNP) clinically. However, its mechanism of action is unclear. The aim of our study was to determine the effect of BSDZG on CNP and its underlying mechanisms.

Methods

Male Wistar rats were randomly assigned to control, CNP, and BSDZG groups. CNP was induced using purified prostaglandin solution and Freund's complete adjuvant, after which the BSDZG group received 1.54 g/kg/d of BSDZG for 30 days. Prostate tissues were used to determine apoptosis and inflammatory cytokines. The herb-composition-target network and functional signaling pathways were built using a network pharmacology approach, which was also confirmed .

Results

Treatment with BSDZG significantly alleviated the histopathological lesions, inflammation, and apoptosis in the prostate of CNP rats. The herb-composition-target network comprising 42 active compounds and 32 targets of 11 herbs was illustrated, and KEGG pathways analysis identified the Akt and MAPK pathways as related to the effects of BSDZG. Phosphorylation of p38 MAPK, NF-кB, and Bax expression was significantly enhanced and phosphorylated Akt and Bcl-2 levels were decreased in CNP rats, which could be reversed by BSDZG.

Conclusion

This study presented for the first time that BSDZG effectively alleviated CNP symptoms in rats and elucidated the underlying mechanisms mediated by the Akt and MAPK pathways, providing the theoretical basis for the clinical use and promotion of BSDZG.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073346248241107074145
2025-01-13
2025-10-31
Loading full text...

Full text loading...

References

  1. Sugimoto M. Hijikata Y. Tohi Y. Kuroda H. Takei M. Matsuki T. Kamitani T. Kakehi Y. Yamamoto Y. Fukuhara S. Low quality of life in men with chronic prostatitis-like symptoms. Prostate Cancer Prostatic Dis. 2022 25 4 785 790 10.1038/s41391‑022‑00559‑w 35752656
    [Google Scholar]
  2. Holt J.D. Garrett W.A. McCurry T.K. Teichman J.M. Common questions about chronic prostatitis. Am. Fam. Physician 2016 93 4 290 296 26926816
    [Google Scholar]
  3. Yi J. Pan J. Zhang S. Mao W. Wang J. Wang W. Yan Z. Improvement of chronic non-bacterial prostatitis by Jiedu Huoxue decoction through inhibiting TGF-β/SMAD signaling pathway. Biomed. Pharmacother. 2022 152 113193 10.1016/j.biopha.2022.113193 35665666
    [Google Scholar]
  4. Jin B. Yang W. Sun D. Li H. Current situation and reconsideration on the study of integrated Chinese and Western medicine andrology. Chin. J. Integr. Med. 2020 26 5 388 392 10.1007/s11655‑018‑3022‑2 30623343
    [Google Scholar]
  5. Mou X. Zhang A. He T. Chen R. Zhou F. Yeung T.C. Wang C.C. Tang C. Lu X. Li L. Fan X. Organoid models for Chinese herbal medicine studies. Acta Materia Med. 2023 2 1 64 71 10.15212/AMM‑2022‑0047
    [Google Scholar]
  6. Miao M. Guo L. Yan X. Wang T. Li Z. Effects of verbenalin on prostatitis mouse model. Saudi J. Biol. Sci. 2016 23 1 S148 S157 10.1016/j.sjbs.2015.10.006 26858560
    [Google Scholar]
  7. Zhang M. Deng S. Guo J. Guidance for diagnosis and treatment of chronic prostatitis by integrative medicine (tentative version) Zhongguo Zhong Xi Yi Jie He Za Zhi 2007 27 11 1052 1056
    [Google Scholar]
  8. Wang Z. Yuan L. Wang Y. Yang B. Dong X. Gao Z. Efficacy and safety of Chinese herbal medicine for chronic prostatitis associated with damp-heat and blood-stasis syndromes: A meta-analysis and literature review. Patient Prefer. Adherence 2016 10 1889 1902 10.2147/PPA.S108699 27698555
    [Google Scholar]
  9. Zhang D.J. Chen P. Cheng H.J. Clinical observation on treatment of chronic prostatitis with integrated traditional Chinese and Western medicine therapy: A report of 167 cases. J. Chin. Integr. Med. 2006 4 4 420 422 10.3736/jcim20060421 16834984
    [Google Scholar]
  10. Chen J.X. Hu L.S. Traditional chinese medicine for the treatment of chronic prostatitis in China: A systematic review and meta-analysis. J. Altern. Complement. Med. 2006 12 8 763 769 10.1089/acm.2006.12.763 17034282
    [Google Scholar]
  11. Sun D.L. Cai B. Jin B.F. Xia G.S. Tang Z-A. Yang W.T. Zou Q. Song G.H. Liu J.G. Zhao H. Bushen Daozhuo Granules for type III prostatitis: A multicenter randomized controlled clinical trial, Zhonghua nan ke xue= National. J. Androl. 2017 23 2 164 168 29658256
    [Google Scholar]
  12. Sun D.L. Jin B.F. Cai B. Zhao H.L. Value of sexual behavior instruction in the treatment of Bushen Daozhuo Granules on type III protatitis. CJAndrol 2015 29 10 50 53
    [Google Scholar]
  13. Hopkins A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008 4 11 682 690 10.1038/nchembio.118 18936753
    [Google Scholar]
  14. Liang C-Z. Zhang L. Liu Y. Chen X-G. Zhang Y. Chen J. Hao Z-Y. Fan S. Zhang L-G. Du H-X. MicroRNA expression profile in chronic nonbacterial prostatitis revealed by next-generation small RNA sequencing. Asian J. Androl. 2019 21 4 351 359 10.4103/aja.aja_97_18 30604696
    [Google Scholar]
  15. Zhang L. Yu Z. Wang Y. Wang X. Zhang L. Wang C. Yue Q. Wang X. Deng S. Huo X. Tian X. Huang S. Zhang B. Ma X. Quantitative proteomics reveals molecular mechanism of gamabufotalin and its potential inhibition on Hsp90 in lung cancer. Oncotarget 2016 7 47 76551 76564 10.18632/oncotarget.10388 27384878
    [Google Scholar]
  16. Hughes C.S. Spicer V. Krokhin O.V. Morin G.B. Investigating acquisition performance on the Orbitrap fusion when using tandem MS/MS/MS scanning with isobaric tags. J. Proteome Res. 2017 16 5 1839 1846 10.1021/acs.jproteome.7b00091 28418257
    [Google Scholar]
  17. Yang X. Luan X.Y. Exploring the compatibility theory of traditional Chinese medicine formulae: The disassembled prescriptions study. TMR 2023 8 5 29 10.53388/TMR20221015001
    [Google Scholar]
  18. Zhang F. Li Y. Xi Y. Zhang Y. Wang L. Xu H. Tian J. Guo F. Yang H. Qinbaohong zhike oral liquid attenuates LPS-induced acute lung injury in immature rats by inhibiting OLFM4. Oxid. Med. Cell. Longev. 2022 2022 1 15 10.1155/2022/7272371 36035204
    [Google Scholar]
  19. Kang S. Bo Y. Yang D. Wu G. Yang X. Wei J. Zhao G. An M. Zhao L. Tandem mass tag-based proteomics analysis reveals the effects of Guri Gumu-13 pill on drug-induced liver injury. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022 1206 123353 10.1016/j.jchromb.2022.123353 35809368
    [Google Scholar]
  20. Zhou B. Yan Y. Wang Y. You S. Freeman M.R. Yang W. Quantitative proteomic analysis of prostate tissue specimens identifies deregulated protein complexes in primary prostate cancer. Clin. Proteomics 2019 16 1 15 10.1186/s12014‑019‑9236‑2 31011308
    [Google Scholar]
  21. Sun D. Xing D. Wang D. Liu Y. Cai B. Deng W. Hu Q. Ma W. Jin B. The protective effects of bushen daozhuo granule on chronic non-bacterial prostatitis. Front. Pharmacol. 2024 14 1281002 10.3389/fphar.2023.1281002 38239203
    [Google Scholar]
  22. Chen Q. Methodology of pharmacological research of traditional chinese medicine. People’s Health Publishing House 2011 1262 1263
    [Google Scholar]
  23. Wang Y. Li Y. Ding Y. Du X. Zhu J. Identification of quality markers in Schisandra chinensis (Turcz.) Baill. Using UPLC-Q-Extractive Orbitrap/MS, chemometric analysis, and network pharmacology. Separations 2024 11 3 88 10.3390/separations11030088
    [Google Scholar]
  24. Hua S. Liu J. Zou L. Li P. Hyperoside: A Review of Resources. Synthesis Pathways, Physicochemical Properties, Metabolism, Pharmacological Activities, Clinical Trials and Human Studies, Toxicology and Safety, Marketed Products, and Patents, Handbook of Dietary Flavonoids 2023 1 103
    [Google Scholar]
  25. Ru J. Li P. Wang J. Zhou W. Li B. Huang C. Li P. Guo Z. Tao W. Yang Y. Xu X. Li Y. Wang Y. Yang L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014 6 1 13 10.1186/1758‑2946‑6‑13 24735618
    [Google Scholar]
  26. Li X. Tang Q. Meng F. Du P. Chen W. INPUT: An intelligent network pharmacology platform unique for traditional Chinese medicine. Comput. Struct. Biotechnol. J. 2022 20 1345 1351 10.1016/j.csbj.2022.03.006 35356545
    [Google Scholar]
  27. Zhang L.X. Dong J. Wei H. Shi S.H. Lu A.P. Deng G.M. Cao D.S. TCMSID: A simplified integrated database for drug discovery from traditional chinese medicine. J. Cheminform. 2022 14 1 89 10.1186/s13321‑022‑00670‑z 36587232
    [Google Scholar]
  28. Xue R. Fang Z. Zhang M. Yi Z. Wen C. Shi T. TCMID: Traditional Chinese Medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res. 2013 41 Database issue D1089 D1095 23203875
    [Google Scholar]
  29. Mu X.L. Li B. Zou Y.C. Liu J.S. Zhang B.G. Xiao P.G. Liu H-T. Research progress on chemical constituents of Schisandra chinensis and its effect on nonalcoholic fatty liver disease. Zhongguo Zhongyao Zazhi 2023 48 4 861 878 36872257
    [Google Scholar]
  30. Lim H.W. Kumar H. Kim B.W. More S.V. Kim I.W. Park J.I. Park S.Y. Kim S.K. Choi D.K. β-Asarone (cis-2,4,5-trimethoxy-1-allyl phenyl), attenuates pro-inflammatory mediators by inhibiting NF-κB signaling and the JNK pathway in LPS activated BV-2 microglia cells. Food Chem. Toxicol. 2014 72 265 272 10.1016/j.fct.2014.07.018 25066769
    [Google Scholar]
  31. Zhang J. Wang Y. Chen F. Li H. Tan Y. Li Y. Progress on chemical constituents and pharmacological activities of Alpiniae Oxyphyllae Fructus, Nat Prod. Res. Dev. 2013 2 280 287
    [Google Scholar]
  32. Toropov A.A. Toropova A.P. Mukhamedzhanoval D.V. Gutman I. Simplified molecular input line entry system (SMILES) as an alternative for constructing quantitative structure-property relationships. QSPR 2005
    [Google Scholar]
  33. Ren X. Yan C.X. Zhai R.X. Xu K. Li H. Fu X.J. Comprehensive survey of target prediction web servers for traditional Chinese medicine. Heliyon 2023 9 8 e19151 10.1016/j.heliyon.2023.e19151 37664753
    [Google Scholar]
  34. Szklarczyk D. Santos A. von Mering C. Jensen L.J. Bork P. Kuhn M. STITCH 5: Augmenting protein–chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016 44 D1 D380 D384 10.1093/nar/gkv1277 26590256
    [Google Scholar]
  35. Daina A. Michielin O. Zoete V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res. 2019 47 W1 W357 W364 10.1093/nar/gkz382 31106366
    [Google Scholar]
  36. Huang D.W. Sherman B.T. Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009 4 1 44 57 10.1038/nprot.2008.211 19131956
    [Google Scholar]
  37. Das J. Yu H. HINT: High-quality protein interactomes and their applications in understanding human disease. BMC Syst. Biol. 2012 6 1 92 10.1186/1752‑0509‑6‑92 22846459
    [Google Scholar]
  38. He L. Wang Y. Long Z. Jiang C. Clinical significance of IL-2, IL-10, and TNF-α in prostatic secretion of patients with chronic prostatitis. Urology 2010 75 3 654 657 10.1016/j.urology.2009.09.061 19963254
    [Google Scholar]
  39. Liang C-Z. Fan S. Hao Z-Y. Zhang L. Zhou J. Zhang Y-F. Tai S. Zhang X-S. ASIC1a contributes to the symptom of pain in a rat model of chronic prostatitis. Asian J. Androl. 2018 20 3 300 305 10.4103/aja.aja_55_17 29226878
    [Google Scholar]
  40. Yebes A. Toribio-Vazquez C. Martinez-Perez S. Quesada-Olarte J.M. Rodriguez-Serrano A. Álvarez-Maestro M. Martinez-Piñeiro L. Prostatitis: A review. Curr. Urol. Rep. 2023 24 5 241 251 10.1007/s11934‑023‑01150‑z 36881349
    [Google Scholar]
  41. Balagobi B. Sarma S. Gobishangar S. Brammah R. Jenil A. Gobinath S. Sankeetha U. Anushika S. Prostatitis: Current perspective on diagnosis and management SLJS 2023 41 1 36 42 10.4038/sljs.v41i1.9008
    [Google Scholar]
  42. Huang S. Mu F. Li F. Wang W. Zhang W. Lei L. Ma Y. Wang J. Systematic elucidation of the potential mechanism of erzhi pill against drug-induced liver injury via network pharmacology approach. Evid. Based Complement. Alternat. Med. 2020 2020 1 6219432 10.1155/2020/6219432 31998398
    [Google Scholar]
  43. Zhuang W. Liu S-L. Xi S-Y. Feng Y-N. Wang K. Abduwali T. Liu P. Zhou X-J. Zhang L. Dong X-Z. Traditional Chinese medicine decoctions and Chinese patent medicines for the treatment of depression: Efficacies and mechanisms J Ethnopharmacol 2023 307 116272 2023
    [Google Scholar]
  44. Zhao L. Zhang H. Li N. Chen J. Xu H. Wang Y. Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol. 2023 309 116306 10.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  45. Zhang P. Zhang D. Zhou W. Wang L. Wang B. Zhang T. Li S. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform. 2023 25 1 bbad518 10.1093/bib/bbad518 38197310
    [Google Scholar]
  46. Bleeker J. Wang Z.A. Applications of vertebrate models in studying prostatitis and inflammation-associated prostatic diseases. Front. Mol. Biosci. 2022 9 898871 10.3389/fmolb.2022.898871 35865005
    [Google Scholar]
  47. Zhihao L.I. Wenjun H. Xiuling S. Yan L.I. Yuelai C. Electroacupuncture stimulating Zhongji (CV3), Guanyuan (CV4), and bilateral Dahe (KI12) attenuates inflammation in rats with chronic nonbacterial prostatitis induced by estradiol through inhibiting toll-like receptor 4 pathway. J. Tradit. Chin. Med. 2023 43 5 963 972 37679984
    [Google Scholar]
  48. He H. Luo H. Xu H. Qian B. Zou X. Zhang G. Zeng F. Zou J. Preclinical models and evaluation criteria of prostatitis. Front. Immunol. 2023 14 1183895 10.3389/fimmu.2023.1183895 37228599
    [Google Scholar]
  49. Ni J. MP11-17 Water-avoidance stress aggravates prostatic inflammation in a novel murine model of chronic prostatitis. J. Urol. 2024 211 5S e157 10.1097/01.JU.0001008564.85995.11.17
    [Google Scholar]
  50. Bernoulli J. Yatkin E. Konkol Y. Talvitie E.M. Santti R. Streng T. Prostatic inflammation and obstructive voiding in the adult noble rat: Impact of the testosterone to estradiol ratio in serum. Prostate 2008 68 12 1296 1306 10.1002/pros.20791 18500685
    [Google Scholar]
  51. Keetch D.W. Humphrey P. Ratliff T.L. Development of a mouse model for nonbacterial prostatitis. J. Urol. 1994 152 1 247 250 10.1016/S0022‑5347(17)32871‑9 8201676
    [Google Scholar]
  52. Feng B. Dong Z. Wang Y. Yan G. Yang E. Cheng H. Liang C. Hao Z. Zhang X. Song Z. Jiang Z. Chen M. Yue Z. Wang Z. Li‐ESWT treatment reduces inflammation, oxidative stress, and pain via the PI3K/AKT/FOXO1 pathway in autoimmune prostatitis rat models. Andrology 2021 9 5 1593 1602 10.1111/andr.13027 33960707
    [Google Scholar]
  53. Liu Y. Wazir J. Tang M. Ullah R. Chen Y. Chen T. Zhou X. Experimental autoimmune prostatitis: different antigens induction and antigen-specific therapy. Int. Urol. Nephrol. 2021 53 4 607 618 10.1007/s11255‑020‑02703‑8 33200334
    [Google Scholar]
  54. Xu D. Wang X. Huang D. Chen B. Lin X. Liu A. Huang J. Disclosing targets and pharmacological mechanisms of total bioflavonoids extracted from Selaginella doederleinii against non-small cell lung cancer by combination of network pharmacology and proteomics. J. Ethnopharmacol. 2022 286 114836 10.1016/j.jep.2021.114836 34793885
    [Google Scholar]
  55. Wang R. Yang T. Feng Q. Jiang Y. Yuan X. Zhao L. Liu N. Liu Z. Zhang Y. Wang L. Cheng G. Yao J. Sun C. Zhang G. Gu Q. Integration of network pharmacology and proteomics to elucidate the mechanism and targets of traditional Chinese medicine Biyuan Tongqiao granule against allergic rhinitis in an ovalbumin-induced mice model. J. Ethnopharmacol. 2024 318 Pt A 116816 10.1016/j.jep.2023.116816 37414198
    [Google Scholar]
  56. Zhang C. Chen G. Tang G. Xu X. Feng Z. Lu Y. Chan Y.T. Wu J. Chen Y. Xu L. Ren Q. Yuan H. Yang D-H. Chen Z-S. Wang N. Feng Y. Multi-component Chinese medicine formulas for drug discovery: State of the art and future perspectives. Acta Materia Med. 2023 2 1 106 125 10.15212/AMM‑2022‑0049
    [Google Scholar]
  57. Jia X. Xiong Z. Feng L. Wang B. Multi-Component Drug Delivery Systems for Chinese Medicines Based on the TCM Theory. Novel Drug Delivery Systems for Chinese Medicines 2021 23 48 10.1007/978‑981‑16‑3444‑4_2
    [Google Scholar]
  58. Harding A. Cortez-Toledo E. Magner N.L. Beegle J.R. Coleal-Bergum D.P. Hao D. Wang A. Nolta J.A. Zhou P. Highly efficient differentiation of endothelial cells from pluripotent stem cells requires the MAPK and the PI3K pathways. Stem Cells 2017 35 4 909 919 10.1002/stem.2577 28248004
    [Google Scholar]
  59. Wu Y. Zou Y. Song C. Cao K. Cai K. Chen S. Zhang Z. Geng D. Zhang N. Feng H. Tang M. Li Z. Sun G. Zhang Y. Sun Y. Zhang Y. The role of serine/threonine protein kinases in cardiovascular disease and potential therapeutic methods. Biomed. Pharmacother. 2024 177 117093 10.1016/j.biopha.2024.117093 38971012
    [Google Scholar]
  60. McCubrey J.A. May W.S. Duronio V. Mufson A. Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 2000 14 1 9 21 10.1038/sj.leu.2401657 10637471
    [Google Scholar]
  61. Hua X. Ge S. Zhang M. Mo F. Zhang L. Zhang J. Yang C. Tai S. Chen X. Zhang L. Liang C. Pathogenic roles of CXCL10 in experimental autoimmune prostatitis by modulating macrophage chemotaxis and cytokine secretion. Front. Immunol. 2021 12 706027 10.3389/fimmu.2021.706027 34659199
    [Google Scholar]
  62. Meng L.Q. Yang F.Y. Wang M.S. Shi B.K. Chen D.X. Chen D. Zhou Q. He Q.B. Ma L.X. Cheng W.L. Xing N.Z. Quercetin protects against chronic prostatitis in rat model through NF‐κB and MAPK signaling pathways. Prostate 2018 78 11 790 800 10.1002/pros.23536 29654614
    [Google Scholar]
  63. Zhao Q. Yang F. Meng L. Chen D. Wang M. Lu X. Chen D. Jiang Y. Xing N. Lycopene attenuates chronic prostatitis/chronic pelvic pain syndrome by inhibiting oxidative stress and inflammation via the interaction of NF‐κB, MAPKs, and Nrf2 signaling pathways in rats. Andrology 2020 8 3 747 755 10.1111/andr.12747 31880092
    [Google Scholar]
  64. Chen T. Zhang X. Zhu G. Liu H. Chen J. Wang Y. He X. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine (Baltimore) 2020 99 38 e22241 10.1097/MD.0000000000022241 32957369
    [Google Scholar]
  65. Liu L. Guo H. Song A. Huang J. Zhang Y. Jin S. Li S. Zhang L. Yang C. Yang P. Progranulin inhibits LPS-induced macrophage M1 polarization via NF-кB and MAPK pathways. BMC Immunol. 2020 21 1 32 10.1186/s12865‑020‑00355‑y 32503416
    [Google Scholar]
  66. Wang S.K. Chen T.X. Wang W. Xu L.L. Zhang Y.Q. Jin Z. Liu Y.B. Tang Y.Z. Aesculetin exhibited anti-inflammatory activities through inhibiting NF-кB and MAPKs pathway in vitro and in vivo. J. Ethnopharmacol. 2022 296 115489 10.1016/j.jep.2022.115489 35728711
    [Google Scholar]
  67. Yu J.S.L. Cui W. Proliferation, survival and metabolism: the role of PI3K/AKT/mTOR signalling in pluripotency and cell fate determination. Development 2016 143 17 3050 3060 10.1242/dev.137075 27578176
    [Google Scholar]
  68. Zhang Z. Yang L. Hou J. Tian S. Liu Y. Molecular mechanisms underlying the anticancer activities of licorice flavonoids. J. Ethnopharmacol. 2021 267 113635 10.1016/j.jep.2020.113635 33246112
    [Google Scholar]
  69. Long H.Z. Cheng Y. Zhou Z.W. Luo H.Y. Wen D.D. Gao L.C. PI3K/AKT signal pathway: A target of natural products in the prevention and treatment of alzheimer’s disease and parkinson’s disease. Front. Pharmacol. 2021 12 648636 10.3389/fphar.2021.648636 33935751
    [Google Scholar]
  70. Qin W. Cao L. Massey I.Y. Role of PI3K/Akt signaling pathway in cardiac fibrosis. Mol. Cell. Biochem. 2021 476 11 4045 4059 10.1007/s11010‑021‑04219‑w 34244974
    [Google Scholar]
  71. Qin Y-F. Re-cognition to the physiological functions of the prostrate--the “male-uterus” in traditional Chinese medicine. Zhonghua Nan Ke Xue 2003 9 1 76 78 12680339
    [Google Scholar]
  72. Long R. Excess syndromes of the kidney. J. Chin. Med. 2004 76 20 26
    [Google Scholar]
  73. Guan S. Zhu Y. Wang J. Dong L. Zhao Q. Wang L. Wang B. Li H. A combination of Semen Cuscutae and Fructus Lycii improves testicular cell proliferation and inhibits their apoptosis in rats with spermatogenic dysfunction by regulating the SCF/c-kit--PI3K--Bcl-2 pathway. J. Ethnopharmacol. 2020 251 112525 10.1016/j.jep.2019.112525 31904495
    [Google Scholar]
  74. Zhao Y. Xu Y. Zheng H. Lin N. QingYan formula extracts protect against postmenopausal osteoporosis in ovariectomized rat model via active ER-dependent MEK/ERK and PI3K/Akt signal pathways. J. Ethnopharmacol. 2021 268 113644 10.1016/j.jep.2020.113644 33264660
    [Google Scholar]
  75. Guo H. Cui H. Peng X. Fang J. Zuo Z. Deng J. Wang X. Wu B. Chen K. Deng J. Modulation of the PI3K/Akt pathway and Bcl-2 family proteins involved in chicken’s tubular apoptosis induced by nickel chloride (NiCl2). Int. J. Mol. Sci. 2015 16 9 22989 23011 10.3390/ijms160922989 26404262
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073346248241107074145
Loading
/content/journals/cchts/10.2174/0113862073346248241107074145
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: NF-кB ; Akt ; MAPK ; Traditional Chinese medicine ; anti-apoptotic ; anti-inflammatory
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test