Skip to content
2000
image of Curcumin Regulating Primordial Follicle Initiation by Restoring the Oxidative-antioxidant Balance

Abstract

Background

Diminished ovarian reserve (DOR) is accompanied by abnormal initiation and development of primordial follicles. Reporting that curcumin can protect the ovarian reserve, we used rats as a model to explore the regulatory mechanism of curcumin on primordial follicle priming.

Objective

Curcumin restores the ovarian microenvironment of DOR model rats by AMPK/SIRT 1 signaling pathway, thus regulating the initiation of primordial follicles.

Methods

The study used the ovaries of 3-day-old female rats, after replicating the DOR model by triptolide (TP), then used curcumin intervention for 3 days. Histomorphological analysis was counted by H & E staining; ELISA test was used to count ovarian hormone [follicle stimulating hormone (FSH) / luteinizing hormone (LH) ratio and estradiol (E)] concentration in the culture supernatant. Spectrophotometric measurement was used to count of superoxide dismutase (SOD) and the malondialdehyde (MDA). The protein and mRNA expression of the pathway and key indicators for follicle initiation were determined by Western Blot and Q-PCR (AMPK, SIRT 1, PTEN, PGC-1 α, and AMH).

Results

After curcumin treatment, the number of growing follicles increased (). FSH/LH ratio decreased but the content and expression of E and AMH increased (). The protein and mRNA expression of characteristic indicators of inhibiting primordial follicle initiation (PTEN) was decreased (). Oxidation-reduction-related SOD activity increased and the content of MDA decreased (), while the protein and mRNA expression of PGC-1α increased (). The protein and mRNA expression of the pathway (AMPK, SIRT 1) were increased ().

Conclusion

Curcumin restored the ovarian local oxidant-antioxidant balance and promoted primordial follicle priming through AMPK/SIRT 1 signaling pathway in the DOR model rats.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073368250250319001421
2025-04-07
2025-10-11
Loading full text...

Full text loading...

References

  1. Park S.U. Walsh L. Berkowitz K.M. Mechanisms of ovarian aging. Reproduction 2021 162 2 R19 R33 10.1530/REP‑21‑0022 33999842
    [Google Scholar]
  2. Zhang Q. Lei Y. Deng Y. Ma R. Ding X. Xue W. Sun A. Treatment progress in diminished ovarian reserve: Western and chinese medicine. Chin. J. Integr. Med. 2023 29 4 361 367 10.1007/s11655‑021‑3353‑2 35015221
    [Google Scholar]
  3. Bernstein L.R. Mackenzie A.C.L. Durkin K. Kraemer D.C. Chaffin C.L. Merchenthaler I. Maternal age and gonadotrophin elevation cooperatively decrease viable ovulated oocytes and increase ootoxicity, chromosome-, and spindle-misalignments: ‘2-Hit’ and ‘FSH-OoToxicity’ mechanisms as new reproductive aging hypotheses. Mol. Hum. Reprod. 2023 29 10 gaad030 10.1093/molehr/gaad030 37643633
    [Google Scholar]
  4. Pastore L.M. Christianson M.S. Stelling J. Kearns W.G. Segars J.H. Reproductive ovarian testing and the alphabet soup of diagnoses: DOR, POI, POF, POR, and FOR. J. Assist. Reprod. Genet. 2018 35 1 17 23 10.1007/s10815‑017‑1058‑4 28971280
    [Google Scholar]
  5. Bhardwaj J.K. Paliwal A. Saraf P. Sachdeva S.N. Role of autophagy in follicular development and maintenance of primordial follicular pool in the ovary. J. Cell. Physiol. 2022 237 2 1157 1170 10.1002/jcp.30613 34668576
    [Google Scholar]
  6. Huang Y. Cheng Y. Zhang M. Xia Y. Chen X. Xian Y. Lin D. Xie S. Guo X. Oxidative stress and inflammatory markers in ovarian follicular fluid of women with diminished ovarian reserve during in vitro fertilization. J. Ovarian Res. 2023 16 1 206 10.1186/s13048‑023‑01293‑0 37872635
    [Google Scholar]
  7. Li W. Xia W. Zhou H. Yan L. Zeng P. Zeng Q. Based on the analysis of Fu Shan’s treatment of thin body infertility. Chin. J. Trad. Chinese. Med. 2020 35 3737 3739 10.1016/j.ctim.2011.09.003.
    [Google Scholar]
  8. Li W. Deng D. Wang J. Xu J. Study on the mechanism of primordial follicles in ovarian reserve. Chin. J. Trad. Chinese. Med. 2024 31 106 111 10.1016/j.ctim.2011.09.003.
    [Google Scholar]
  9. Li W. Deng D. Xu J. Substance identification and network pharmacological study of ovarian reserve decline. Straits Pharmacy 2023 35 22 26
    [Google Scholar]
  10. Neveu V. Perez-Jiménez J. Vos F. Crespy V. Du Chaffaut L. Mennen L. Knox C. Eisner R. Cruz J. Wishart D. Scalbert A. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database (Oxford). 2010 2010 10.1093/database/bap024.
    [Google Scholar]
  11. Sharifi-Rad J. Rayess Y.E. Rizk A.A. Sadaka C. Zgheib R. Zam W. Sestito S. Rapposelli S. Neffe-Skocińska K. Zielińska D. Salehi B. Setzer W.N. Dosoky N.S. Taheri Y. El Beyrouthy M. Martorell M. Ostrander E.A. Suleria H.A.R. Cho W.C. Maroyi A. Martins N. Turmeric and its major compound curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol. 2020 11 01021 10.3389/fphar.2020.01021 33041781
    [Google Scholar]
  12. Cione E. La Torre C. Cannataro R. Caroleo M.C. Plastina P. Gallelli L. Quercetin, epigallocatechin gallate, curcumin, and resveratrol: From dietary sources to human microrna modulation. Molecules 2019 25 1 63 10.3390/molecules25010063 31878082
    [Google Scholar]
  13. Dehzad M.J. Ghalandari H. Nouri M. Askarpour M. Antioxidant and anti-inflammatory effects of curcumin/turmeric supplementation in adults: A GRADE-assessed systematic review and dose–response meta-analysis of randomized controlled trials. Cytokine 2023 164 156144 10.1016/j.cyto.2023.156144 36804260
    [Google Scholar]
  14. Zia A. Farkhondeh T. Pourbagher-Shahri A.M. Samarghandian S. The role of curcumin in aging and senescence: Molecular mechanisms. Biomed. Pharmacother. 2021 134 111119 10.1016/j.biopha.2020.111119 33360051
    [Google Scholar]
  15. Yan Y.J. Study of the effect of curcumin in delaying premature ovarian failure and its mechanism. Thesis, Jiangsu 2021
    [Google Scholar]
  16. Xu Z. Jing C. Wan Y. Li J. Wang Y. Jing N. Mechanism of oxidative stress in ovarian reserve decline and progress of antioxidant therapy in Chinese and Western medicine. World J. Integrated Trad. Chin. Western Med. 2023 18 2105 2110
    [Google Scholar]
  17. An Z. Xie C. Lu H. Wang S. Zhang X. Yu W. Guo X. Liu Z. Shang D. Wang X. Mitochondrial morphology and function abnormality in ovarian granulosa cells of patients with diminished ovarian reserve. Reprod. Sci. 2024 31 7 2009 2020 10.1007/s43032‑024‑01459‑1 38294667
    [Google Scholar]
  18. Liu H. Jiang C. La B. Cao M. Ning S. Zhou J. Yan Z. Li C. Cui Y. Ma X. Wang M. Chen L. Yu Y. Chen F. Zhang Y. Wu H. Liu J. Qin L. Human amnion-derived mesenchymal stem cells improved the reproductive function of age-related diminished ovarian reserve in mice through Ampk/FoxO3a signaling pathway. Stem Cell Res. Ther. 2021 12 1 317 10.1186/s13287‑021‑02382‑x 34078462
    [Google Scholar]
  19. Ma Q. Shen M. Wu J. Ye C. Tan Y. Mechanism research of DHEA treatment improving diminished ovarian reserve by attenuating the ampk-sirt1 signaling and mitophagy. Reprod. Sci. 2024 31 7 2059 2072 10.1007/s43032‑024‑01473‑3 38453773
    [Google Scholar]
  20. Fuloria S. Mehta J. Chandel A. Sekar M. Rani N.N.I.M. Begum M.Y. Subramaniyan V. Chidambaram K. Thangavelu L. Nordin R. Wu Y.S. Sathasivam K.V. Lum P.T. Meenakshi D.U. Kumarasamy V. Azad A.K. Fuloria N.K. A comprehensive review on the therapeutic potential of Curcuma longa linn. in relation to its major active constituent curcumin. Front. Pharmacol. 2022 13 820806 10.3389/fphar.2022.820806 35401176
    [Google Scholar]
  21. Kamal D.A.M. Salamt N. Yusuf A.N.M. Kashim M.I.A.M. Mokhtar M.H. Potential health benefits of curcumin on female reproductive disorders: A review. Nutrients 2021 13 9 3126 10.3390/nu13093126 34579002
    [Google Scholar]
  22. Azami S.H. Nazarian H. Abdollahifar M.A. Eini F. Farsani M.A. Novin M.G. The antioxidant curcumin postpones ovarian aging in young and middle-aged mice. Reprod. Fertil. Dev. 2020 32 3 292 303 10.1071/RD18472 31656219
    [Google Scholar]
  23. Lu X. Lv X. Dong X. Li Y. Turathum B. Liu S. Wang X. Shi H. Liu Y. Increased serine synthesis in cumulus cells of young infertile women with diminished ovarian reserve. Hum. Reprod. 2023 38 9 1723 1732 10.1093/humrep/dead155 37533289
    [Google Scholar]
  24. Wang S. Zheng Y. Li J. Yu Y. Zhang W. Song M. Liu Z. Min Z. Hu H. Jing Y. He X. Sun L. Ma L. Esteban C.R. Chan P. Qiao J. Zhou Q. Izpisua Belmonte J.C. Qu J. Tang F. Liu G.H. Single-cell transcriptomic atlas of primate ovarian aging. Cell 2020 180 3 585 600.e19 10.1016/j.cell.2020.01.009 32004457
    [Google Scholar]
  25. Jomova K. Raptova R. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023 97 10 2499 2574 10.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  26. Cordiano R. Di Gioacchino M. Mangifesta R. Panzera C. Gangemi S. Minciullo P.L. Malondialdehyde as a potential oxidative stress marker for allergy-oriented diseases: An update. Molecules 2023 28 16 5979 10.3390/molecules28165979 37630231
    [Google Scholar]
  27. Zheng S. Ma M. Chen Y. Li M. Effects of quercetin on ovarian function and regulation of the ovarian PI3K/Akt/FoxO3a signalling pathway and oxidative stress in a rat model of cyclophosphamide‐induced premature ovarian failure. Basic Clin. Pharmacol. Toxicol. 2022 130 2 240 253 10.1111/bcpt.13696 34841658
    [Google Scholar]
  28. Wen-li H.O.N.G. Yao-qi H.U.A.N.G. Fei-yin Z.H.U. Yue-hui Z.H.E.N.G. Jia Ll. Li-xia Z. Jun D. PTEN regulates primordial follicular initation and growth in rats. Basic. Clin. Med. 2019 39 1077 1084
    [Google Scholar]
  29. Ma X. Chen Z. Wang L. Wang G. Wang Z. Dong X. Wen B. Zhang Z. The pathogenesis of diabetes mellitus by oxidative stress and inflammation: Its inhibition by berberine. Front. Pharmacol. 2018 9 782 10.3389/fphar.2018.00782 30100874
    [Google Scholar]
  30. Hu L.L. Liao M.H. Liu Y.X. Xing C.H. Nong L.L. Yang F.L. Sun S.C. Loss of AMPK activity induces organelle dysfunction and oxidative stress during oocyte aging. Biol. Direct 2024 19 1 29 10.1186/s13062‑024‑00471‑4 38654312
    [Google Scholar]
  31. Long G.Y. Yang J.Y. Xu J.J. Ni Y.H. Zhou X.L. Ma J.Y. Fu Y.C. Luo L.L. SIRT1 knock-in mice preserve ovarian reserve resembling caloric restriction. Gene 2019 686 194 202 10.1016/j.gene.2018.10.040 30340050
    [Google Scholar]
  32. Chao S.W. Yi Y.H. Chen W.L. Tang H.P. Chen B. Polygala Fallax Hemsl ameliorates renal dysfunction and podocyte mitochondrial oxidative damage in diabetic rats by activating the AMPK/SIRT1/PGC-1α signaling. J. Biol. Regul. Homeost. Agents 2024 38 4335 4348 10.23812/j.biol.regul.homeost.agents.20243805.344
    [Google Scholar]
  33. Qian L. Zhu Y. Deng C. Liang Z. Chen J. Chen Y. Wang X. Liu Y. Tian Y. Yang Y. Peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) family in physiological and pathophysiological process and diseases. Signal Transduct. Target. Ther. 2024 9 1 50 10.1038/s41392‑024‑01756‑w 38424050
    [Google Scholar]
  34. Tian L. Cao W. Yue R. Yuan Y. Guo X. Qin D. Xing J. Wang X. Pretreatment with Tilianin improves mitochondrial energy metabolism and oxidative stress in rats with myocardial ischemia/reperfusion injury via AMPK/SIRT1/PGC-1 alpha signaling pathway. J. Pharmacol. Sci. 2019 139 4 352 360 10.1016/j.jphs.2019.02.008 30910451
    [Google Scholar]
  35. Zhang T. Xu L. Guo X. Tao H. Liu Y. Liu X. Zhang Y. Meng X. The potential of herbal drugs to treat heart failure: The roles of Sirt1/AMPK. J. Pharm. Anal. 2024 14 2 157 176 10.1016/j.jpha.2023.09.001 38464786
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073368250250319001421
Loading
/content/journals/cchts/10.2174/0113862073368250250319001421
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test