Skip to content
2000
image of Modeling the Physico-Chemical Characteristics of Benzenes through the Application of Zagreb Rho Indices

Abstract

Introduction

Quantitative Structure–Property Relationship (QSPR) models play a crucial role in predicting the chemical and physical characteristics of molecules.

Methods

This study introduces Zagreb rho indices derived from graph theory to assess the physico-chemical properties of benzenes. The rho degree of vertices in connected graphs was formulated and used to compute these indices.

Results

Strong correlations (R> 0.94) were observed between Zagreb rho indices and various molecular properties such as boiling point, molecular weight, and electron energy.

Discussion

The findings demonstrate that Zagreb rho indices can serve as reliable predictors within QSPR frameworks, offering structural sensitivity and outperforming traditional topological indices in several aspects.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073367066250218103438
2025-02-26
2025-09-14
Loading full text...

Full text loading...

References

  1. Wiener H. Structural determination of paraffin boiling points. J. Am. Chem. Soc. 1947 69 1 17 20 10.1021/ja01193a005 20291038
    [Google Scholar]
  2. Platt J.R. Influence of neighbour bonds on additive bond properties in paraffins. J. Chem. Phys. 1947 15 6 419 420 10.1063/1.1746554
    [Google Scholar]
  3. Kumar V. Das S. On structure sensitivity and chemical applicability of some novel degree-based topological indices. Math. Comput. Chem. 2024 92 1 165 203 10.46793/match.92‑1.165K
    [Google Scholar]
  4. Gutman I. Trinajstić N. Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 1972 17 4 535 538 10.1016/0009‑2614(72)85099‑1
    [Google Scholar]
  5. Randić M. Characterization of molecular branching. J. Am. Chem. Soc. 1975 97 23 6609 6615 10.1021/ja00856a001
    [Google Scholar]
  6. Gutman I. Furtula B. Elphick C. Three new/old vertex-degree-based topological indices. MATCH Commun. Math. Comput. Chem. 2014 72 617 632
    [Google Scholar]
  7. Zhou B. Trinajstić N. On a novel connectivity index. J. Math. Chem. 2009 46 4 1252 1270 10.1007/s10910‑008‑9515‑z
    [Google Scholar]
  8. Vukičević D. Gašperov M. Bond additive modeling 1. Adriatic indices. Croat. Chem. Acta 2010 83 243 260
    [Google Scholar]
  9. Favaron O. Mahéo M. Saclé J.F. Some eigenvalue properties in graphs (conjectures of Graffiti — II). Discrete Math. 1993 111 1-3 197 220 10.1016/0012‑365X(93)90156‑N
    [Google Scholar]
  10. Estrada E. Torres L. Rodriguez L. Gutman I. An atom-bond connectivity index: Modelling the enthalpy of formation of alkanes. Indian J. Chem. 1998 37A 849 855
    [Google Scholar]
  11. Furtula B. Graovac A. Vukičević D. Augmented Zagreb index. J. Math. Chem. 2010 48 2 370 380 10.1007/s10910‑010‑9677‑3
    [Google Scholar]
  12. Shirdel G. Rezapour H. Sayadi A. The hyper-Zagreb index of graph operations. Iran. J. Math. Chem. 2013 4 213 220
    [Google Scholar]
  13. Alameri A. Second hyper-Zagreb index of titania nanotubes and their applications. IEEE Access 2021 9 9567 9571 10.1109/ACCESS.2021.3050774
    [Google Scholar]
  14. Vukičević D. Furtula B. Topological index based on the ratios of geometrical and arithmetical means of end-vertex degrees of edges. J. Math. Chem. 2009 46 4 1369 1376 10.1007/s10910‑009‑9520‑x
    [Google Scholar]
  15. Ediz S. Computing GA4 index of an infinite class of nanostar dendrimers. Optoelectron. Adv. Mater. Rapid Commun. 2010 4 12 2198 2199
    [Google Scholar]
  16. Shegehalli V. Kanabur R. Arithmetic-Geometric indices of path graph. J. Comput. Math. Sci. 2015 16 19 24
    [Google Scholar]
  17. Gutman I. Geometric approach to degree-based topological indices:Sombor indices. MATCH Commun. Math. Comput. Chem. 2021 86 11 16
    [Google Scholar]
  18. v R, K.; Gutman, I. Computation of Sombor indices of certain networks. International Journal of Applied Chemistry 2021 8 1 1 5 10.14445/23939133/IJAC‑V8I1P101
    [Google Scholar]
  19. v R, K. Nirmala Index. Int. J. Mathem. Trends and Technol. 2021 67 3 8 12 10.14445/22315373/IJMTT‑V67I3P502
    [Google Scholar]
  20. Kulli V. Lokesha V. Nirupadi K. Computation of inverse Nirmala indices of certain nanostructures. Int. J. Math. Comb. 2021 2 33 40
    [Google Scholar]
  21. Nikolić S. Trinajstić N. Baučić I. Comparison between the Vertex- and edge-connectivity indices for Benzenoid hydrocarbons. J. Chem. Inf. Comput. Sci. 1998 38 1 42 46 10.1021/ci970031m
    [Google Scholar]
  22. Hayat S. Khan S. Khan A. Imran M. Distance‐based topological descriptors for measuring the π ‐electronic energy of benzenoid hydrocarbons with applications to carbon nanotubes. Math. Methods Appl. Sci. 2020 10.1002/mma.6668
    [Google Scholar]
  23. Hayat S. Khan S. Khan A. Imran M. A computer-based method to determine predictive potential of distance-spectral descriptors for measuring the π-Electronic energy of Benzenoid hydrocarbons with applications. IEEE Access 2021 9 19238 19253 10.1109/ACCESS.2021.3053270
    [Google Scholar]
  24. Shanmukha M.C. Usha A. Kulli V.R. Shilpa K.C. Chemical applicability and curvilinear regression models of vertex‐degree‐based topological index: Elliptic Sombor index. Int. J. Quantum Chem. 2024 124 9 e27376 10.1002/qua.27376
    [Google Scholar]
  25. Malik M.Y.H. Binyamin M.A. Hayat S. Correlation ability of degree-based topological indices for physicochemical properties of polycyclic aromatic hydrocarbons with applications. Polycycl. Aromat. Compd. 2022 42 9 6267 6281 10.1080/10406638.2021.1977349
    [Google Scholar]
  26. Furtula B. Gutman I. Dehmer M. On structure-sensitivity of degree-based topological indices. Appl. Math. Comput. 2013 219 17 8973 8978 10.1016/j.amc.2013.03.072
    [Google Scholar]
  27. Redžepović I. Furtula B. Comparative study on structural sensitivity of eigenvalue–based molecular descriptors. J. Math. Chem. 2021 59 2 476 487 10.1007/s10910‑020‑01202‑6
    [Google Scholar]
  28. Zemljič K. Žigert Pleteršek P. Smoothness of graph energy in chemical graphs. Mathematics 2023 11 3 552 10.3390/math11030552
    [Google Scholar]
  29. Hosoya H. The most private features of the topological index. MATI 2019 1 25 33
    [Google Scholar]
  30. Randić M. Molecular bonding profiles. J. Math. Chem. 1996 19 3 375 392 10.1007/BF01166727
    [Google Scholar]
  31. Furtula B.Ch. Das K. Gutman I. Comparative analysis of symmetric division deg index as potentially useful molecular descriptor. Int. J. Quantum Chem. 2018 118 17 e25659 10.1002/qua.25659
    [Google Scholar]
  32. Eddine L.S. Segni L. Ridha O.M. In vitro assays of the antibacterial and antioxidant properties of extracts from Asphodelus tenuifolius Cav and its main constituents: A comparative study. Int J Pharm Clin Res 2015 7 2 119 125
    [Google Scholar]
  33. Laouini S.E. Kelef A. Ouahrani M.R. Free radicals scavenging activity and phytochemical composition of <i>astermisia</i> (<i>Herba-Alba</i>) extract growth in Algeria. Rev. Sci. Fondam. Appl. 2018 10 1 268 280 10.4314/jfas.v10i1.20
    [Google Scholar]
  34. Laouini S.E. Ouahrani M.R. Phytochemical screening, in vitro antioxidant and antibacterial activity of Rumex vesicarius L. extract. Sci. Stud. Res. Chemist. Chem.Engin. Biotechnol. Food Ind. 2017 18 4 367 376
    [Google Scholar]
  35. Eddine L.S. Segni L.A.D.J.E.L. Noureddine G.H.E.R.R.A.F. Redha O.M. Sonia M.O.K.N.I. Antioxidant, anti-inflammatory and diabetes related enzyme inhibition properties of leaves extract from selected varieties of Phoenyx dactylifera L. Innovare J Life Sci 2013 1 1 14 18 Available from: https://journals.innovareacademics.in/index.php/ijls/article/view/26 10.1234/ijls.2023.26
    [Google Scholar]
  36. Said S. Noureddine G. Eddine L.S. Abdelmadjid G. Djamel B. Tliba A. Phenolic content, HPLC analysis and antioxidant activity extract from Tamarix gallica and Tamarix articulata growing in Southeast of Algeria. Res. J. Chem. Environ. 2018 22 12 90 98 10.5958/0974‑360X.2018.00701.1
    [Google Scholar]
  37. Laouini S.E. Segni L. Ouahrani M.R. Gherraf N. Mokni S. Phytochemical analysis, antioxidant and antimicrobial activities of leaves extract of date palm grown in Algeria. Rev. Sci. Fondam. Appl. 2015 4 2 142 154 10.4314/jfas.v4i2.4
    [Google Scholar]
  38. Eddine L.S. Djamila B. Redha O.M. Solvent pH extraction effect on phytochemical composition and antioxidant properties of Algerian Matricaria Pubescens. J. Pharm. Res. 2016 10 2 106 112
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073367066250218103438
Loading
/content/journals/cchts/10.2174/0113862073367066250218103438
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: rho degree ; Zagreb rho indices ; QSPR studies ; topological indices ; benzenes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test