Skip to content
2000
image of Revealing the Mechanism of Buzhong Yiqi Tang in Ameliorating Autoimmune Thyroiditis via the Toll-like Receptor Pathway

Abstract

Introduction

Esophageal Squamous Cell Carcinoma (ESCC) remains a significant global health challenge, underscoring the urgent need for the development of innovative therapeutic approaches. Ranunculus ternatus Thunb., a traditional herb, exhibits potential anticancer properties, but its mechanisms against ESCC remain poorly understood. This study integrates network pharmacology and experimental validation to explore the therapeutic effects of the ethyl acetate extract of Ranunculus ternatus Thunb. (RTE).

Methods

Potential targets of RTE and ESCC were screened using public databases. A Protein-Protein Interaction (PPI) network was constructed to identify key targets, followed by GO and KEGG pathway enrichment analyses. The predicted mechanisms were validated using in vitro assays, including cell proliferation analysis and western blot assay in ESCC cell lines.

Results

Network pharmacology analysis identified 274 potential targets, with 14 key genes implicated in the therapeutic effects of RTE. GO analysis revealed significant involvement in the inflammatory response and apoptotic signaling pathways. KEGG pathway analysis highlighted the MAPK, Relaxin, and PI3K/Akt signaling pathways as critical mechanisms. In vitro experiments demonstrated that RTE significantly inhibited the proliferation of EC-109 and TE-13 cells by modulating the MAPK/ERK and PI3K/Akt pathways.

Discussion

The study reveals that active compounds of RTE target MAPK/ERK and PI3K/Akt pathways, aligning with prior evidence. However, future studies should explore animal models to confirm efficacy.

Conclusion

This study provides a comprehensive understanding of the molecular mechanisms underlying the anticancer effects of RTE against ESCC. These findings underscore the potential of RTE as a promising natural compound for ESCC treatment.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073357259250214111143
2025-02-28
2025-09-14
Loading full text...

Full text loading...

References

  1. Cogni G. Chiovato L. An overview of the pathogenesis of thyroid autoimmunity. Hormones 2013 12 1 19 29 10.1007/BF03401283 23624128
    [Google Scholar]
  2. Vanderpump M.P.J. Tunbrldge W.M.G. French J.M. Appleton D. Bates D. Clark F. Evans J.G. Hasan D.M. Rodgers H. Tunbridge F. Young E.T. The incidence of thyroid disorders in the community: A twenty‐year follow‐up of the Whickham Survey. Clin. Endocrinol 1995 43 1 55 68 10.1111/j.1365‑2265.1995.tb01894.x 7641412
    [Google Scholar]
  3. Ralli M. Angeletti D. Fiore M. D’Aguanno V. Lambiase A. Artico M. de Vincentiis M. Greco A. Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun. Rev. 2020 19 10 102649 10.1016/j.autrev.2020.102649 32805423
    [Google Scholar]
  4. Siegmann E.M. Müller H.H.O. Luecke C. Philipsen A. Kornhuber J. Grömer T.W. Association of depression and anxiety disorders with autoimmune thyroiditis. JAMA Psychiatry 2018 75 6 577 584 10.1001/jamapsychiatry.2018.0190 29800939
    [Google Scholar]
  5. Ma B. Chen D. Liu Y. Zhao Z. Wang J. Zhou G. Xu K. Zhu T. Wang Q. Ma C. Yanghe decoction suppresses the experimental autoimmune thyroiditis in rats by improving nlrp3 inflammasome and immune dysregulation. Front. Pharmacol. 2021 12 645354 10.3389/fphar.2021.645354 34234669
    [Google Scholar]
  6. Zhu H. Mu S. Liu S. Cui Y. Ren J. Yang E. Wang L. Cui X. Ren A. Yiqi Jiedu Xiaoying decoction improves experimental autoimmune thyroiditis in rats by regulating th17/treg cell balance. Endocr. Metab. Immune Disord. Drug Targets 2024 24 10 1186 1196 10.2174/0118715303256311231122094516 38317460
    [Google Scholar]
  7. Liu Z. Song N. Li M. Wang Z. Cao H. Gao T. Yang X. Based on mRNA sequencing techniques to explore the molecular mechanism of buzhong yiqi decoction for autoimmune thyroiditis. Comb. Chem. High Throughput Screen. 2024 27 3 408 419 10.2174/1386207326666230417120421 37070455
    [Google Scholar]
  8. Braley-Mullen H. Sharp G.C. Medling B. Tang H. Spontaneous autoimmune thyroiditis in NOD.H-2h4 mice. J. Autoimmun. 1999 12 3 157 165 10.1006/jaut.1999.0272 10222025
    [Google Scholar]
  9. Li C. Peng S. Liu X. Han C. Wang X. Jin T. Liu S. Wang W. Xie X. He X. Zhang H. Shan L. Fan C. Shan Z. Teng W. Glycyrrhizin, a direct HMGB1 antagonist, ameliorates inflammatory infiltration in a model of autoimmune thyroiditis via inhibition of TLR2-HMGB1 signaling. Thyroid 2017 27 5 722 731 10.1089/thy.2016.0432 28363255
    [Google Scholar]
  10. Chen Z. Liu L. Gao C. Chen W. Vong C.T. Yao P. Yang Y. Li X. Tang X. Wang S. Wang Y. Astragali radix (Huangqi): A promising edible immunomodulatory herbal medicine. J. Ethnopharmacol. 2020 258 112895 10.1016/j.jep.2020.112895 32330511
    [Google Scholar]
  11. Zheng Y. Ren W. Zhang L. Zhang Y. Liu D. Liu Y. A review of the pharmacological action of Astragalus polysaccharide. Front. Pharmacol. 2020 11 349 10.3389/fphar.2020.00349 32265719
    [Google Scholar]
  12. Janyga S. Marek B. Kajdaniuk D. Ogrodowczyk-Bobik M. Urbanek A. Bułdak Ł. CD4+ cells in autoimmune thyroid disease. Endokrynol. Pol. 2021 72 5 572 583 10.5603/EP.a2021.0076 34647609
    [Google Scholar]
  13. Guo Q. Wu Y. Hou Y. Liu Y. Liu T. Zhang H. Fan C. Guan H. Li Y. Shan Z. Teng W. Cytokine secretion and pyroptosis of thyroid follicular cells mediated by enhanced NLRP3, NLRP1, NLRC4, and AIM2 inflammasomes are associated with autoimmune thyroiditis. Front. Immunol. 2018 9 1197 10.3389/fimmu.2018.01197 29915579
    [Google Scholar]
  14. Sultanova A. Cistjakovs M. Sokolovska L. Todorova K. Cunskis E. Murovska M. HHV-6 infection and chemokine RANTES signaling pathway disturbance in patients with autoimmune thyroiditis. Viruses 2020 12 6 689 10.3390/v12060689 32604892
    [Google Scholar]
  15. Liu H. Li Y. Zhu Y. Ma L. Xue H. Notch signaling pathway promotes th17 cell differentiation and participates in thyroid autoimmune injury in experimental autoimmune thyroiditis mice. Mediators Inflamm. 2023 2023 1 10 10.1155/2023/1195149 36643586
    [Google Scholar]
  16. Zhang C. Zhang Q. Qin L. Yan Z. Wu L. Liu T. Dioscin ameliorates experimental autoimmune thyroiditis via the mTOR and TLR4/NF-κB signaling. Drug Des. Devel. Ther. 2023 17 2273 2285 10.2147/DDDT.S410901 37551407
    [Google Scholar]
  17. Shan Z. Chen L. Lian X. Liu C. Shi B. Shi L. Tong N. Wang S. Weng J. Zhao J. Teng X. Yu X. Lai Y. Wang W. Li C. Mao J. Li Y. Fan C. Teng W. Iodine status and prevalence of thyroid disorders after introduction of mandatory universal salt iodization for 16 years in China: A cross-sectional study in 10 Cities. Thyroid 2016 26 8 1125 1130 10.1089/thy.2015.0613 27370068
    [Google Scholar]
  18. Wang Y. Fang S. Zhou H. Pathogenic role of Th17 cells in autoimmune thyroid disease and their underlying mechanisms. Best Pract. Res. Clin. Endocrinol. Metab. 2023 37 2 101743 10.1016/j.beem.2023.101743 36841747
    [Google Scholar]
  19. Akhter S. Tasnim F.M. Islam M.N. Rauf A. Mitra S. Emran T.B. Alhumaydhi F.A. Ahmed Khalil A. Aljohani A.S.M. Al Abdulmonem W. Thiruvengadam M. Role of Th17 and IL-17 cytokines on inflammatory and auto-immune diseases. Curr. Pharm. Des. 2023 29 26 2078 2090 10.2174/1381612829666230904150808 37670700
    [Google Scholar]
  20. Panda S. Ding J.L. Natural antibodies bridge innate and adaptive immunity. J. Immunol. 2015 194 1 13 20 10.4049/jimmunol.1400844 25527792
    [Google Scholar]
  21. Bi H.S. Liu Z.F. Cui Y. Pathogenesis of innate immunity and adaptive immunity in the mouse model of experimental autoimmune uveitis. J. Chin. Med. Assoc. 2015 78 5 276 282 10.1016/j.jcma.2015.01.002 25769932
    [Google Scholar]
  22. Lim K.H. Staudt L.M. Toll-like receptor signaling. Cold Spring Harb. Perspect. Biol. 2013 5 1 a011247 10.1101/cshperspect.a011247 23284045
    [Google Scholar]
  23. Anthoney N. Foldi I. Hidalgo A. Toll and Toll-like receptor signalling in development. Development 2018 145 9 dev156018 10.1242/dev.156018 29695493
    [Google Scholar]
  24. Dvornikova K.A. Bystrova E.Y. Platonova O.N. Churilov L.P. Polymorphism of toll-like receptor genes and autoimmune endocrine diseases. Autoimmun. Rev. 2020 19 4 102496 10.1016/j.autrev.2020.102496 32062033
    [Google Scholar]
  25. Zhang S. Hu Z. Tanji H. Jiang S. Das N. Li J. Sakaniwa K. Jin J. Bian Y. Ohto U. Shimizu T. Yin H. Small-molecule inhibition of TLR8 through stabilization of its resting state. Nat. Chem. Biol. 2018 14 1 58 64 10.1038/nchembio.2518 29155428
    [Google Scholar]
  26. Nilsen K.E. Skjesol A. Frengen Kojen J. Espevik T. Stenvik J. Yurchenko M. TIRAP/Mal positively regulates TLR8-mediated signaling via IRF5 in human cells. Biomedicines 2022 10 7 1476 10.3390/biomedicines10071476 35884781
    [Google Scholar]
  27. Choi Y.J. Im, E.; Pothoulakis, C.; Rhee, S.H. TRIF modulates TLR5-dependent responses by inducing proteolytic degradation of TLR5. J. Biol. Chem. 2010 285 28 21382 21390 10.1074/jbc.M110.115022 20452988
    [Google Scholar]
  28. Seya T. Oshiumi H. Sasai M. Akazawa T. Matsumoto M. TICAM-1 and TICAM-2: Toll-like receptor adapters that participate in induction of type 1 interferons. Int. J. Biochem. Cell Biol. 2005 37 3 524 529 10.1016/j.biocel.2004.07.018 15618008
    [Google Scholar]
  29. DEMEMARIA O. TLR8 deficiency leads to autoimmunity in mice. J. Clin. Invest. 2010 120 10 3651 3662
    [Google Scholar]
  30. Li B. Baylink D.J. Deb C. Zannetti C. Rajaallah F. Xing W. Walter M.H. Lau K.H.W. Qin X. 1,25-Dihydroxyvitamin D3 suppresses TLR8 expression and TLR8-mediated inflammatory responses in monocytes in vitro and experimental autoimmune encephalomyelitis in vivo. PLoS One 2013 8 3 e58808 10.1371/journal.pone.0058808 23516559
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073357259250214111143
Loading
/content/journals/cchts/10.2174/0113862073357259250214111143
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test