Skip to content
2000
image of Transcriptome-Based Analysis of the Oxidative Response of Thermotoga maritima to the O2 Stress

Abstract

Background

is an anaerobic hyperthermophilic eubacterium isolated from geothermally heated maritime surfaces. It can grow at temperatures up to 80 degrees Celsius.

Methods

A 2.3-L bioreactor was specifically designed to cultivate hyperthermophilic bacteria under carefully regulated pH, redox potential, temperature, and dissolved O2.

Results

Using this bioreactor, which was adjusted at 80°C and pH 7.0, it was found that demonstrated continued growth even after being exposed to oxygen for an extended period. Transcription studies revealed that following prolonged oxygen exposure, the genes encoding ROS-scavenging systems, alkyl hydroperoxide reductase (ahp), thioredoxin-dependent thiol peroxidase (bcp 2), and, to a lesser extent, neelaredoxin (nlr), were upregulated/overexpressed. When oxygen was available, the metabolism of glucose was diverted to make lactate rather than acetate.

Conclusion

Based on the O/R ratio of 1.0 in anaerobiosis and 1.67 in the presence of O2, we may conclude that is capable of semi-oxidative metabolism.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073339580241128075031
2025-01-16
2025-09-14
Loading full text...

Full text loading...

References

  1. Lanzilli M. Esercizio N. Vastano M. Xu Z. Nuzzo G. Gallo C. Manzo E. Fontana A. d’Ippolito G. Effect of cultivation parameters on fermentation and hydrogen production in the phylum Thermotogae. Int. J. Mol. Sci. 2020 22 1 341 10.3390/ijms22010341 33396970
    [Google Scholar]
  2. Thauer R.K. Jungermann K. Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 1977 41 1 100 180 10.1128/br.41.1.100‑180.1977 860983
    [Google Scholar]
  3. Pradhan N. Dipasquale L. D’Ippolito G. Panico A. Lens P. Esposito G. Fontana A. Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Int. J. Mol. Sci. 2015 16 6 12578 12600 10.3390/ijms160612578 26053393
    [Google Scholar]
  4. Levin D. Pitt L. Love M. Biohydrogen production: Prospects and limitations to practical application. Int. J. Hydrogen Energy 2004 29 2 173 185 10.1016/S0360‑3199(03)00094‑6
    [Google Scholar]
  5. Schut G.J. Adams M.W.W. The iron-hydrogenase of Thermotoga maritima utilizes ferredoxin and NADH synergistically: A new perspective on anaerobic hydrogen production. J. Bacteriol. 2009 191 13 4451 4457 10.1128/JB.01582‑08 19411328
    [Google Scholar]
  6. Le Fourn C. Fardeau M.L. Ollivier B. Lojou E. Dolla A. The hyperthermophilic anaerobe Thermotoga Maritima is able to cope with limited amount of oxygen: Insights into its defence strategies. Environ. Microbiol. 2008 10 7 1877 1887 10.1111/j.1462‑2920.2008.01610.x 18397308
    [Google Scholar]
  7. Hungate R.E. A roll tube method for cultivation of strict anaerobes. Methods in Microbiology Elsevier Norris J.R. Ribbons D.W. 3 1969 117 132 10.1016/S0580‑9517(08)70503‑8
    [Google Scholar]
  8. Macy J.M. Snellen J.E. Hungate R.E. Use of syringe methods for anaerobiosis. Am. J. Clin. Nutr. 1972 25 12 1318 1323 10.1093/ajcn/25.12.1318 4565348
    [Google Scholar]
  9. Balch W.E. Fox G.E. Magrum L.J. Woese C.R. Wolfe R.S. Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 1979 43 2 260 296 10.1128/mr.43.2.260‑296.1979 390357
    [Google Scholar]
  10. Miller T.L. Wolin M.J. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 1974 27 5 985 987 10.1128/am.27.5.985‑987.1974 4598231
    [Google Scholar]
  11. Moore S. Spackman D.H. Stein W.H. Chromatography of amino acids on sulfonated polystyrene resins. An improved system. Anal. Chem. 1958 30 7 1185 1190 10.1021/ac60139a005
    [Google Scholar]
  12. DuBois M. Gilles K.A. Hamilton J.K. Rebers P.A. Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956 28 3 350 356 10.1021/ac60111a017
    [Google Scholar]
  13. Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976 72 1-2 248 254 10.1016/0003‑2697(76)90527‑3 942051
    [Google Scholar]
  14. Rinker K.D. Kelly R.M. Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic archaeon Thermococcus litoralis and bacterium Thermotoga maritima. Biotechnol. Bioeng. 2000 69 5 537 547 10.1002/1097‑0290(20000905)69:5<537::AID‑BIT8>3.0.CO;2‑7 10898863
    [Google Scholar]
  15. Pfaffl M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001 29 9 45e 45 10.1093/nar/29.9.e45 11328886
    [Google Scholar]
  16. Lakhal R. Auria R. Davidson S. Ollivier B. Durand M.C. Dolla A. Hamdi M. Combet-Blanc Y. Oxygen uptake rates in the hyperthermophilic anaerobe Thermotoga maritima grown in a bioreactor under controlled oxygen exposure: Clues to its defence strategy against oxidative stress. Arch. Microbiol. 2011 193 6 429 438 10.1007/s00203‑011‑0687‑8 21400100
    [Google Scholar]
  17. Hanke T. In Tilte. 2010
    [Google Scholar]
  18. Mogensen G.L. Kjeldsen K.U. Ingvorsen K. Desulfovibrio aerotolerans sp. nov., an oxygen tolerant sulphate-reducing bacterium isolated from activated sludge. Anaerobe 2005 11 6 339 349 10.1016/j.anaerobe.2005.04.002 16701597
    [Google Scholar]
  19. Thiel V. Garcia Costas A.M. Fortney N.W. Martinez J.N. Tank M. Roden E.E. Boyd E.S. Ward D.M. Hanada S. Bryant D.A. “Candidatus Thermonerobacter thiotrophicus,” a non-phototrophic member of the Bacteroidetes/Chlorobi With dissimilatory sulfur metabolism in hot spring mat communities. Front. Microbiol. 2019 9 3159 10.3389/fmicb.2018.03159 30687241
    [Google Scholar]
  20. Schoeffler M. Gaudin A.L. Ramel F. Valette O. Denis Y. Hania W.B. Hirschler-Réa A. Dolla A. Growth of an anaerobic sulfate‐reducing bacterium sustained by oxygen respiratory energy conservation after O 2‐driven experimental evolution. Environ. Microbiol. 2019 21 1 360 373 10.1111/1462‑2920.14466 30394641
    [Google Scholar]
  21. Flieder M. Buongiorno J. Herbold C.W. Hausmann B. Rattei T. Lloyd K.G. Loy A. Wasmund K. Novel taxa of Acidobacteriota implicated in seafloor sulfur cycling. ISME J. 2021 15 11 3159 3180 10.1038/s41396‑021‑00992‑0 33981000
    [Google Scholar]
  22. Balčiūnaitienė A. Liaudanskas M. Puzerytė V. Viškelis J. Janulis V. Viškelis P. Griškonis E. Jankauskaitė V. Eucalyptus globulus and Salvia officinalis extracts mediated green synthesis of silver nanoparticles and their application as an antioxidant and antimicrobial agent. Plants 11 8 1085 2022 11 10.3390/plants11081085
    [Google Scholar]
  23. Muyzer G. Stams A.J.M. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 2008 6 6 441 454 10.1038/nrmicro1892 18461075
    [Google Scholar]
  24. Gaudu P. Touati D. Nivière V. Fontecave M. The NAD(P)H:flavin oxidoreductase from Escherichia coli as a source of superoxide radicals. J. Biol. Chem. 1994 269 11 8182 8188 10.1016/S0021‑9258(17)37178‑8 8132544
    [Google Scholar]
  25. Messner K.R. Imlay J.A. The identification of primary sites of superoxide and hydrogen peroxide formation in the aerobic respiratory chain and sulfite reductase complex of Escherichia coli. J. Biol. Chem. 1999 274 15 10119 10128 10.1074/jbc.274.15.10119 10187794
    [Google Scholar]
  26. Seaver L.C. Imlay J.A. Alkyl hydroperoxide reductase is the primary scavenger of endogenous hydrogen peroxide in Escherichia coli. J. Bacteriol. 2001 183 24 7173 7181 10.1128/JB.183.24.7173‑7181.2001 11717276
    [Google Scholar]
  27. Van Ooteghem S.A. Jones A. van der Lelie D. Dong B. Mahajan D. H 2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol. Lett. 2004 26 15 1223 1232 10.1023/B:BILE.0000036602.75427.88 15289678
    [Google Scholar]
  28. Nelson K.E. Clayton R.A. Gill S.R. Gwinn M.L. Dodson R.J. Haft D.H. Hickey E.K. Peterson J.D. Nelson W.C. Ketchum K.A. McDonald L. Utterback T.R. Malek J.A. Linher K.D. Garrett M.M. Stewart A.M. Cotton M.D. Pratt M.S. Phillips C.A. Richardson D. Heidelberg J. Sutton G.G. Fleischmann R.D. Eisen J.A. White O. Salzberg S.L. Smith H.O. Venter J.C. Fraser C.M. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima. Nature 1999 399 6734 323 329 10.1038/20601 10360571
    [Google Scholar]
  29. Eriksen N.T. Nielsen T.M. Iversen N. Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana. Biotechnol. Lett. 2007 30 1 103 109 10.1007/s10529‑007‑9520‑5 17849086
    [Google Scholar]
  30. Munro S.A. Zinder S.H. Walker L.P. The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production. Biotechnol. Prog. 2009 25 4 1035 1042 10.1002/btpr.201 19551880
    [Google Scholar]
  31. Lakhal R. Auria R. Davidson S. Ollivier B. Dolla A. Hamdi M. Combet-Blanc Y. Effect of oxygen and redox potential on glucose fermentation in Thermotoga maritima under controlled physicochemical conditions. Int. J. Microbiol. 2010 2010 1 10 10.1155/2010/896510 21461371
    [Google Scholar]
  32. Dipasquale L. d’Ippolito G. Fontana A. Capnophilic lactic fermentation and hydrogen synthesis by Thermotoga neapolitana: An unexpected deviation from the dark fermentation model. Int. J. Hydrogen Energy 2014 39 10 4857 4862 10.1016/j.ijhydene.2013.12.183
    [Google Scholar]
  33. Pradhan N. Dipasquale L. d’Ippolito G. Panico A. Lens P.N.L. Esposito G. Fontana A. Hydrogen and lactic acid synthesis by the wild-type and a laboratory strain of the hyperthermophilic bacterium Thermotoga neapolitana DSMZ 4359 T under capnophilic lactic fermentation conditions. Int. J. Hydrogen Energy 2017 42 25 16023 16030 10.1016/j.ijhydene.2017.05.052
    [Google Scholar]
  34. Pradhan N. d’Ippolito G. Dipasquale L. Esposito G. Panico A. Lens P.N.L. Fontana A. Simultaneous synthesis of lactic acid and hydrogen from sugars via capnophilic lactic fermentation by Thermotoga neapolitana cf capnolactica. Biomass Bioenergy 2019 125 17 22 10.1016/j.biombioe.2019.04.007
    [Google Scholar]
  35. Dipasquale L. Pradhan N. d’Ippolito G. Fontana A. Potential of hydrogen fermentative pathways in marine thermophilic bacteria: Dark fermentation and capnophilic lactic fermentation in Thermotoga and pseudothermotoga Species. 2018 Grand Challenges in Marine Biotechnology Cham Springer Rampelotto P. Trincone A. 217 235 10.1007/978‑3‑319‑69075‑9_6
    [Google Scholar]
  36. Van Ooteghem S.A. Beer S.K. Yue P.C. Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl. Biochem. Biotechnol. 2002 98-100 1-9 177 190 10.1385/ABAB:98‑100:1‑9:177 12018246
    [Google Scholar]
  37. Ngo T.A. Kim M.S. Sim S.J. Thermophilic hydrogen fermentation using Thermotoga neapolitana DSM 4359 by fed-batch culture. Int. J. Hydrogen Energy 2011 36 21 14014 14023 10.1016/j.ijhydene.2011.04.058
    [Google Scholar]
  38. Carmel-Harel O. Storz G. Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu. Rev. Microbiol. 2000 54 1 439 461 10.1146/annurev.micro.54.1.439 11018134
    [Google Scholar]
  39. Tang Y.P. Dallas M.M. Malamy M.H. Characterization of the BatI (Bacteroides aerotolerance) operon in Bacteroides fragilis: Isolation of a B. fragilis mutant with reduced aerotolerance and impaired growth in in vivo model systems. Mol. Microbiol. 1999 32 1 139 149 10.1046/j.1365‑2958.1999.01337.x 10216867
    [Google Scholar]
  40. van Niftrik L. Geerts W.J.C. van Donselaar E.G. Humbel B.M. Webb R.I. Fuerst J.A. Verkleij A.J. Jetten M.S.M. Strous M. Linking ultrastructure and function in four genera of anaerobic ammonium-oxidizing bacteria: Cell plan, glycogen storage, and localization of cytochrome C proteins. J. Bacteriol. 2008 190 2 708 717 10.1128/JB.01449‑07 17993524
    [Google Scholar]
  41. Kartal B. de Almeida N.M. Maalcke W.J. Op den Camp H.J.M. Jetten M.S.M. Keltjens J.T. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol. Rev. 2013 37 3 428 461 10.1111/1574‑6976.12014 23210799
    [Google Scholar]
  42. Castelle C. Guiral M. Malarte G. Ledgham F. Leroy G. Brugna M. Giudici-Orticoni M.T. A new iron-oxidizing/O2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. J. Biol. Chem. 2008 283 38 25803 25811 10.1074/jbc.M802496200 18632666
    [Google Scholar]
  43. Tosatto S. Toppo S. Donatella C. Giacometti G.M. Costantini P. Comparative analysis of [FeFe] hydrogenase from Thermotogales indicates the molecular basis of resistance to oxygen inactivation. Int. J. Hydrogen Energy 2008 33 2 570 578 10.1016/j.ijhydene.2007.10.010
    [Google Scholar]
  44. Käslin S.A. Childers S.E. Noll K.M. Membrane-associated redox activities in Thermotoga neapolitana. Arch. Microbiol. 1998 170 4 297 303 10.1007/s002030050645 9732444
    [Google Scholar]
  45. Yang X. Ma K. Purification and characterization of an NADH oxidase from extremely thermophilic anaerobic bacterium Thermotoga hypogea. Arch. Microbiol. 2005 183 5 331 337 10.1007/s00203‑005‑0777‑6 15912375
    [Google Scholar]
  46. Yang X. Ma K. Characterization of an exceedingly active NADH oxidase from the anaerobic hyperthermophilic bacterium Thermotoga maritima. J. Bacteriol. 2007 189 8 3312 3317 10.1128/JB.01525‑06 17293421
    [Google Scholar]
  47. Li J. Jia P. Wang X. Ou S. Yang T. Feng S. Lu J. Fang Z. Liu J. Liao B. Shu W. Liang J.L. Metagenomic and metatranscriptomic insights into sulfate-reducing bacteria in a revegetated acidic mine wasteland. NPJ Biofilms Microbiomes 2022 8 1 71 10.1038/s41522‑022‑00333‑9 36068230
    [Google Scholar]
  48. Borisov V.B. Gennis R.B. Hemp J. Verkhovsky M.I. The cytochrome bd respiratory oxygen reductases. Biochim. Biophys. Acta Bioenerg. 2011 1807 11 1398 1413 10.1016/j.bbabio.2011.06.016 21756872
    [Google Scholar]
  49. Safarian S. Rajendran C. Müller H. Preu J. Langer J.D. Ovchinnikov S. Hirose T. Kusumoto T. Sakamoto J. Michel H. Structure of a bd oxidase indicates similar mechanisms for membrane-integrated oxygen reductases. Science 2016 352 6285 583 586 10.1126/science.aaf2477 27126043
    [Google Scholar]
  50. Baughn A.D. Malamy M.H. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 2004 427 6973 441 444 10.1038/nature02285 14749831
    [Google Scholar]
  51. Lemos R.S. Gomes C.M. Santana M. LeGall J. Xavier A.V. Teixeira M. The ‘strict’ anaerobe Desulfovibrio gigas contains a membrane‐bound oxygen‐reducing respiratory chain. FEBS Lett. 2001 496 1 40 43 10.1016/S0014‑5793(01)02399‑7 11343703
    [Google Scholar]
  52. Poole R.K. Hill S. Respiratory protection of nitrogenase activity in Azotobacter vinelandii - Roles of the terminal oxidases. Biosci. Rep. 1997 17 3 303 317 10.1023/A:1027336712748 9337485
    [Google Scholar]
  53. Edwards S.E. Loder C.S. Wu G. Corker H. Bainbridge B.W. Hill S. Poole R.K. Mutation of cytochrome bd quinol oxidase results in reduced stationary phase survival, iron deprivation, metal toxicity and oxidative stress in Azotobacter vinelandii. FEMS Microbiol. Lett. 2000 185 1 71 77 10.1111/j.1574‑6968.2000.tb09042.x 10731609
    [Google Scholar]
  54. Dyksma S. Pester M. Oxygen respiration and polysaccharide degradation by a sulfate-reducing acidobacterium. Nat. Commun. 2023 14 1 6337 10.1038/s41467‑023‑42074‑z 37816749
    [Google Scholar]
  55. Malard F. Hervant F. Oxygen supply and the adaptations of animals in groundwater. Freshw. Biol. 1999 41 1 1 30 10.1046/j.1365‑2427.1999.00379.x
    [Google Scholar]
  56. McDonough L.K. Santos I.R. Andersen M.S. O’Carroll D.M. Rutlidge H. Meredith K. Oudone P. Bridgeman J. Gooddy D.C. Sorensen J.P.R. Lapworth D.J. MacDonald A.M. Ward J. Baker A. Changes in global groundwater organic carbon driven by climate change and urbanization. Nat. Commun. 2020 11 1 1279 10.1038/s41467‑020‑14946‑1 32152271
    [Google Scholar]
  57. Leenheer J.A. Malcolm R.L. McKinley P.W. Eccles L.A. Occurrence of dissolved organic carbon in selected ground-water samples in the United States. J. Res. U.S. Geol. Surv. 1974 2 361 369
    [Google Scholar]
  58. Viet T.N. Behera S.K. Kim J.W. Park H.S. Effects of oxidation reduction potential and organic compounds on anammox reaction in batch cultures. Environ. Eng. Res. 2008 13 4 210 215 10.4491/eer.2008.13.4.210
    [Google Scholar]
  59. Kumar S. Herrmann M. Thamdrup B. Schwab V.F. Geesink P. Trumbore S.E. Totsche K.U. Küsel K. Nitrogen loss from pristine carbonate-rock aquifers of the hainich critical zone exploratory (Germany) Is primarily driven by chemolithoautotrophic anammox processes. Front. Microbiol. 2017 8 1951 10.3389/fmicb.2017.01951 29067012
    [Google Scholar]
  60. Mosley O.E. Gios E. Weaver L. Close M. Daughney C. van der Raaij R. Martindale H. Handley K.M. Metabolic diversity and aero-tolerance in anammox bacteria from geochemically distinct aquifers. mSystems 2022 7 1 e01255-21 10.1128/msystems.01255‑21 35191775
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073339580241128075031
Loading
/content/journals/cchts/10.2174/0113862073339580241128075031
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: transcriptomic ; gene expression ; ROS ; pathway ; metabolism ; Thermotoga maritima
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test