Skip to content
2000
image of Paeonol Inhibits the MAPK Signaling Pathway by Targeting SIRT1 in AGE-Induced HUVECs Injury

Abstract

Background

Chronic hyperglycemia in diabetes is a significant contributor to endothelial injury through the induction of oxidative stress. Paeonol is anticipated to address oxidative stress with the aim of ameliorating endothelial injury. Our study delved into the effects of paeonol on endothelial damage induced by diabetes and elucidated the underlying mechanisms.

Methods

This research presented a novel endothelial injury model employing advanced glycation end products (AGEs) in human umbilical vein endothelial cells (HUVECs). Additionally, a network analysis was carried out to pinpoint the targets influenced by paeonol, with pivotal targets substantiated via polymerase chain reaction (PCR), western blot analysis, and immunofluorescence staining. Ultimately, the introduction of small interfering RNA transfection validated the involvement of SIRT1 in AGEs-induced HUVECs injury.

Results

Twelve metabolites of paeonol were conclusively detected in vivo. Paeonol demonstrated substantial efficacy in ameliorating and diminishing levels of various cytokines and biochemical indicators, including AGEs, Col IV, ET-1, E-selectin, FN, hs-CRP, ICAM-1, MMP2, and sVCAM-1. Notably, network analysis accentuated the pivotal role of the MAPK signaling pathway. Furthermore, paeonol exhibited significantly elevated mRNA and protein levels of SIRT1 and ERK across varying dosage regimens compared to the model group while displaying relatively decreased mRNA expression levels of p38MAPK.

Conclusion

This research revealed that paeonol inhibited the activation of p38 and ERK within the MAPK signaling pathway. Moreover, the regulatory influence of paeonol over p38 and ERK was compromised subsequent to the silencing of SIRT1, indicating a SIRT1-dependent suppressive action of paeonol on the MAPK pathway. The potential therapeutic utility of SIRT1 in mitigating diabetic endothelial impairment and its concomitant cardiovascular ramifications is underscored by these findings.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073359192250311081427
2025-03-27
2025-10-31
Loading full text...

Full text loading...

References

  1. Huang Y. Chen Q. Pan W. Moutan cortex exerts blood-activating and anti-inflammatory effects by regulating coagulation-inflammation cascades pathway in cells, rats and zebrafish. J. Ethnopharmacol. 2024 320 117398 10.1016/j.jep.2023.117398 37981122
    [Google Scholar]
  2. Kim H.J. Kim D.H. Park W. Moutan cortex extract modulates macrophage activation via lipopolysaccharide-induced calcium signaling and ER stress-CHOP pathway. Int. J. Mol. Sci. 2023 24 3 2062 10.3390/ijms24032062 36768384
    [Google Scholar]
  3. Wang Z. He C. Peng Y. Chen F. Xiao P. Origins, phytochemistry, pharmacology, analytical methods and safety of Cortex Moutan (Paeonia suffruticosa Andrew): A systematic review. Molecules 2017 22 6 946 10.3390/molecules22060946 28590441
    [Google Scholar]
  4. Kong C. Wang K. Sun L. Novel carbon dots derived from Moutan Cortex significantly improve the solubility and bioavailability of mangiferin. Int. J. Nanomedicine 2024 19 19 3611 3622 10.2147/IJN.S456053 38660022
    [Google Scholar]
  5. Zou C. Chen Q. Li J. Identification of potential anti-inflammatory components in Moutan Cortex by bio-affinity ultrafiltration coupled with ultra-performance liquid chromatography mass spectrometry. Front. Pharmacol. 2024 15 1358640 10.3389/fphar.2024.1358640 38384290
    [Google Scholar]
  6. Meng L. Chen Y. Zheng Z. Ultrasound-assisted extraction of paeonol from Moutan cortex: Purification and component identification of extract. Molecules 2024 29 3 622 10.3390/molecules29030622 38338367
    [Google Scholar]
  7. Zhong L.J. Xie Z.S. Yang H. Li P. Xu X.J. Moutan Cortex and Paeoniae Radix Rubra reverse high-fat-diet-induced metabolic disorder and restore gut microbiota homeostasis. Chin. J. Nat. Med. 2017 15 3 210 219 10.1016/S1875‑5364(17)30037‑7 28411689
    [Google Scholar]
  8. Fu P.K. Yang C.Y. Tsai T.H. Hsieh C.L. Moutan cortex radicis improves lipopolysaccharide-induced acute lung injury in rats through anti-inflammation. Phytomedicine 2012 19 13 1206 1215 10.1016/j.phymed.2012.07.013 22921747
    [Google Scholar]
  9. Lian Y. Zhu M. Chen J. Characterization of a novel polysaccharide from Moutan Cortex and its ameliorative effect on AGEs-induced diabetic nephropathy. Int. J. Biol. Macromol. 2021 176 589 600 10.1016/j.ijbiomac.2021.02.062 33581205
    [Google Scholar]
  10. Li C.R. Li M.N. Yang H. Li P. Gao W. Rapid characterization of chemical markers for discrimination of Moutan Cortex and its processed products by direct injection-based mass spectrometry profiling and metabolomic method. Phytomedicine 2018 45 45 76 83 10.1016/j.phymed.2018.04.003 29685367
    [Google Scholar]
  11. Huang S. Zhai B. Fan Y. Development of paeonol liposomes: Design, optimization, in vitro and in vivo evaluation. Int. J. Nanomedicine 2022 17 5027 5046 10.2147/IJN.S363135 36303804
    [Google Scholar]
  12. Zhang M. Yang L. Zhu M. Moutan Cortex polysaccharide ameliorates diabetic kidney disease via modulating gut microbiota dynamically in rats. Int. J. Biol. Macromol. 2022 206 849 860 10.1016/j.ijbiomac.2022.03.077 35307460
    [Google Scholar]
  13. Li C. Yang L. Wu H. Dai M. Paeonol inhibits oxidized low-density lipoprotein-induced vascular endothelial cells autophagy by upregulating the expression of miRNA-30a. Front. Pharmacol. 2018 9 95 95 10.3389/fphar.2018.00095 29472864
    [Google Scholar]
  14. Liu Y. Chen J. Dai M. Paeonol protects rat vascular endothelial cells from ox-LDL-induced injury in vitro via downregulating microRNA-21 expression and TNF-α release. Acta Pharmacol. Sin. 2014 35 4 483 488 10.1038/aps.2013.190 24562307
    [Google Scholar]
  15. Li X. Hu H. Yin J. Cheng W. Shi Y. Wang Y. Paeonol can improve hypoxic-induced H9c2 cells injury and ion channel activity by up-regulating the expression of CKIP-1. Tissue Cell 2024 88 88 102371 10.1016/j.tice.2024.102371 38593570
    [Google Scholar]
  16. Chen Y. Jia Y. Li Y.X. Zheng Y.Q. Chen G.J. Shi Y.C. Investigation on the antitumor effects of paeonol against renal cell carcinoma based on network pharmacology and experimental validation. J. Ethnopharmacol. 2022 2022 114857 10.1016/j.jep.2021.114857
    [Google Scholar]
  17. Nagata H. Lyu J. Imachi H. AGEs inhibit scavenger receptor class B type I gene expression via Smad1 in HUVECs. J. Mol. Endocrinol. 2021 66 3 223 231 10.1530/JME‑20‑0177 33638940
    [Google Scholar]
  18. Pennanen P. Syvälä H. Bläuer M. The effects of metformin and simvastatin on the growth of LNCaP and RWPE-1 prostate epithelial cell lines. Eur. J. Pharmacol. 2016 788 160 167 10.1016/j.ejphar.2016.06.036 27341997
    [Google Scholar]
  19. Anitua E. Pino A. Orive G. Plasma rich in growth factors promotes dermal fibroblast proliferation, migration and biosynthetic activity. J. Wound Care 2016 25 11 680 687 10.12968/jowc.2016.25.11.680 27827279
    [Google Scholar]
  20. Li X. Tao Y. Wang X. Wang T. Liu J. Advanced glycosylation end products (AGEs) controls proliferation, invasion and permeability through orchestrating ARHGAP18/RhoA pathway in human umbilical vein endothelial cells. Glycoconj. J. 2020 37 2 209 219 10.1007/s10719‑020‑09908‑0 32016689
    [Google Scholar]
  21. Simó-Servat O. Hernández C. Simó R. The ERM complex: A new player involved in diabetes-induced vascular leakage. Curr. Med. Chem. 2020 27 18 3012 3022 10.2174/0929867325666181016162327 30332939
    [Google Scholar]
  22. Canovas B. Nebreda A.R. Diversity and versatility of p38 kinase signalling in health and disease. Nat. Rev. Mol. Cell Biol. 2021 22 5 346 366 10.1038/s41580‑020‑00322‑w 33504982
    [Google Scholar]
  23. Al Tarrass M. Belmudes L. Koça D. Large-scale phosphoproteomics reveals activation of the MAPK/GADD45β/P38 axis and cell cycle inhibition in response to BMP9 and BMP10 stimulation in endothelial cells. Cell Commun. Signal. 2024 22 1 158 10.1186/s12964‑024‑01486‑0 38439036
    [Google Scholar]
  24. Lu F. Gong H. Lei H. Li J. Downregulation of cathepsin C alleviates endothelial cell dysfunction by suppressing p38 MAPK/NF-κB pathway in preeclampsia. Bioengineered 2022 13 2 3019 3028 10.1080/21655979.2021.2023994 35037834
    [Google Scholar]
  25. Puy C. Moellmer S.A. Pang J. Coagulation factor XI regulates endothelial cell permeability and barrier function in vitro and in vivo. Blood 2024 144 17 1821 1833 10.1182/blood.2023022257 39158072
    [Google Scholar]
  26. Kaur R. Kaur M. Singh J. Endothelial dysfunction and platelet hyperactivity in type 2 diabetes mellitus: Molecular insights and therapeutic strategies. Cardiovasc. Diabetol. 2018 17 1 121 10.1186/s12933‑018‑0763‑3 30170601
    [Google Scholar]
  27. Lehman S.S. Williamson C.D. Tucholski T. The Legionella pneumophila effector DenR hijacks the host NRas proto-oncoprotein to downregulate MAPK signaling. Cell Rep. 2024 43 4 114033 10.1016/j.celrep.2024.114033 38568811
    [Google Scholar]
  28. Wei W. Rasul A. Sadiqa A. Curcumol: From plant roots to cancer roots. Int. J. Biol. Sci. 2019 15 8 1600 1609 10.7150/ijbs.34716 31360103
    [Google Scholar]
  29. Babamale A.O. Chen S.T. Nod-like receptors: Critical intracellular sensors for host protection and cell death in microbial and parasitic infections. Int. J. Mol. Sci. 2021 22 21 11398 10.3390/ijms222111398 34768828
    [Google Scholar]
  30. Bazzazi H. Popel A.S. Computational investigation of sphingosine kinase 1 (SphK1) and calcium dependent ERK1/2 activation downstream of VEGFR2 in endothelial cells. PLOS Comput. Biol. 2017 13 2 e1005332 10.1371/journal.pcbi.1005332 28178265
    [Google Scholar]
  31. Eelen G. de Zeeuw P. Simons M. Carmeliet P. Endothelial cell metabolism in normal and diseased vasculature. Circ. Res. 2015 116 7 1231 1244 10.1161/CIRCRESAHA.116.302855 25814684
    [Google Scholar]
  32. Liu Y. Chen J. Liang H. Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling. Stem Cell Res. Ther. 2022 13 1 258 10.1186/s13287‑022‑02927‑8 35715841
    [Google Scholar]
  33. Zhang J. Chen C. Hu B. Exosomes derived from human endothelial progenitor cells accelerate cutaneous wound healing by promoting angiogenesis through erk1/2 signaling. Int. J. Biol. Sci. 2016 12 12 1472 1487 10.7150/ijbs.15514 27994512
    [Google Scholar]
  34. Shaikh-Kader A. Houreld N.N. Rajendran N.K. Abrahamse H. The link between advanced glycation end products and apoptosis in delayed wound healing. Cell Biochem. Funct. 2019 37 6 432 442 10.1002/cbf.3424 31318458
    [Google Scholar]
  35. Lee S.M. Lee J.W. Cho J. Yeast-derived particulate beta-glucan induced angiogenesis via regulating PI3K/Src and ERK1/2 signaling pathway. Int. J. Biol. Macromol. 2024 269 Pt 2 131884 10.1016/j.ijbiomac.2024.131884 38685541
    [Google Scholar]
  36. Wang Y. Wu H. Gui B.J. Geniposide alleviates VEGF-induced angiogenesis by inhibiting VEGFR2/PKC/ERK1/2-mediated SphK1 translocation. Phytomedicine 2022 100 154068 10.1016/j.phymed.2022.154068 35358930
    [Google Scholar]
  37. Zhao S. Zhou J. Chen R. Decreased FGF23 inhibits placental angiogenesis via the ERK1/2-EGR-1 signaling pathway in preeclampsia. Cytokine 2024 176 156508 10.1016/j.cyto.2024.156508 38266461
    [Google Scholar]
  38. Peppa M. Stavroulakis P. Raptis S.A. Advanced glycoxidation products and impaired diabetic wound healing. Wound Repair Regen. 2009 17 4 461 472 10.1111/j.1524‑475X.2009.00518.x 19614910
    [Google Scholar]
  39. Liu D.H. Agbo E. Zhang S.H. Zhu J.L. Anticonvulsant and neuroprotective effects of paeonol in epileptic rats. Neurochem. Res. 2019 44 11 2556 2565 10.1007/s11064‑019‑02874‑6 31520267
    [Google Scholar]
  40. Mascolo E. Vernì F. Vitamin B6 and diabetes: Relationship and molecular mechanisms. Int. J. Mol. Sci. 2020 21 10 3669 10.3390/ijms21103669 32456137
    [Google Scholar]
  41. Yamagishi S. Nakamura N. Matsui T. Glycation and cardiovascular disease in diabetes: A perspective on the concept of metabolic memory. J. Diabetes 2017 9 2 141 148 10.1111/1753‑0407.12475 27556881
    [Google Scholar]
  42. Nowotny K. Jung T. Höhn A. Weber D. Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 2015 5 1 194 222 10.3390/biom5010194 25786107
    [Google Scholar]
  43. Wang L. Li S. Luo H. Lu Q. Yu S. PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages. J. Exp. Clin. Cancer Res. 2022 41 1 303 10.1186/s13046‑022‑02477‑0 36242053
    [Google Scholar]
  44. Li Y. Xu B. Ren X. Inhibition of CISD2 promotes ferroptosis through ferritinophagy-mediated ferritin turnover and regulation of p62–Keap1–NRF2 pathway. Cell. Mol. Biol. Lett. 2022 27 1 81 10.1186/s11658‑022‑00383‑z 36180832
    [Google Scholar]
  45. Liang J. Wang X. Yang J. Identification of disulfidptosis-related subtypes, characterization of tumor microenvironment infiltration, and development of a prognosis model in breast cancer. Front. Immunol. 2023 14 1198826 10.3389/fimmu.2023.1198826 38035071
    [Google Scholar]
  46. Zhang P. Zhang D. Zhou W. Network pharmacology: Towards the artificial intelligence-based precision traditional Chinese medicine. Brief. Bioinform. 2023 25 1 bbad518 10.1093/bib/bbad518 38197310
    [Google Scholar]
  47. Zhao L. Zhang H. Li N. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol. 2023 309 116306 10.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  48. Zhou W. Zhang H. Wang X. Network pharmacology to unveil the mechanism of Moluodan in the treatment of chronic atrophic gastritis. Phytomedicine 2022 95 153837 10.1016/j.phymed.2021.153837 34883416
    [Google Scholar]
  49. Zhang H. Zhang Y. Li Y. Bioinformatics and network pharmacology identify the therapeutic role and potential mechanism of melatonin in AD and Rosacea. Front. Immunol. 2021 12 756550 10.3389/fimmu.2021.756550 34899707
    [Google Scholar]
  50. Vellasamy S. Murugan D. Abas R. Alias A. Seng W.Y. Woon C.K. Biological Activities of paeonol in cardiovascular diseases: A review. Molecules 2021 26 16 4976 10.3390/molecules26164976 34443563
    [Google Scholar]
  51. Yang C. Cheng J. Zhu Q. Pan Q. Ji K. Li J. Review of the protective mechanism of paeonol on cardiovascular disease. Drug Des. Devel. Ther. 2023 17 2193 2208 10.2147/DDDT.S414752 37525853
    [Google Scholar]
  52. Shen B. Wen Y. Li S. Paeonol ameliorates hyperlipidemia and autophagy in mice by regulating Nrf2 and AMPK/mTOR pathways. Phytomedicine 2024 132 155839 10.1016/j.phymed.2024.155839 38943694
    [Google Scholar]
  53. Gross J.G. Glassman A.R. Jampol L.M. Panretinal photocoagulation vs. intravitreous ranibizumab for proliferative diabetic retinopathy: A random-ized clinical trial. JAMA 2015 314 20 2137 2146 10.1001/jama.2015.15217 26565927
    [Google Scholar]
  54. Yaribeygi H. Butler A.E. Barreto G.E. Sahebkar A. Antioxidative potential of antidiabetic agents: A possible protective mechanism against vascular complications in diabetic patients. J. Cell. Physiol. 2019 234 3 2436 2446 10.1002/jcp.27278 30191997
    [Google Scholar]
  55. Hong Q. Zhang L. Fu J. LRG1 promotes diabetic kidney disease progression by enhancing TGF-β–Induced angiogenesis. J. Am. Soc. Nephrol. 2019 30 4 546 562 10.1681/ASN.2018060599 30858225
    [Google Scholar]
  56. de Franciscis S. Gallelli L. Battaglia L. Cilostazol prevents foot ulcers in diabetic patients with peripheral vascular disease. Int. Wound J. 2015 12 3 250 253 10.1111/iwj.12085 23672237
    [Google Scholar]
  57. Xiang P. Jiang M. Chen X. Targeting grancalcin accelerates wound healing by improving angiogenesis in diabetes. Adv. Sci. (Weinh.) 2024 11 14 2305856 10.1002/advs.202305856 38308197
    [Google Scholar]
  58. Guan Y. Niu H. Liu Z. Sustained oxygenation accelerates diabetic wound healing by promoting epithelialization and angiogenesis and decreasing inflammation. Sci. Adv. 2021 7 35 eabj0153 10.1126/sciadv.abj0153 34452918
    [Google Scholar]
  59. Davis K.E. Prasad C. Vijayagopal P. Juma S. Adams-Huet B. Imrhan V. Contribution of dietary advanced glycation end products (AGE) to circulating AGE: Role of dietary fat. Br. J. Nutr. 2015 114 11 1797 1806 10.1017/S0007114515003487 26392152
    [Google Scholar]
  60. Dhulekar J. Simionescu A. Challenges in vascular tissue engineering for diabetic patients. Acta Biomater. 2018 70 25 34 10.1016/j.actbio.2018.01.008 29396167
    [Google Scholar]
  61. Oshitari T. Advanced glycation end-products and diabetic neuropathy of the retina. Int. J. Mol. Sci. 2023 24 3 2927 10.3390/ijms24032927 36769249
    [Google Scholar]
  62. Wang J. Cui W. Decoding the diabetic bone paradox: How AGEs sabotage skeletal integrity. Cell Rep. Med. 2024 5 9 101693 10.1016/j.xcrm.2024.101693 39293394
    [Google Scholar]
  63. Uceda A.B. Mariño L. Casasnovas R. Adrover M. An overview on glycation: Molecular mechanisms, impact on proteins, pathogenesis, and inhibition. Biophys. Rev. 2024 16 2 189 218 10.1007/s12551‑024‑01188‑4 38737201
    [Google Scholar]
  64. Nigro C. Leone A. Raciti G. Methylglyoxal-Glyoxalase 1 balance: The root of vascular damage. Int. J. Mol. Sci. 2017 18 1 188 10.3390/ijms18010188 28106778
    [Google Scholar]
  65. Rungratanawanich W. Qu Y. Wang X. Essa M.M. Song B.J. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury. Exp. Mol. Med. 2021 53 2 168 188 10.1038/s12276‑021‑00561‑7 33568752
    [Google Scholar]
  66. Shu M. Cheng W. Jia X. AGEs promote atherosclerosis by increasing LDL transcytosis across endothelial cells via RAGE/NF-κB/Caveolin-1 pathway. Mol. Med. 2023 29 1 113 10.1186/s10020‑023‑00715‑5 37605109
    [Google Scholar]
  67. Cheng M. Yang Z. Qiao L. AGEs induce endothelial cells senescence and endothelial barrier dysfunction via miR-1-3p/MLCK signaling pathways. Gene 2023 851 147030 10.1016/j.gene.2022.147030 36351549
    [Google Scholar]
  68. Hipps D. Ausania F. Manas D.M. Rose J.D.G. French J.J. Selective interarterial radiation therapy (SIRT) in colorectal liver metastases: How do we monitor response? HPB Surg. 2013 2013 1 10 10.1155/2013/570808 24285916
    [Google Scholar]
  69. Mortuza R. Chen S. Feng B. Sen S. Chakrabarti S. High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS One 2013 8 1 e54514 10.1371/journal.pone.0054514 23342163
    [Google Scholar]
  70. Donato AJ Morgan RG Walker AE Lesniewski LA Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol 2015 122 Pt B 35 10.1016/j.yjmcc.2015.01.021 25655936
    [Google Scholar]
  71. Roy A. Zhang M. Saad Y. Kolattukudy P.E. Antidicer RNAse activity of monocyte chemotactic protein-induced protein-1 is critical for inducing angiogenesis. Am. J. Physiol. Cell Physiol. 2013 305 10 C1021 C1032 10.1152/ajpcell.00203.2013 24048733
    [Google Scholar]
  72. Kauppinen A. Suuronen T. Ojala J. Kaarniranta K. Salminen A. Antagonistic crosstalk between NF-κB and SIRT1 in the regulation of inflammation and metabolic disorders. Cell. Signal. 2013 25 10 1939 1948 10.1016/j.cellsig.2013.06.007 23770291
    [Google Scholar]
  73. Marampon F. Gravina G.L. Scarsella L. Angiotensin-converting-enzyme inhibition counteracts angiotensin II-mediated endothelial cell dysfunction by modulating the p38/SirT1 axis. J. Hypertens. 2013 31 10 1972 1983 10.1097/HJH.0b013e3283638b32 23868084
    [Google Scholar]
  74. Tang Y. Zhang Z. Yan T. Irisin attenuates type 1 diabetic cardiomyopathy by anti-ferroptosis via SIRT1-mediated deacetylation of p53. Cardiovasc. Diabetol. 2024 23 1 116 10.1186/s12933‑024‑02183‑5 38566123
    [Google Scholar]
  75. Jalgaonkar M.P. Parmar U.M. Kulkarni Y.A. Oza M.J. SIRT1-FOXOs activity regulates diabetic complications. Pharmacol. Res. 2022 175 106014 10.1016/j.phrs.2021.106014 34856334
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073359192250311081427
Loading
/content/journals/cchts/10.2174/0113862073359192250311081427
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: HUVECs ; Diabetes ; MAPK ; SIRT1 ; endothelial injury ; paeonol
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test