Skip to content
2000
Volume 29, Issue 1
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Background

Trauma, resulting from mechanical factors, entails damage to human tissues or organs. Whether occurring during times of war or peace, trauma is prevalent, particularly skin defects arising from surgery or external injuries. The development and design of effective wound dressings have become paramount. Bingqing Gao (BQG), rooted in Chinese folk medicine, is employed explicitly in trauma treatment based on Traditional Chinese Medicine (TCM) theory. This study aims to elucidate how BQG facilitates full-thickness skin wound healing in Sprague Dawley (SD) rats.

Methods

Data collection commenced using two approaches: retrieval from TCM system pharmacology databases (TCMSP) and literature mining to compile the practical chemical components and targets of BQG. A drug-target network was constructed. Subsequently, disease targets related to wound healing were collected to select core targets and pathways, building a drug-disease target protein-protein interaction (PPI) network using the ClusterONE algorithm to identify core genes. Gene Ontology (GO) and KEGG enrichment analyses were conducted based on the Metascape database. Finally, molecular docking validation was performed on the screened core targets and core components. In terms of experimentation, an SD rat full-thickness skin defect model was established, and varying doses of BQG were applied. Healing area, HE staining, Masson staining, ELISA, PCR, and other methods were employed to validate cytokines, differential proteins, and pathways. The study collectively discusses the mechanism and targets by which BQG promotes full-thickness skin wound healing in SD rats.

Results

Through network pharmacology screening, we identified various active components, including resveratrol, Lithospermic acid B, sanguiinH-2, asernestioside A_qt, kaempferol, daidzein, quercetin, apigenin, and Medicarpin. The core targets encompass Interleukin-6 (IL-6), Protein Kinase B (AKT1), Vascular Endothelial Growth Factor A (VEGFA), Interleukin-1 beta (IL-1β), Tumor Protein 53 (TP53), Epidermal Growth Factor Receptor (EGFR), Tumor Necrosis Factor (TNF), Albumin (ALB), among others. Potential signaling pathways include Phosphoinositide 3-kinase (PI3K)/AKT, Tumor Necrosis Factor (TNF), Hypoxia-Inducible Factor-1 (HIF-1), and more. Molecular docking studies suggest a robust binding interaction between the active components of BQG and disease targets, indicating a potential regulation of cytokines through the PI3K/AKTsignaling pathway, thereby promoting wound healing. The results of the experiment revealed that, in comparison to the model group, both the rhb-FGF group and BQG-H group exhibit a noteworthy increase in the expression levels of PI3K and AKT genes. Concurrently, there is a significant decrease in the levels of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α. Additionally, there is a substantial increase in the levels of Transforming Growth Factor-beta (TGF-β) and Vascular Endothelial Growth Factor (VEGF).

Conclusion

Network pharmacology results indicate that BQG promotes wound healing through multiple components, targets, and pathways. experimental results suggest that BQG may activate the PI3K/AKTsignaling pathway, inhibit the production and release of related pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, promote VEGF generation at the injury site, and enhance TGF-β signaling transduction, effectively regulates the inflammatory response at the site of injury, promotes vascular regeneration in the injury area, and induces the proliferation and migration of cells in the injury area, ultimately contributing to wound healing. This study establishes the foundation for a more profound understanding of the molecular mechanisms underlying BQG's promotion of wound healing and offers insights for future drug research on BQG.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073311259240918081737
2025-02-04
2026-02-21
Loading full text...

Full text loading...

References

  1. HodgeJ.G. ZamierowskiD.S. RobinsonJ.L. MellottA.J. Evaluating polymeric biomaterials to improve next generation wound dressing design.Biomater. Res.20222615010.1186/s40824‑022‑00291‑5 36183134
    [Google Scholar]
  2. BortolottiP. FaureE. KipnisE. Inflammasomes in tissue damages and immune disorders after trauma.Front. Immunol.20189190010.3389/fimmu.2018.01900 30166988
    [Google Scholar]
  3. ChoiJ. CarlosG. NassarA.K. KnowltonL.M. SpainD.A. The impact of trauma systems on patient outcomes.Curr. Probl. Surg.202158110084910.1016/j.cpsurg.2020.100849 33431134
    [Google Scholar]
  4. JeschkeM.G. van BaarM.E. ChoudhryM.A. ChungK.K. GibranN.S. LogsettyS. Burn injury.Nat. Rev. Dis. Primers2020611110.1038/s41572‑020‑0145‑5 32054846
    [Google Scholar]
  5. SenC.K. Human wounds and its burden: An updated compendium of estimates.Adv. Wound Care (New Rochelle)201982394810.1089/wound.2019.0946 30809421
    [Google Scholar]
  6. ZhangD. MeiL. HaoY. YiB. HuJ. WangD. ZhaoY. WangZ. HuangH. XuY. DengX. LiC. LiX. ZhouQ. LuY. A hydrogel-based first-aid tissue adhesive with effective hemostasis and anti-bacteria for trauma emergency management.Biomater. Res.20232715610.1186/s40824‑023‑00392‑9 37269017
    [Google Scholar]
  7. Sierra-SánchezÁ. KimK.H. Blasco-MorenteG. Arias-SantiagoS. Cellular human tissue-engineered skin substitutes investigated for deep and difficult to heal injuries.NPJ Regen. Med.2021613510.1038/s41536‑021‑00144‑0 34140525
    [Google Scholar]
  8. KaurA. MidhaS. GiriS. MohantyS. Functional skin grafts: Where biomaterials meet stem cells.Stem Cells Int.201912010.1155/2019/1286054 31354835
    [Google Scholar]
  9. Ríos-GalachoM. Martínez-MorenoD. López-RuizE. Gálvez-MartínP. MarchalJ.A. An overview on the manufacturing of functional and mature cellular skin substitutes.Tissue Eng. Part B Rev.20222851035105210.1089/ten.teb.2021.0131 34652978
    [Google Scholar]
  10. FalangaV. IsseroffR.R. SoulikaA.M. RomanelliM. MargolisD. KappS. GranickM. HardingK. Chronic wounds.Nat. Rev. Dis. Primers2022815010.1038/s41572‑022‑00377‑3 35864102
    [Google Scholar]
  11. XuZ. HanS. GuZ. WuJ. Advances and Impact of antioxidant hydrogel in chronic wound healing.Adv. Healthc. Mater.202095190150210.1002/adhm.201901502 31977162
    [Google Scholar]
  12. OliveiraA. SimõesS. AscensoA. ReisC.P. Therapeutic advances in wound healing.J. Dermatolog. Treat.202233122210.1080/09546634.2020.1730296 32056472
    [Google Scholar]
  13. Chocarro-WronaC. López-RuizE. PeránM. Gálvez-MartínP. MarchalJ.A. Therapeutic strategies for skin regeneration based on biomedical substitutes.J. Eur. Acad. Dermatol. Venereol.201933348449610.1111/jdv.15391 30520159
    [Google Scholar]
  14. ZhangS.H. ZhangS.G. ZhouP. WeiX. MaoX.D. LinS.G. LiuC. LncRNA MALAT1 affects high glucose-induced endothelial cell proliferation, apoptosis, migration and angiogenesis by regulating the PI3K/Akt signaling pathway.Eur. Rev. Med. Pharmacol. Sci.2019231985518559 31646587
    [Google Scholar]
  15. HoxhajG. ManningB.D. The PI3K–AKT network at the interface of oncogenic signalling and cancer metabolism.Nat. Rev. Cancer2020202748810.1038/s41568‑019‑0216‑7 31686003
    [Google Scholar]
  16. HeY. SunM.M. ZhangG.G. YangJ. ChenK.S. XuW.W. LiB. Targeting PI3K/Akt signal transduction for cancer therapy.Signal Transduct. Target. Ther.20216142510.1038/s41392‑021‑00828‑5 34916492
    [Google Scholar]
  17. Ghafouri-FardS. Khanbabapour SasiA. HussenB.M. ShooreiH. SiddiqA. TaheriM. AyatollahiS.A. Interplay between PI3K/AKT pathway and heart disorders.Mol. Biol. Rep.202249109767978110.1007/s11033‑022‑07468‑0 35499687
    [Google Scholar]
  18. LongH.Z. ChengY. ZhouZ.W. LuoH.Y. WenD.D. GaoL.C. PI3K/AKT Signal Pathway: A target of natural products in the prevention and treatment of alzheimer’s disease and parkinson’s disease.Front. Pharmacol.20211264863610.3389/fphar.2021.648636 33935751
    [Google Scholar]
  19. RamasubbuK. Devi RajeswariV. Impairment of insulin signaling pathway PI3K/Akt/mTOR and insulin resistance induced AGEs on diabetes mellitus and neurodegenerative diseases: A perspective review.Mol. Cell. Biochem.202347861307132410.1007/s11010‑022‑04587‑x 36308670
    [Google Scholar]
  20. MayerI.A. ArteagaC.L. The PI3K/AKT Pathway as a Target for Cancer Treatment.Annu. Rev. Med.2016671112810.1146/annurev‑med‑062913‑051343 26473415
    [Google Scholar]
  21. NoorolyaiS. ShajariN. BaghbaniE. SadreddiniS. BaradaranB. The relation between PI3K/AKT signalling pathway and cancer.Gene201969812012810.1016/j.gene.2019.02.076 30849534
    [Google Scholar]
  22. MollicaV. MarchettiA. RoselliniM. NuvolaG. RizzoA. SantoniM. CimadamoreA. MontironiR. MassariF. An insight on novel molecular pathways in metastatic prostate cancer:] A focus on DDR, MSI and AKT.Int. J. Mol. Sci.202122241351910.3390/ijms222413519 34948314
    [Google Scholar]
  23. MadanesD. BilotasM.A. BastónJ.I. SinglaJ.J. MeresmanG.F. BarañaoR.I. RicciA.G. PI3K/AKT pathway is altered in the endometriosis patient’s endometrium and presents differences according to severity stage.Gynecol. Endocrinol.202036543644010.1080/09513590.2019.1680627 31637941
    [Google Scholar]
  24. HuangX. LiuG. GuoJ. SuZ. The PI3K/AKT pathway in obesity and type 2 diabetes.Int. J. Biol. Sci.201814111483149610.7150/ijbs.27173 30263000
    [Google Scholar]
  25. WangX. WangZ.Y. ZhengJ.H. LiS. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches.Chin. J. Nat. Med.202119111110.1016/S1875‑5364(21)60001‑8 33516447
    [Google Scholar]
  26. OulasA. MinadakisG. ZachariouM. SokratousK. BourdakouM.M. SpyrouG.M. Systems Bioinformatics: Increasing precision of computational diagnostics and therapeutics through network-based approaches.Brief. Bioinform.201920380682410.1093/bib/bbx151 29186305
    [Google Scholar]
  27. TaoM. AoT. MaoX. YanX. JavedR. HouW. WangY. SunC. LinS. YuT. AoQ. Sterilization and disinfection methods for decellularized matrix materials: Review, consideration and proposal.Bioact. Mater.2021692927294510.1016/j.bioactmat.2021.02.010 33732964
    [Google Scholar]
  28. HassanshahiA. MoradzadM. GhalamkariS. FadaeiM. CowinA.J. HassanshahiM. Macrophage-Mediated Inflammation in Skin Wound Healing.Cells20221119295310.3390/cells11192953 36230913
    [Google Scholar]
  29. AnY. LinS. TanX. ZhuS. NieF. ZhenY. GuL. ZhangC. WangB. WeiW. LiD. WuJ. Exosomes from adipose‐derived stem cells and application to skin wound healing.Cell Prolif.2021543e1299310.1111/cpr.12993 33458899
    [Google Scholar]
  30. HsuY.C. FuchsE. Building and maintaining the skin.Cold Spring Harb. Perspect. Biol.2022147a04084010.1101/cshperspect.a040840 34607830
    [Google Scholar]
  31. FarooqM. KhanA.W. KimM.S. ChoiS. The role of Fibroblast Growth Factor (FGF) signaling in tissue repair and regeneration.Cells20211011324210.3390/cells10113242 34831463
    [Google Scholar]
  32. ZulkefliN. Che ZahariC.N.M. SayutiN.H. KamarudinA.A. SaadN. HamezahH.S. BunawanH. BaharumS.N. MedianiA. AhmedQ.U. IsmailA.F.H. SarianM.N. Flavonoids as Potential Wound-Healing Molecules: Emphasis on Pathways Perspective.Int. J. Mol. Sci.2023245460710.3390/ijms24054607 36902038
    [Google Scholar]
  33. RaymanG. VasP. DhatariyaK. DriverV. HartemannA. LondahlM. PiaggesiA. ApelqvistJ. AttingerC. GameF. Guidelines on use of interventions to enhance healing of chronic foot ulcers in diabetes (IWGDF 2019 update).Diabetes Metab. Res. Rev.202036Suppl. 1e328310.1002/dmrr.3283 32176450
    [Google Scholar]
  34. TuZ. ZhongY. HuH. ShaoD. HaagR. SchirnerM. LeeJ. SullengerB. LeongK.W. Design of therapeutic biomaterials to control inflammation.Nat. Rev. Mater.20227755757410.1038/s41578‑022‑00426‑z 35251702
    [Google Scholar]
  35. TuC. LuH. ZhouT. ZhangW. DengL. CaoW. YangZ. WangZ. WuX. DingJ. XuF. GaoC. Promoting the healing of infected diabetic wound by an anti-bacterial and nano-enzyme-containing hydrogel with inflammation-suppressing, ROS-scavenging, oxygen and nitric oxide-generating properties.Biomaterials202228612159710.1016/j.biomaterials.2022.121597 35688112
    [Google Scholar]
  36. WonJ.E. LeeY.S. ParkJ.H. LeeJ.H. ShinY.S. KimC.H. KnowlesJ.C. KimH.W. Hierarchical microchanneled scaffolds modulate multiple tissue-regenerative processes of immune-responses, angiogenesis, and stem cell homing.Biomaterials202022711954810.1016/j.biomaterials.2019.119548 31670033
    [Google Scholar]
  37. LiuW. WangM. ChengW. NiuW. ChenM. LuoM. XieC. LengT. ZhangL. LeiB. Bioactive anti inflammatory antibacterial hemostatic citrate-based dressing with macrophage polarization regulation for accelerating wound healing and hair follicle neogenesis.Bioact. Mater.20216372172810.1016/j.bioactmat.2020.09.008 33005834
    [Google Scholar]
  38. RodriguesM. KosaricN. BonhamC.A. GurtnerG.C. Wound healing: A cellular perspective.Physiol. Rev.201999166570610.1152/physrev.00067.2017 30475656
    [Google Scholar]
  39. WanR. WeissmanJ.P. GrundmanK. LangL. GrybowskiD.J. GalianoR.D. Diabetic wound healing: The impact of diabetes on myofibroblast activity and its potential therapeutic treatments.Wound Repair Regen.202129457358110.1111/wrr.12954 34157786
    [Google Scholar]
  40. HongY.K. ChangY.H. LinY.C. ChenB. GuevaraB.E.K. HsuC.K. Inflammation in wound healing and pathological scarring.Adv. Wound Care (New Rochelle)202312528830010.1089/wound.2021.0161 36541356
    [Google Scholar]
  41. LiuB. LinJ. BaiL. ZhouY. LuR. ZhangP. ChenD. LiH. SongJ. LiuX. WuY. WuJ. LiangC. ZhouJ. Paeoniflorin inhibits mesangial cell proliferation and inflammatory response in rats with mesangial proliferative glomerulonephritis through PI3K/AKT/GSK-3β Pathway.Front. Pharmacol.20191097810.3389/fphar.2019.00978 31551783
    [Google Scholar]
  42. WangJ. WuH. PengY. ZhaoY. QinY. ZhangY. XiaoZ. Hypoxia adipose stem cell-derived exosomes promote high-quality healing of diabetic wound involves activation of PI3K/Akt pathways.J. Nanobiotechnol.202119120210.1186/s12951‑021‑00942‑0 34233694
    [Google Scholar]
  43. WeiP. ZhongC. YangX. ShuF. XiaoS. GongT. LuoP. LiL. ChenZ. ZhengY. XiaZ. Exosomes derived from human amniotic epithelial cells accelerate diabetic wound healing via PI3K-AKT-mTOR-mediated promotion in angiogenesis and fibroblast function.Burns Trauma20208tkaa02010.1093/burnst/tkaa020 32923490
    [Google Scholar]
  44. HeX. LiY. DengB. LinA. ZhangG. MaM. WangY. YangY. KangX. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities.Cell Prolif.2022559e1327510.1111/cpr.13275 35754255
    [Google Scholar]
  45. RoyT. BoatengS.T. UddinM.B. Banang-MbeumiS. YadavR.K. BockC.R. FolahanJ.T. Siwe-NoundouX. WalkerA.L. KingJ.A. BuergerC. HuangS. ChamcheuJ.C. The PI3K-Akt-mTOR and associated signaling pathways as molecular drivers of immune-mediated inflammatory skin diseases: Update on therapeutic strategy using natural and synthetic compounds.Cells20231212167110.3390/cells12121671 37371141
    [Google Scholar]
  46. Acosta-MartinezM. CabailM.Z. The PI3K/Akt pathway in meta-inflammation.Int. J. Mol. Sci.202223231533010.3390/ijms232315330 36499659
    [Google Scholar]
  47. ApolinárioP.P. ZanchettaF.C. BrederJ.S.C. AdamsG. ConsonniS.R. GillisR. SaadM.J.A. LimaM.H.M. Anti-inflammatory, procollagen, and wound repair properties of topical insulin gel.Braz. J. Med. Biol. Res.202356e1264010.1590/1414‑431x2023e12640 37194835
    [Google Scholar]
  48. MengW.S. SunJ. LuY. CaoT.T. ChiM.Y. GongZ.P. LiY.T. ZhengL. LiuT. HuangY. Biancaea decapetala (Roth) O.Deg. Extract exerts an anti-inflammatory effect by regulating the TNF/Akt/NF-κB pathway.Phytomedicine202311915498310.1016/j.phymed.2023.154983 37586161
    [Google Scholar]
  49. ZhouY. CuiC. MaX. LuoW. ZhengS.G. QiuW. Nuclear Factor κB (NF-κB)-mediated inflammation in multiple sclerosis.Front. Immunol.20201139110.3389/fimmu.2020.00391 32265906
    [Google Scholar]
  50. ČomaM. FröhlichováL. UrbanL. ZajíčekR. UrbanT. SzaboP. NovákŠ. FetissovV. DvořánkováB. SmetanaK.Jr GálP. Molecular changes underlying hypertrophic scarring following burns involve specific deregulations at all wound healing stages (Inflammation, Proliferation and Maturation).Int. J. Mol. Sci.202122289710.3390/ijms22020897 33477421
    [Google Scholar]
  51. BaronJ.M. GlatzM. ProkschE. Optimal support of wound healing: New insights.Dermatology2020236659360010.1159/000505291 31955162
    [Google Scholar]
  52. YangF. BaiX. DaiX. LiY. The biological processes during wound healing.Regen. Med.202116437339010.2217/rme‑2020‑0066 33787319
    [Google Scholar]
  53. RaziyevaK. KimY. ZharkinbekovZ. KassymbekK. JimiS. SaparovA. Immunology of acute and chronic wound healing.Biomolecules202111570010.3390/biom11050700 34066746
    [Google Scholar]
  54. HanC. BarakatM. DiPietroL.A. Angiogenesis in wound repair: Too much of a good thing?Cold Spring Harb. Perspect. Biol.20221410a04122510.1101/cshperspect.a041225 35667793
    [Google Scholar]
  55. BelvedereR. NovizioN. MorelloS. PetrellaA. The combination of mesoglycan and VEGF promotes skin wound repair by enhancing the activation of endothelial cells and fibroblasts and their cross-talk.Sci. Rep.20221211104110.1038/s41598‑022‑15227‑1 35773320
    [Google Scholar]
  56. ElbialyZ.I. AssarD.H. AbdelnabyA. AsaS.A. AbdelhieeE.Y. IbrahimS.S. Abdel-DaimM.M. AlmeerR. AtibaA. RETRACTED: Healing potential of Spirulina platensis for skin wounds by modulating bFGF, VEGF, TGF-ß1 and α-SMA genes expression targeting angiogenesis and scar tissue formation in the rat model.Biomed. Pharmacother.202113711134910.1016/j.biopha.2021.111349 33567349
    [Google Scholar]
  57. XiaojieW. BandaJ. QiH. ChangA.K. BwalyaC. ChaoL. LiX. Scarless wound healing: Current insights from the perspectives of TGF-β, KGF-1, and KGF-2.Cytokine Growth Factor Rev.202266263710.1016/j.cytogfr.2022.03.001 35690568
    [Google Scholar]
  58. LinY. JiangY. XianH. CaiX. WangT. Expression and correlation of the Pi3k/Akt pathway and VEGF in oral submucous fibrosis.Cell Prolif.20235611e1349110.1111/cpr.13491 37157945
    [Google Scholar]
  59. HaoM. PengX. SunS. DingC. LiuW. Chitosan/sodium alginate/velvet antler blood peptides hydrogel promoted wound healing by regulating PI3K/AKT/mTOR and SIRT1/NF-κB pathways.Front. Pharmacol.20221391340810.3389/fphar.2022.913408 35784748
    [Google Scholar]
  60. ChenJ. JiangZ. LiuX. WangK. FanW. ChenT. LiZ. LinD. Berberine promotes the viability of random skin flaps via the PI3K/Akt/eNOS signaling pathway.Phytother. Res.202337242443710.1002/ptr.7621 36116786
    [Google Scholar]
  61. GonçalvesR.C. BanfiA. OliveiraM.B. ManoJ.F. Strategies for re-vascularization and promotion of angiogenesis in trauma and disease.Biomaterials202126912062810.1016/j.biomaterials.2020.120628 33412374
    [Google Scholar]
  62. LiarteS. Bernabé-GarcíaÁ. NicolásF.J. Role of TGF-β in skin chronic wounds: A keratinocyte perspective.Cells20209230610.3390/cells9020306 32012802
    [Google Scholar]
  63. KatsunoY. DerynckR. Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family.Dev. Cell202156672674610.1016/j.devcel.2021.02.028 33756119
    [Google Scholar]
  64. MarconiG.D. FonticoliL. RajanT.S. PierdomenicoS.D. TrubianiO. PizzicannellaJ. DiomedeF. Epithelial-Mesenchymal Transition (EMT): The type-2 EMT in wound healing, tissue regeneration and organ fibrosis.Cells2021107158710.3390/cells10071587 34201858
    [Google Scholar]
  65. MassaguéJ. SheppardD. TGF-β signaling in health and disease.Cell2023186194007403710.1016/j.cell.2023.07.036 37714133
    [Google Scholar]
  66. ZhangZ. ZhangX. ZhaoD. LiuB. WangB. YuW. LiJ. YuX. CaoF. ZhengG. ZhangY. LiuY. TGF β1 promotes the osteoinduction of human osteoblasts via the PI3K/AKT/mTOR/S6K1 signalling pathway.Mol. Med. Rep.20191953505351810.3892/mmr.2019.10051 30896852
    [Google Scholar]
  67. ZongJ. JiangJ. ShiP. LiuJ. WangW. LiB. ZhaoT. PanT. ZhangZ. BiL. DiaoY. WangS. Fatty acid extracts facilitate cutaneous wound healing through activating AKT, ERK, and TGF-β/Smad3 signaling and promoting angiogenesis.Am. J. Transl. Res.2020122478492 32194897
    [Google Scholar]
  68. MengT. XiaoD. MuhammedA. DengJ. ChenL. HeJ. Anti-inflammatory action and mechanisms of resveratrol.Molecules202126122910.3390/molecules26010229 33466247
    [Google Scholar]
  69. LiuH. MaS. XiaH. LouH. ZhuF. SunL. Anti-inflammatory activities and potential mechanisms of phenolic acids isolated from Salvia miltiorrhiza f. alba roots in THP-1 macrophages.J. Ethnopharmacol.201822220120710.1016/j.jep.2018.05.008 29751125
    [Google Scholar]
  70. ParkC.H. MinS.Y. YuH.W. KimK. KimS. LeeH.J. KimJ.H. ParkY.J. Effects of apigenin on RBL-2H3, RAW264.7, and HaCaT cells: Anti-allergic, anti-inflammatory, and skin-protective activities.Int. J. Mol. Sci.20202113462010.3390/ijms21134620 32610574
    [Google Scholar]
  71. Grujić-MilanovićJ. JaćevićV. MiloradovićZ. JovovićD. MilosavljevićI. MilanovićS.D. Mihailović-StanojevićN. Resveratrol protects cardiac tissue in experimental malignant hypertension due to antioxidant, anti-inflammatory, and anti-apoptotic properties.Int. J. Mol. Sci.2021229500610.3390/ijms22095006 34066865
    [Google Scholar]
  72. SalehiB. VendittiA. Sharifi-RadM. KręgielD. Sharifi-RadJ. DurazzoA. LucariniM. SantiniA. SoutoE.B. NovellinoE. AntolakH. AzziniE. SetzerW.N. MartinsN. The therapeutic potential of apigenin.Int. J. Mol. Sci.2019206130510.3390/ijms20061305 30875872
    [Google Scholar]
  73. YoujunD. HuangY. LaiY. MaZ. WangX. ChenB. DingX. TanQ. Mechanisms of resveratrol against diabetic wound by network pharmacology and experimental validation.Ann. Med.2023552228081110.1080/07853890.2023.2280811 37967241
    [Google Scholar]
  74. PignetA.L. SchellneggerM. HeckerA. KohlhauserM. KotzbeckP. KamolzL.P. Resveratrol-induced signal transduction in wound healing.Int. J. Mol. Sci.202122231261410.3390/ijms222312614 34884419
    [Google Scholar]
  75. HuW.H. DaiD.K. ZhengB.Z.Y. DuanR. ChanG.K.L. DongT.T.X. QinQ.W. TsimK.W.K. The binding of kaempferol-3-O-rutinoside to vascular endothelial growth factor potentiates anti-inflammatory efficiencies in lipopolysaccharide-treated mouse macrophage RAW264.7 cells.Phytomedicine20218015340010.1016/j.phymed.2020.153400 33157413
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073311259240918081737
Loading
/content/journals/cchts/10.2174/0113862073311259240918081737
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test