Skip to content
2000
image of The Anaphylactic and Anti-allergenic Properties of Shuanghuanglian: A Review

Abstract

Shuanghuanglian (SHL) and its primary constituents have demonstrated protective effects against allergenic diseases. This review examines the anaphylactic and anti-allergenic activities of SHL and its constituents. We also discuss potential avenues for future research, particularly regarding the expansion of the clinical applications of SHL formulations (oral or nebulized) for the treatment of allergenic disorders.

For this review, we searched the PubMed, Web of Science, and China National Knowledge Infrastructure databases for relevant publications. Additionally, details of the essential active components and target genes of SHL were obtained from the Traditional Chinese Medicine Systems Pharmacology database (TCMSP), and information on allergy-related genes was collected from the GeneCards and Online Mendelian Inheritance in Man(OMIM) databases. Lists of both the SHL target and disease-related genes were imported into the ‘Draw Venn Diagram’ tool on the website (http://bioinformatics.psb.ugen /web tools/Venn/). A protein–protein interaction network for SHL and disease targets was constructed with reference to the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, and the potential pathways were identified based on Kyoto Encyclopaedia of Genes and Genome enrichment analyses.

The allergenic reactions induced by SHL injection (intravenous) and its main constituents (intraperitoneal or intravenous injection) have been verified in animal experiments. Furthermore, the protective effects of SHL injection (intraperitoneal) and its individual Chinese herb components (intragastric administration), namely, , , and , as well as their main constituents (intraperitoneal or intragastric administration), have been verified in asthma, rhinitis, atopic dermatitis, and both IgE- and non-IgE-mediated systemic allergic responses. The network pharmacology analysis revealed that the therapeutic effects of SHL might be primarily mediated through the regulation of the IL-17 and TNF-α signalling pathways and Th17 cell differentiation.

Accumulated research data provide a theoretical basis for the clinical application of SHL (via extravascular routes) in the treatment of allergenic diseases.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073328626241107044327
2025-01-13
2025-09-14
Loading full text...

Full text loading...

/deliver/fulltext/cchts/10.2174/0113862073328626241107044327/BMS-CCHTS-2024-315.html?itemId=/content/journals/cchts/10.2174/0113862073328626241107044327&mimeType=html&fmt=ahah

References

  1. Li R. Zhu Y. Yu M. Liu T. Zhao Y. Yu Z. Study on the mechanism of anti-acute lung injury of Shuanghuanglian oral liquid based on identification of transitional components in blood and network pharmacology. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2022 1212 123498 10.1016/j.jchromb.2022.123498 36265206
    [Google Scholar]
  2. Sun H. Liu M. Lin Z. Jiang H. Niu Y. Wang H. Chen S. Comprehensive identification of 125 multifarious constituents in Shuang–huang–lian powder injection by HPLC-DAD-ESI-IT-TOF-MS. J. Pharm. Biomed. Anal. 2015 115 86 106 10.1016/j.jpba.2015.06.013 26177215
    [Google Scholar]
  3. Guo M. Zhao B. Liu H. Zhang L. Peng L. Qin L. Zhang Z. Li J. Cai C. Gao X. A metabolomic strategy to screen the prototype components and metabolites of Shuang-Huang-Lian injection in human serum by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. J. Anal. Methods Chem. 2014 2014 1 12 10.1155/2014/241505 24719777
    [Google Scholar]
  4. Wang L. Cheng L. Yuan Q. Cui X. Shang H. Zhang B. Li Y. Adverse drug reactions of Shuanghuanglian injection: A systematic review of public literatures. J. Evid. Based Med. 2010 3 1 18 26 10.1111/j.1756‑5391.2010.01067.x 21349036
    [Google Scholar]
  5. Kong X.T. Fang H.T. Jiang G.Q. Zhai S.Z. O’Connell D.L. Brewster D.R. Treatment of acute bronchiolitis with Chinese herbs. Arch. Dis. Child. 1993 68 4 468 471 10.1136/adc.68.4.468 8503668
    [Google Scholar]
  6. Wang Y.H. Xu K.J. Jiang W.S. Experimental and clinical study of shuanghuanglian aerosol in treating acute respiratory tract infection. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih 1995 15 6 347 350 7549385
    [Google Scholar]
  7. Zu M. Zhou D. Gao L. Liu A.L. Du G.H. Evaluation of Chinese traditional patent medicines against influenza virus in vitro. Yao Xue Xue Bao 2010 45 3 408 412 21351522
    [Google Scholar]
  8. Tang Y. Wang Z. Huo C. Guo X. Yang G. Wang M. Tian H. Hu Y. Dong H. Antiviral effects of Shuanghuanglian injection powder against influenza A virus H5N1 in vitro and in vivo. Microb. Pathog. 2018 121 318 324 10.1016/j.micpath.2018.06.004 29864534
    [Google Scholar]
  9. Kong J.Q. Shen J.H. Huang Y. Ruan R.Y. Xiang B. Zheng X.D. Cheng K.D. Wang W. [Development of a yeast two-hybrid screen for selection of A/H1N1 influenza NS1 non-structural protein and human CPSF30 protein interaction inhibitors]. Yao Xue Xue Bao 2010 45 3 388 394 21351518
    [Google Scholar]
  10. Duan X. Wang H. Wu J. Zhou W. Wang K. Liu X. Comparative efficacy of chinese herbal injections for the treatment of herpangina: A bayesian network meta-analysis of randomized controlled trials. Front. Pharmacol. 2020 11 693 10.3389/fphar.2020.00693 32477147
    [Google Scholar]
  11. Lu H.T. Yang J.C. Yuan Z.C. Sheng W.H. Yan W.H. Effect of combined treatment of Shuanghuanglian and recombinant interferon alpha 2a on coxsackievirus B3 replication in vitro. Zhongguo Zhongyao Zazhi 2000 25 11 682 684 12525074
    [Google Scholar]
  12. Ma Q. Liang D. Song S. Yu Q. Shi C. Xing X. Luo J.B. Comparative study on the antivirus activity of shuang–huang–lian injectable powder and its bioactive compound mixture against human adenovirus III in vitro. Viruses 2017 9 4 79 10.3390/v9040079 28417913
    [Google Scholar]
  13. Ni L. Wen Z. Hu X. Tang W. Wang H. Zhou L. Wu L. Wang H. Xu C. Xu X. Xiao Z. Li Z. Li C. Liu Y. Duan J. Chen C. Li D. Zhang R. Li J. Yi Y. Huang W. Chen Y. Zhao J. Zuo J. Weng J. Jiang H. Wang D.W. Effects of Shuanghuanglian oral liquids on patients with COVID-19: A randomized, open-label, parallel-controlled, multicenter clinical trial. Front. Med. 2021 15 5 704 717 10.1007/s11684‑021‑0853‑6 33909260
    [Google Scholar]
  14. Su H. Yao S. Zhao W. Li M. Liu J. Shang W. Xie H. Ke C. Hu H. Gao M. Yu K. Liu H. Shen J. Tang W. Zhang L. Xiao G. Ni L. Wang D. Zuo J. Jiang H. Bai F. Wu Y. Ye Y. Xu Y. Anti-SARS-CoV-2 activities in vitro of Shuanghuanglian preparations and bioactive ingredients. Acta Pharmacol. Sin. 2020 41 9 1167 1177 10.1038/s41401‑020‑0483‑6 32737471
    [Google Scholar]
  15. Fang L. Gao Y. Liu F. Hou R. Cai R.L. Qi Y. Shuang-huang-lian attenuates lipopolysaccharide-induced acute lung injury in mice involving anti-inflammatory and antioxidative activities. Evid. Based Complement. Alternat. Med. 2015 2015 1 9 10.1155/2015/283939 25945107
    [Google Scholar]
  16. Gao Y. Fang L. Cai R. Zong C. Chen X. Lu J. Qi Y. Shuang-Huang-Lian exerts anti-inflammatory and anti-oxidative activities in lipopolysaccharide-stimulated murine alveolar macrophages. Phytomedicine 2014 21 4 461 469 10.1016/j.phymed.2013.09.022 24192210
    [Google Scholar]
  17. Lin G. Liu D. Zhu L. Clinical study on Shuanghuanglian powder in treating children viral myocarditis. Chung Kuo Chung Hsi I Chieh Ho Tsa Chih 1998 18 10 601 602 11477843
    [Google Scholar]
  18. Gu N. Tian Y. Di Z. Han C. Lei H. Zhang G. Shuanghuanglian injection downregulates nuclear factor-kappa B expression in mice with viral encephalitis. Neural Regen. Res. 2012 7 33 2592 2599 25368635
    [Google Scholar]
  19. Li J. Qian Z. Xia X. Fang L. Xiao G. Effects of aconitine poisoning and Shuang-huang-lian treatment on the expression of myocardial ryanodine receptor. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2016 41 3 244 250 27033787
    [Google Scholar]
  20. Qi Z. Chengke C. Jian L. Penglong W. Yinchu S. Nan D. Jing G. Yanqiu Z. Zhiqiang M. Haimin L. Qiang L. Baicalin and rutin are major constituents in Shuanghuanglian injection involving anaphylactoid reaction. J. Tradit. Chin. Med. 2017 37 3 412 420 10.1016/S0254‑6272(17)30079‑1 31682386
    [Google Scholar]
  21. Tan L. Li M. Lin Y. Safety concerns of traditional chinese medicine injections used in chinese children. Evid. Based Complement. Alternat. Med. 2019 2019 1 10 10.1155/2019/8310368 31341500
    [Google Scholar]
  22. Gao Y. Hou R. Han Y. Fei Q. Cai R. Qi Y. Shuang-Huang-Lian injection induces an immediate hypersensitivity reaction via C5a but not IgE. Sci. Rep. 2018 8 1 3572 10.1038/s41598‑018‑21843‑7 29476121
    [Google Scholar]
  23. Tang W. Shi Q.P. Ma T. Jiang X.D. Liu S.X. Wang Y.X. Meta-analysis on incidence of adverse drug reaction induced by Shuanghuanglian injection. Zhongguo Zhongyao Zazhi 2016 41 14 2732 2742 28905614
    [Google Scholar]
  24. Han J. Zhao Y. Zhang Y. Li C. Yi Y. Pan C. Tian J. Yang Y. Cui H. Wang L. Liu S. Liu J. Deng N. Liang A. RhoA/ROCK signaling pathway mediates Shuanghuanglian injection-induced pseudo-allergic reactions. Front. Pharmacol. 2018 9 87 10.3389/fphar.2018.00087 29487527
    [Google Scholar]
  25. Han S. Zhang T. Huang J. Cui R. He L. New method of screening allergenic components from Shuanghuanglian injection: With RBL-2H3/CMC model online HPLC/MS system. J. Pharm. Biomed. Anal. 2014 88 602 608 10.1016/j.jpba.2013.10.006 24211723
    [Google Scholar]
  26. Wang H. Zhang X. Wang D. Sun H. Lan Y. Jiang H. Chen S. Lin Z. An on-line analytical approach for detecting haptens in Shuang-huang-lian powder injection. J. Chromatogr. A 2017 1513 126 139 10.1016/j.chroma.2017.07.031 28739272
    [Google Scholar]
  27. Xiao P. Hou L. Liu Z. Mu Y. Liu Z. Wang J. Qiu S. Animal models for analysis of hypersensitivity reactions to Shuanghuanglian injection. Mol. Immunol. 2020 122 62 68 10.1016/j.molimm.2020.03.014 32302806
    [Google Scholar]
  28. Fei Q. Han Y. Qi R. Gao Y. Fang L. Hou R. Cai R. Qi Y. Shuang-Huang-Lian prevents basophilic granulocyte activation to suppress Th2 immunity. BMC Complement. Altern. Med. 2018 18 1 2 10.1186/s12906‑017‑2071‑y 29298707
    [Google Scholar]
  29. Gao Y. Fei Q. Qi R. Hou R. Han Y. Cai R. Sun G. Qi Y. Shuang-Huang-Lian attenuates airway hyperresponsiveness and inflammation in a shrimp protein-induced murine asthma model. Evid. Based Complement. Alternat. Med. 2019 2019 1 9 10.1155/2019/4827342 30713573
    [Google Scholar]
  30. Bui T.T. Piao C.H. Song C.H. Lee C.H. Shin H.S. Chai O.H. Baicalein, wogonin, and Scutellaria baicalensis ethanol extract alleviate ovalbumin-induced allergic airway inflammation and mast cell-mediated anaphylactic shock by regulation of Th1/Th2 imbalance and histamine release. Anat. Cell Biol. 2017 50 2 124 134 10.5115/acb.2017.50.2.124 28713616
    [Google Scholar]
  31. Liu L. Jiang W. Zhang L. Li F. Zhang Q. Chemical correlation between Shuanghuanglian injection and its three raw herbs by LC fingerprint. J. Sep. Sci. 2011 34 15 1834 1844 10.1002/jssc.201000851 21710697
    [Google Scholar]
  32. Yin J. Li C. Zhang J. Ding H. Han L. Yang W. Li F. Song X. Bie S. Yu H. Li Z. Comprehensive multicomponent characterization and quality assessment of Shuang‐Huang‐Lian powder injection using ultra‐high‐performance liquid chromatography‐quadrupole time‐of‐flight‐mass spectrometry and ultra‐high‐performance liquid chromatography‐quadrupole‐Orbitrap‐mass spectrometry. Rapid Commun. Mass Spectrom. 2023 37 7 e9479 10.1002/rcm.9479 36690334
    [Google Scholar]
  33. Si W. Qiao Y. Liu Z. Jin G. Liu Y. Xue X. Zhou H. Liu Y. Shen A. Liang X. Combination of multi-model statistical analysis and quantitative fingerprinting in quality evaluation of Shuang-huang-lian oral liquid. Anal. Bioanal. Chem. 2020 412 26 7073 7083 10.1007/s00216‑020‑02841‑z 32808053
    [Google Scholar]
  34. Zhang J. Shang H. Zheng W. Hu J. Xu H. Wang H. Zhang L. Ren M. Zhang B. Systematic review on the compatibility of Shuanghuanglian injection combined with western medical injections. J. Evid. Based Med. 2010 3 1 27 36 10.1111/j.1756‑5391.2010.01068.x 21349037
    [Google Scholar]
  35. Xu Y. Liu C. Dou D. Wang Q. Evaluation of anaphylactoid constituents in vitro and in vivo. Int. Immunopharmacol. 2017 43 79 84 10.1016/j.intimp.2016.12.010 27984711
    [Google Scholar]
  36. Zou F. Du Q. Zhang Y. Zuo L. Sun Z. Pseudo-allergic reactions induced by Chinese medicine injections: a review. Chin. Med. 2023 18 1 149 10.1186/s13020‑023‑00855‑0 37953288
    [Google Scholar]
  37. Pichler W.J. Hausmann O. Classification of drug hypersensitivity into allergic, p-i, and pseudo-allergic forms. Int. Arch. Allergy Immunol. 2016 171 3-4 166 179 10.1159/000453265 27960170
    [Google Scholar]
  38. Vitte J. Vibhushan S. Bratti M. Montero-Hernandez J.E. Blank U. Allergy, anaphylaxis, and nonallergic hypersensitivity: IgE, mast cells, and beyond. Med. Princ. Pract. 2022 31 6 501 515 10.1159/000527481 36219943
    [Google Scholar]
  39. LoVerde D. Iweala O.I. Eginli A. Krishnaswamy G. Anaphylaxis. Chest 2018 153 2 528 543 10.1016/j.chest.2017.07.033 28800865
    [Google Scholar]
  40. Yi Y. Liang A. Zhao Y. Li C. Wang H. Liu T. Cao C. Hao R. Gao S. Hui L. Material and mechanisms for evaluation of Shuanghuanglian injection induced pseudoanaphylactoid reactions. Zhongguo Zhongyao Zazhi 2011 36 14 1865 1869 22016949
    [Google Scholar]
  41. Wang H.S. Cheng F. Shi Y.Q. Li Z.G. Qin H.D. Liu Z.P. Hypotensive response in rats and toxicological mechanisms induced by shuanghuanglian, an herbal extract mixture. Drug Discov. Ther. 2010 4 1 13 18 22491147
    [Google Scholar]
  42. Han S. Lv Y. Kong L. Che D. Liu R. Fu J. Cao J. Wang J. Wang C. He H. Zhang T. Dong X. He L. Use of the relative release index for histamine in LAD2 cells to evaluate the potential anaphylactoid effects of drugs. Sci. Rep. 2017 7 1 13714 10.1038/s41598‑017‑14224‑z 29057927
    [Google Scholar]
  43. Wang J. Zhang Y. Che D. Zeng Y. Wu Y. Qin Q. Wang N. Baicalin induces Mrgprb2-dependent pseudo-allergy in mice. Immunol. Lett. 2020 226 55 61 10.1016/j.imlet.2020.07.006 32707128
    [Google Scholar]
  44. Lin M. Gong W. Wang Y. Sun L. Fan X. Structure-activity differences of chlorogenic acid and its isomers on sensitization via intravenous exposure. Int. J. Toxicol. 2012 31 6 602 610 10.1177/1091581812461380 23086596
    [Google Scholar]
  45. Li Q. Zhao Y. Zheng X. Chen Q. Zhang X. Chlorogenic acid alters the biological characteristics of basophil granulocytes by affecting the fluidity of the cell membrane and triggering pseudoallergic reactions. Int. J. Mol. Med. 2013 32 6 1273 1280 10.3892/ijmm.2013.1505 24064570
    [Google Scholar]
  46. Wang F. Li C. Zheng Y. Li Y. Peng G. Study on the anaphylactoid of three phenolic acids in Honeysuckle. J. Ethnopharmacol. 2015 170 1 7 10.1016/j.jep.2015.05.011 25978951
    [Google Scholar]
  47. Wu X. Yang H. Lin D. Zhang J. Luo F. Xu X. Comprehensive research and evaluation of chlorogenic acid allergy. Zhongguo Zhongyao Zazhi 2010 35 24 3357 3361 21438407
    [Google Scholar]
  48. Han J. Zhang Y. Pan C. Xian Z. Pan C. Zhao Y. Li C. Yi Y. Wang L. Tian J. Liu S. Wang D. Meng J. Liang A. Forsythoside A and Forsythoside B contribute to Shuanghuanglian injection-induced pseudoallergic reactions through the RhoA/ROCK signaling pathway. Int. J. Mol. Sci. 2019 20 24 6266 10.3390/ijms20246266 31842335
    [Google Scholar]
  49. Li Y. Duan J. Xia H. Shu B. Duan W. Macromolecular substances as a dangerous factor in traditional Chinese medicine injections were determined by size-exclusive chromatography. Toxicol. Res. (Camb.) 2020 9 3 323 330 10.1093/toxres/tfaa024 32670563
    [Google Scholar]
  50. Wang F. Li C. Zheng Y. Li H. Xiao W. Peng G. Identification of the allergenic ingredients in reduning injection by ultrafiltration and high-performance liquid chromatography. J. Immunol. Res. 2016 2016 1 7 10.1155/2016/4895672 27144180
    [Google Scholar]
  51. Tang C. Zhao Y. Liu J. Zheng X. Guo X. Liu H. Chen L. Shi Y. Polysorbate 80 as a possible allergenic component in cross-allergy to docetaxel and fosaprepitant: A literature review. J. Oncol. Pharm. Pract. 2023 29 8 1998 2006 10.1177/10781552231203186 37817680
    [Google Scholar]
  52. Gao N. Gao Y. Tian F. Qiao L. Sensitization of baicalin in guinea pigs and its possible mechanism. Zhongguo Yaolixue Yu Dulixue Zazhi 2014 28 857 862
    [Google Scholar]
  53. Chen H. Huang Q. Shuanghuanglian injection for treating 30 cases with bronchial asthma. Guangxi Zhongyiyao 2018 21 16
    [Google Scholar]
  54. Yang S. Xing G. Du Y. Shuanghuanglian injection for treating 30 cases with skin diseases. Acta Chin Med & Pharmcol 2019 1 29
    [Google Scholar]
  55. Lei F. Qiao L.F. Rui T.H. Yuan G. Xin Y.H. Rui J.H. Rui L.C. Hong Z. Yun Q. Inhibitory effect of Shuanghuanglian Injection on inflammatory response in typeIhypersensitivity. Zhongguo Yaolixue Yu Dulixue Zazhi 2018 32 629 635
    [Google Scholar]
  56. Gao Y. Hou R. Fei Q. Fang L. Han Y. Cai R. Peng C. Qi Y. The three-herb formula Shuang-Huang-Lian stabilizes mast cells through activation of mitochondrial calcium uniporter. Sci. Rep. 2017 7 1 38736 10.1038/srep38736 28045016
    [Google Scholar]
  57. Luo Y. Lin B. Yu P. Zhang D. Hu Y. Meng X. Xiang L. Scutellaria baicalensis water decoction ameliorates lower respiratory tract infection by modulating respiratory microbiota. Phytomedicine 2024 129 155706 10.1016/j.phymed.2024.155706 38723528
    [Google Scholar]
  58. Presicce P. Roland C. Senthamaraikannan P. Cappelletti M. Hammons M. Miller L.A. Jobe A.H. Chougnet C.A. DeFranco E. Kallapur S.G. IL-1 and TNF mediates IL-6 signaling at the maternal-fetal interface during intrauterine inflammation. Front. Immunol. 2024 15 1416162 10.3389/fimmu.2024.1416162 38895127
    [Google Scholar]
  59. Mominur Rahman M. Afsana Mim S. Afroza Alam Tumpa M. Taslim Sarker M. Ahmed M. Alghamdi B.S. Hafeez A. Alexiou A. Perveen A. Md Ashraf G. Exploring the management approaches of cytokines including viral infection and neuroinflammation for neurological disorders. Cytokine 2022 157 155962 10.1016/j.cyto.2022.155962 35853395
    [Google Scholar]
  60. Jung H.S. Kim M.H. Gwak N.G. Im Y.S. Lee K.Y. Sohn Y. Choi H. Yang W.M. Antiallergic effects of Scutellaria baicalensis on inflammation in vivo and in vitro. J. Ethnopharmacol. 2012 141 1 345 349 10.1016/j.jep.2012.02.044 22414480
    [Google Scholar]
  61. Ma C. Ma Z. Fu Q. Ma S. Anti-asthmatic effects of baicalin in a mouse model of allergic asthma. Phytother. Res. 2014 28 2 231 237 10.1002/ptr.4983 23580257
    [Google Scholar]
  62. Liu J. Wei Y. Luo Q. Xu F. Zhao Z. Zhang H. Lu L. Sun J. Liu F. Du X. Li M. Wei K. Dong J. Baicalin attenuates inflammation in mice with OVA-induced asthma by inhibiting NF-κB and suppressing CCR7/CCL19/CCL21. Int. J. Mol. Med. 2016 38 5 1541 1548 10.3892/ijmm.2016.2743 27666000
    [Google Scholar]
  63. Xu L. Li J. Zhang Y. Zhao P. Zhang X. Regulatory effect of baicalin on the imbalance of Th17/Treg responses in mice with allergic asthma. J. Ethnopharmacol. 2017 208 199 206 10.1016/j.jep.2017.07.013 28709893
    [Google Scholar]
  64. Sun J. Li L. Wu J. Liu B. Gong W. Lv Y. Luo Q. Duan X. Dong J. Effects of baicalin on airway remodeling in asthmatic mice. Planta Med. 2013 79 03/04 199 206 10.1055/s‑0032‑1328197 23378200
    [Google Scholar]
  65. Park K. Lee J.S. Choi J.S. Nam Y.J. Han J.H. Byun H.D. Song M.J. Oh J.S. Kim S.G. Choi Y. Identification and characterization of baicalin as a phosphodiesterase 4 inhibitor. Phytother. Res. 2016 30 1 144 151 10.1002/ptr.5515 26549702
    [Google Scholar]
  66. Li J. Lin X. Liu X. Ma Z. Li Y. Baicalin regulates Treg/Th17 cell imbalance by inhibiting autophagy in allergic rhinitis. Mol. Immunol. 2020 125 162 171 10.1016/j.molimm.2020.07.008 32688118
    [Google Scholar]
  67. Yan X. Yan J. Huang K. Pan T. Xu Z. Lu H. Protective effect of baicalin on the small intestine in rats with food allergy. Life Sci. 2017 191 111 114 10.1016/j.lfs.2017.09.036 28962865
    [Google Scholar]
  68. Wu J. Li H. Li M. Effects of baicalin cream in two mouse models: 2,4-dinitrofluorobenzene-induced contact hypersensitivity and mouse tail test for psoriasis. Int. J. Clin. Exp. Med. 2015 8 2 2128 2137 25932143
    [Google Scholar]
  69. Yun M.Y. Yang J.H. Kim D.K. Cheong K.J. Song H.H. Kim D.H. Cheong K.J. Kim Y.I. Shin S.C. Therapeutic effects of Baicalein on atopic dermatitis-like skin lesions of NC/Nga mice induced by dermatophagoides pteronyssinus. Int. Immunopharmacol. 2010 10 9 1142 1148 10.1016/j.intimp.2010.06.020 20621172
    [Google Scholar]
  70. Bae M.J. Shin H.S. See H.J. Jung S.Y. Kwon D.A. Shon D.H. Baicalein induces CD4+Foxp3+ T cells and enhances intestinal barrier function in a mouse model of food allergy. Sci. Rep. 2016 6 1 32225 10.1038/srep32225 27561877
    [Google Scholar]
  71. Li F. Li H. The study of Lonicera extract from water solution on ovalbumin-induced allergic mice model. Chongqing Yike Daxue Xuebao 2004 29 288 291
    [Google Scholar]
  72. Tian J. Che H. Ha D. Wei Y. Zheng S. Characterization and anti-allergic effect of a polysaccharide from the flower buds of Lonicera japonica. Carbohydr. Polym. 2012 90 4 1642 1647 10.1016/j.carbpol.2012.07.044 22944428
    [Google Scholar]
  73. Tsang M. Jiao D. Chan B. Hon K.L. Leung P. Lau C. Wong E. Cheng L. Chan C. Lam C. Wong C. Anti-Inflammatory activities of pentaherbs formula, berberine, gallic acid and chlorogenic acid in atopic dermatitis-like skin inflammation. Molecules 2016 21 4 519 10.3390/molecules21040519 27104513
    [Google Scholar]
  74. Dong F. Tan J. Zheng Y. Chlorogenic acid alleviates allergic inflammatory responses through regulating Th1/Th2 balance in ovalbumin-induced allergic rhinitis mice. Med. Sci. Monit. 2020 26 e923358 10.12659/MSM.923358 32868754
    [Google Scholar]
  75. Shi Z. Jiang W. Chen X. Xu M. Wang J. Lai Y. Zha D. Chlorogenic acid ameliorated allergic rhinitis-related symptoms in mice by regulating Th17 cells. Biosci. Rep. 2020 40 11 BSR20201643 10.1042/BSR20201643 33015714
    [Google Scholar]
  76. Kritas S.K. Saggini A. Varvara G. Murmura G. Caraffa A. Antinolfi P. Toniato E. Pantalone A. Neri G. Frydas S. Rosati M. Tei M. Speziali A. Saggini R. Pandolfi F. Cerulli G. Theoharides T.C. Conti P. Luteolin inhibits mast cell-mediated allergic inflammation. J. Biol. Regul. Homeost. Agents 2013 27 4 955 959 24382176
    [Google Scholar]
  77. Weng Z. Patel A.B. Panagiotidou S. Theoharides T.C. The novel flavone tetramethoxyluteolin is a potent inhibitor of human mast cells. J. Allergy Clin. Immunol. 2015 135 4 1044 1052.e5 10.1016/j.jaci.2014.10.032 25498791
    [Google Scholar]
  78. Jeon I. Kim H. Kang H. Lee H.S. Jeong S. Kim S. Jang S. Anti-inflammatory and antipruritic effects of luteolin from Perilla (P. frutescens L.) leaves. Molecules 2014 19 6 6941 6951 10.3390/molecules19066941 24871572
    [Google Scholar]
  79. Liang K.L. Yu S.J. Huang W.C. Yen H.R. Luteolin attenuates allergic nasal inflammation via inhibition of interleukin-4 in an allergic rhinitis mouse model and peripheral blood from human subjects with allergic rhinitis. Front. Pharmacol. 2020 11 291 10.3389/fphar.2020.00291 32256362
    [Google Scholar]
  80. Kim S.H. Saba E. Kim B.K. Yang W.K. Park Y.C. Shin H.J. Han C.K. Lee Y.C. Rhee M.H. Luteolin attenuates airway inflammation by inducing the transition of CD4+CD25– to CD4+CD25+ regulatory T cells. Eur. J. Pharmacol. 2018 820 53 64 10.1016/j.ejphar.2017.12.003 29225189
    [Google Scholar]
  81. Wang S. Wuniqiemu T. Tang W. Teng F. Bian Q. Yi L. Qin J. Zhu X. Wei Y. Dong J. Luteolin inhibits autophagy in allergic asthma by activating PI3K/Akt/mTOR signaling and inhibiting Beclin-1-PI3KC3 complex. Int. Immunopharmacol. 2021 94 107460 10.1016/j.intimp.2021.107460 33621850
    [Google Scholar]
  82. Gugliandolo E. Palma E. Cordaro M. D’Amico R. Peritore A.F. Licata P. Crupi R. Canine atopic dermatitis: Role of luteolin as new natural treatment. Vet. Med. Sci. 2020 6 4 926 932 10.1002/vms3.325 32741111
    [Google Scholar]
  83. Tong P. Chen S. Gao J. Li X. Wu Z. Yang A. Yuan J. Chen H. Caffeic acid-assisted cross-linking catalyzed by polyphenol oxidase decreases the allergenicity of ovalbumin in a Balb/c mouse model. Food Chem. Toxicol. 2018 111 275 283 10.1016/j.fct.2017.11.026 29170047
    [Google Scholar]
  84. Hossen M.A. Inoue T. Shinmei Y. Minami K. Fujii Y. Kamei C. Caffeic acid inhibits compound 48/80-induced allergic symptoms in mice. Biol. Pharm. Bull. 2006 29 1 64 66 10.1248/bpb.29.64 16394511
    [Google Scholar]
  85. Liu L.L. Zhang Y. Zhang X.F. Li F.H. Influence of rutin on the effects of neonatal cigarette smoke exposure-induced exacerbated MMP-9 expression, Th17 cytokines and NF-κB/iNOS-mediated inflammatory responses in asthmatic mice model. Korean J. Physiol. Pharmacol. 2018 22 5 481 491 10.4196/kjpp.2018.22.5.481 30181695
    [Google Scholar]
  86. Choi J.K. Kim S.H. Rutin suppresses atopic dermatitis and allergic contact dermatitis. Exp. Biol. Med. (Maywood) 2013 238 4 410 417 10.1177/1535370213477975 23760007
    [Google Scholar]
  87. Hao Y. Li D. Piao X. Piao X. Forsythia suspensa extract alleviates hypersensitivity induced by soybean β-conglycinin in weaned piglets. J. Ethnopharmacol. 2010 128 2 412 418 10.1016/j.jep.2010.01.035 20083183
    [Google Scholar]
  88. Sung Y.Y. Yoon T. Jang S. Kim H.K. Forsythia suspensa suppresses house dust mite extract-induced atopic dermatitis in NC/Nga mice. PLoS One 2016 11 12 e0167687 10.1371/journal.pone.0167687 27936051
    [Google Scholar]
  89. Qi R. Kang Y. Li X. Zhang X. Han Y. Cai R. Gao Y. Qi Y. Forsythiasides-Rich extract from forsythiae fructus inhibits mast cell degranulation by enhancing mitochondrial Ca(2+) uptake. Front. Pharmacol. 2021 12 696729 10.3389/fphar.2021.696729 34194333
    [Google Scholar]
  90. Qian J. Ma X. Xun Y. Pan L. Protective effect of forsythiaside A on OVA-induced asthma in mice. Eur. J. Pharmacol. 2017 812 250 255 10.1016/j.ejphar.2017.07.033 28733217
    [Google Scholar]
  91. Sung Y.Y. Lee A.Y. Kim H.K. Forsythia suspensa fruit extracts and the constituent matairesinol confer anti-allergic effects in an allergic dermatitis mouse model. J. Ethnopharmacol. 2016 187 49 56 10.1016/j.jep.2016.04.015 27085937
    [Google Scholar]
  92. Nishibe S. Mitsui-Saitoh K. Sakai J. Fujikawa T. The biological effects of forsythia leaves containing the cyclic AMP phosphodiesterase 4 inhibitor phillyrin. Molecules 2021 26 8 2362 10.3390/molecules26082362 33921630
    [Google Scholar]
  93. Quan J. Wen X. Su G. Zhong Y. Huang T. Xiong Z. Huang J. Lv Y. Li S. Luo S. Luo C. Cai X. Lai X. Xiang Y. Zheng S.G. Shao Y. Lin H. Gao X. Tang J. Lai T. Epithelial SIRT6 governs IL-17A pathogenicity and drives allergic airway inflammation and remodeling. Nat. Commun. 2023 14 1 8525 10.1038/s41467‑023‑44179‑x 38135684
    [Google Scholar]
  94. Song J. Zhang H. Tong Y. Wang Y. Xiang Q. Dai H. Weng C. Wang L. Fan J. Shuai Y. Lai C. Fang X. Chen M. Bao J. Zhang W. Molecular mechanism of interleukin-17A regulating airway epithelial cell ferroptosis based on allergic asthma airway inflammation. Redox Biol. 2023 68 102970 10.1016/j.redox.2023.102970 38035662
    [Google Scholar]
  95. Li L. Zhang Y. Liu H. Wang T. Li J. Wang X. Exploring causal relationships between inflammatory cytokines and allergic rhinitis, chronic rhinosinusitis, and nasal polyps: a Mendelian randomization study. Front. Immunol. 2023 14 1288517 10.3389/fimmu.2023.1288517 38022554
    [Google Scholar]
  96. Zhu J. Han M. Yang Y. Feng R. Hu Y. Wang Y. Exploring the mechanism of Brucea javanica against ovarian cancer based on network pharmacology and the influence of Luteolin on the PI3K/AKT pathway. Comb. Chem. High Throughput Screen. 2024 27 1 157 167 10.2174/1386207326666230627114111 37366364
    [Google Scholar]
  97. Hao L. Zhong X. Yu R. Chen J. Li W. Chen Y. Lu W. Wu J. Wang P. Integrating network pharmacology and experimental validation to decipher the anti-inflammatory effects of Magnolol on LPS-induced RAW264.7 cells. Comb. Chem. High Throughput Screen. 2024 27 3 462 478 10.2174/0113862073255964230927105959 37818577
    [Google Scholar]
  98. Wei-Ya C. Fei-Fei Y. Cui L. Wen-Hui L. Jie H. Yong-Hong L. Comparison of plasma and pulmonary availability of chlorogenic acid, forsythiaside A and baicalin after intratracheal and intravenous administration of Shuang-Huang-Lian injection. J. Ethnopharmacol. 2021 274 114082 10.1016/j.jep.2021.114082 33813012
    [Google Scholar]
  99. Gámez-Espinosa E. Deyá C. Cabello M. Bellotti N. Control of fungal deterioration of ceramic materials by green nanoadditives-based coatings. Nano-Struct. Nano-Objects 2023 36 101069 10.1016/j.nanoso.2023.101069
    [Google Scholar]
  100. Woodrow J.S. Sheats M.K. Cooper B. Bayless R. Asthma: the use of animal models and their translational utility. Cells 2023 12 7 1091 10.3390/cells12071091 37048164
    [Google Scholar]
  101. Zhang J. Guo Y. Mak M. Tao Z. Translational medicine for acute lung injury. J. Transl. Med. 2024 22 1 25 10.1186/s12967‑023‑04828‑7 38183140
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073328626241107044327
Loading
/content/journals/cchts/10.2174/0113862073328626241107044327
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: rhinitis ; dermatitis ; Shuanghuanglian ; allergy ; asthma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test