Skip to content
2000
image of Mechanisms of the Compound of Magnoliae Flos and Xanthii Fructus Essential Oils for the Treatment of Allergic Rhinitis based on the Integration of Network Pharmacology, Molecular Docking, and Animal Experiment

Abstract

Aim and Objective

Magnoliae Flos (Chinese name: Xin-Yi) and Xanthii Fructus (Chinese name: Cang-Er-Zi) are Chinese herbal medicines and have been used to treat allergic rhinitis (AR). However, the therapeutic effect, active ingredients, and probable processes of a compound of Magnoliae Flos and Xanthii Fructus in the form of essential oils (CMFXFEO) in treating AR have not been reported. This study aims to determine the efficacy of the CMFXFEO on ovalbumin (OVA)-induced AR in a rat model and to use network pharmacology and molecular docking to reveal the hub genes, biological functions, and signaling pathways of CMFXFEO against AR.

Methods

Animal experiments were applied to validate the role of CMFXFEO in the treatment of AR. 20 rats were randomly divided into four groups: control group (CON, 5), positive control group (AR, 5), CMFXFEO-treated group (AR+CMFXFEO, 5), and budesonide-treated group (AR+Budesonide, 5). Rats were stimulated with OVA to induce AR. Symptom scores assessment and histo-pathomorphological evaluation was performed. The serum level of OVA-specific immunoglobulin (Ig) E was measured. Gas Chromatograph-Mass Spectrometer analysis (GC-MS) was used to identify the monomer chemical composition of CMFXFEO. The target genes of CMFXFEO were obtained by using PubChem and SwissTargetPrediction databases. The target genes of AR were screened using GeneCards, DisGeNET, and OMIM databases. The target genes were intersected using the venny2.1 website to obtain the potential therapeutic targets of CMFXFEO for treating AR and to construct the PPI network. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were used to reveal associated signaling pathways. The Sybyl tool was used to dock the CMFXFEO with key therapeutic targets molecularly.

Results

Intranasal CMFXFEO administration significantly suppressed the allergic symptoms, reduced the inflammatory cell infiltration, and the serum level of OVA-specific immunoglobulin (Ig) E. The main components of CMFXFEO obtained through the GC-MS analysis, listed as γ-terpinene (9.4908%), limonene (7.2693%), menthol (7.1821%), β-pinene (7.1190%), β-caryophyllene (7.0396%), eucalyptol (6.1367%), linalool(5.9686%), eugenol (5.0776%). A total of 398 CMFXFEO targets and 488 AR-related targets were screened, of which 42 were common targets. The GO and KEGG pathway analyses unveiled that CMFXFEO were strongly associated with several signaling pathways, including the AGE-RAGE signaling pathway, TNF signaling pathway, and Chemokine signaling pathway. PPI network construction screened six hub genes as therapeutic targets, including STAT3, IL1B, TLR4, PTGS2, ICAM1, and VCAM1. The molecular docking verification indicated that CMFXFEO have good binding activity with therapeutic targets, and β-Pinene’s docking ability with TLR4 is particularly prominent.

Conclusion

The anti-inflammatory and anti-allergic effects of CMFXFEO are to inhibit the infiltration of inflammatory cells in the OVA-induced AR rat model. The results of the network pharmacology and molecular docking deduced that the CMFXFEO may have the potential to treat AR by multiple pathways through relieving inflammatory, anti-oxidative stress response, and modulating the immune system.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073333657241216040227
2025-01-22
2025-09-22
Loading full text...

Full text loading...

References

  1. Bernstein J.A. Bernstein J.S. Makol R. Ward S. Allergic Rhinitis. JAMA 2024 331 10 866 877 10.1001/jama.2024.0530 38470381
    [Google Scholar]
  2. Bousquet J. Anto J.M. Bachert C. Baiardini I. Bosnic-Anticevich S. Walter Canonica G. Melén E. Palomares O. Scadding G.K. Togias A. Toppila-Salmi S. Allergic rhinitis. Nat. Rev. Dis. Primers 2020 6 1 95 10.1038/s41572‑020‑00227‑0 33273461
    [Google Scholar]
  3. Dent A.L. Regulation of the IgE response by T follicular regulatory cells. Allergol. Int. 2024 S1323-8930(24)00086-8 10.1016/j.alit.2024.08.004 39232918
    [Google Scholar]
  4. Cheon J. Kim B. Lee J. Shin J. Kim T.H. Functions and Clinical Applications of Extracellular Vesicles in TH2 Cell-Mediated Airway Inflammatory Diseases: A Review. Int. J. Mol. Sci. 2024 25 17 9455 10.3390/ijms25179455 39273399
    [Google Scholar]
  5. Demoly P. Maigret P. Elias Billon I. Allaert F.A. Allergic rhinitis increases the risk of driving accidents. J. Allergy Clin. Immunol. 2017 140 2 614 616 10.1016/j.jaci.2017.01.037 28284972
    [Google Scholar]
  6. Wong Q.Y.A. Lim J.J. Ng J.Y. Malipeddi P. Lim Y.Y.E. Sio Y.Y. Chew F.T. The burden of allergic rhinitis is undermanaged in a large proportion of Chinese young adults from Singapore. World Allergy Organ. J. 2024 17 9 100954 10.1016/j.waojou.2024.100954 39228765
    [Google Scholar]
  7. Sritipsukho P. Chaiyakulsil C. Junsawat P. Quality of life of elementary school students with sleep-disordered breathing and allergic rhinitis: A population-based study in Thailand. PLoS One 2024 19 9 e0310331 10.1371/journal.pone.0310331 39259725
    [Google Scholar]
  8. Hasan M.M. Tory S. Association between glucocorticoid receptor beta and steroid resistance: A systematic review. Immun. Inflamm. Dis. 2024 12 1 e1137 10.1002/iid3.1137 38270313
    [Google Scholar]
  9. Joo Y.H. Chang D.Y. Kim J.H. Jung M.H. Lee J. Cho H.J. Jeon S.Y. Kim S.J. Kim S.W. Anti‐inflammatory effects of intranasal cyclosporine for allergic rhinitis in a mouse model. Int. Forum Allergy Rhinol. 2016 6 11 1139 1144 10.1002/alr.21808 27309728
    [Google Scholar]
  10. Yang G. Suo L.M. Geng X.R. Zeng X.H. Liu J.Q. Liu Z.Q. Li M. Chen Y.R. Hong J.Y. Xue J.M. Yang P.C. An eosinophil-Sos1-RAS axis licenses corticosteroid resistance in patients with allergic rhinitis. Immunobiology 2022 227 3 152215 10.1016/j.imbio.2022.152215 35468553
    [Google Scholar]
  11. Yue J. Hao D. Liu S. Yu J. Meng L. Lv J. Guo J. Research progress of traditional Chinese medicine in the treatment of allergic rhinitis. Heliyon 2024 10 7 e29262 10.1016/j.heliyon.2024.e29262 38617960
    [Google Scholar]
  12. Liu F. Bai Y. Wu X. Wan Y. Luo S. Zhang L. Li T. Tang H. Tang X. Chen R. Chen Q. Xie Y. Guo P. Network pharmacology combined with experimental validation reveals the mechanism of action of cangerzisan on allergic rhinitis. J. Ethnopharmacol. 2024 335 118611 10.1016/j.jep.2024.118611 39053712
    [Google Scholar]
  13. Qi L.J. Gao S. Ning Y.H. Chen X.J. Wang R.Z. Feng X. Bimin Kang ameliorates the minimal persistent inflammation in allergic rhinitis by reducing BCL11B expression and regulating ILC2 plasticity. J. Ethnopharmacol. 2024 333 118454 10.1016/j.jep.2024.118454 38852638
    [Google Scholar]
  14. Jia Y. Zou J. Wang Y. Zhang X. Shi Y. Liang Y. Guo D. Yang M. Mechanism of allergic rhinitis treated by Centipeda minima from different geographic areas. Pharm. Biol. 2021 59 1 604 616 10.1080/13880209.2021.1923757 34010591
    [Google Scholar]
  15. Shin S.H. Ye M.K. Lee D.W. Che M.H. Immunomodulative Effects of Chamaecyparis obtusa Essential Oil in Mouse Model of Allergic Rhinitis. Molecules 2020 25 19 4517 10.3390/molecules25194517 33023110
    [Google Scholar]
  16. Zhang X. Wu X.M. Han L.H. Qian F. Zhang L.Q. Li Y.M. New furofuran and tetrahydrofuran lignans from the flower buds of Magnolia biondii Pamp and their antiallergic effects. Nat. Prod. Res. 2023 37 18 3083 3092 10.1080/14786419.2022.2147166 36395104
    [Google Scholar]
  17. Huang S. Huang Y. Exploration of Potential Targets and Molecular Mechanisms of the Yiqi Jianpi Tongqiao Formula in Treating Allergic Rhinitis Mouse Model based on Network Pharmacology and Molecular Docking. Curr. Comput.-Aided Drug Des 2024 2024 10.2174/0115734099299714240516160158
    [Google Scholar]
  18. Kim H.M. Yi J.M. Lim K.S. Magnoliae flos inhibits mast cell-dependent immediate-type allergic reactions. Pharmacol. Res. 1999 39 2 107 111 10.1006/phrs.1998.0414 10072701
    [Google Scholar]
  19. Kim H.J. Woo J. Nam Y.R. Nam J.H. Kim W.K. Flos Magnoliae and its Constituent Linoleic Acid Suppress T Lymphocyte Activation via Store-Operated Calcium Entry. Am. J. Chin. Med. 2019 47 7 1627 1641 10.1142/S0192415X19500836 31659911
    [Google Scholar]
  20. Kim H.J. Nam Y.R. Nam J.H. Flos Magnoliae Inhibits Chloride Secretion via ANO1 Inhibition in Calu-3 Cells. Am. J. Chin. Med. 2018 46 5 1079 1092 10.1142/S0192415X18500568 29976084
    [Google Scholar]
  21. Hong P.T.L. Kim H.J. Kim W.K. Nam J.H. Flos magnoliae constituent fargesin has an anti-allergic effect via ORAI1 channel inhibition. Korean J. Physiol. Pharmacol. 2021 25 3 251 258 10.4196/kjpp.2021.25.3.251 33859065
    [Google Scholar]
  22. Chen C.H. Chen H.C. Chang W.T. Lee M.S. Liu Y.C. Lin M.K. Magnoliae Flos Essential Oil as an Immunosuppressant in Dendritic Cell Activation and Contact Hypersensitivity Responses. Am. J. Chin. Med. 2020 48 3 597 613 10.1142/S0192415X20500305 32308013
    [Google Scholar]
  23. Guo Q. Wang X. Wang Y. Zhou P. Zhang X. Volatile Oil of Magnolia biondii Pamp. for Transnasal Administration: Its Preparation, Characterization, and Mechanism of Action in the Treatment of Allergic Rhinitis. Curr. Drug Deliv. 2024 21 10 1408 1421 10.2174/0115672018286048240229180813 38441019
    [Google Scholar]
  24. Hong S.H. Jeong H.J. Kim H.M. Inhibitory effects of Xanthii fructus extract on mast cell-mediated allergic reaction in murine model. J. Ethnopharmacol. 2003 88 2-3 229 234 10.1016/S0378‑8741(03)00232‑0 12963148
    [Google Scholar]
  25. Yeom M. Kim J.H. Min J.H. Hwang M.K. Jung H.S. Sohn Y. Xanthii fructus inhibits inflammatory responses in LPS-stimulated RAW 264.7 macrophages through suppressing NF-κB and JNK/p38 MAPK. J. Ethnopharmacol. 2015 176 394 401 10.1016/j.jep.2015.11.020 26560439
    [Google Scholar]
  26. Agwunobi D.O. Wang M. Wang Z. Bai R. Wang R. Hu Q. Yu Z. Liu J. The toxicity of the monoterpenes from lemongrass is mitigated by the detoxifying symbiosis of bacteria and fungi in the tick Haemaphysalis longicornis. Ecotoxicol. Environ. Saf. 2022 247 114261 10.1016/j.ecoenv.2022.114261 36332404
    [Google Scholar]
  27. Šovljanski O. Aćimović M. Tomić A. Lončar B. Miljković A. Čabarkapa I. Pezo L. Antibacterial and Antifungal Potential of Helichrysum italicum (Roth) G. Don Essential Oil. Antibiotics (Basel) 2024 13 8 722 10.3390/antibiotics13080722 39200022
    [Google Scholar]
  28. Li X. Liu Z. Liao J. Chen Q. Lu X. Fan X. Network pharmacology approaches for research of Traditional Chinese Medicines. Chin. J. Nat. Med. 2023 21 5 323 332 10.1016/S1875‑5364(23)60429‑7 37245871
    [Google Scholar]
  29. Zhang Y. Lin X. Xia L. Xiong S. Xia B. Xie J. Lin Y. Lin L. Wu P. Progress on the Anti-Inflammatory Activity and Structure–Efficacy Relationship of Polysaccharides from Medical and Edible Homologous Traditional Chinese Medicines. Molecules 2024 29 16 3852 10.3390/molecules29163852 39202931
    [Google Scholar]
  30. Liu Q. Wang J. Ding C. Chu Y. Jiang F. Hu Y. Li H. Wang Q. Sinomenine Alleviates Rheumatoid Arthritis by Suppressing the PI3K-Akt Signaling Pathway, as Demonstrated Through Network Pharmacology, Molecular Docking, and Experimental Validation. Drug Des. Devel. Ther. 2024 18 3523 3545 10.2147/DDDT.S475959 39135759
    [Google Scholar]
  31. Jian G. Su B. Zhou W. Xiong H. Application of network pharmacology and molecular docking to elucidate the potential mechanism of Eucommia ulmoides-Radix Achyranthis Bidentatae against osteoarthritis. BioData Min. 2020 13 1 12 10.1186/s13040‑020‑00221‑y 32874205
    [Google Scholar]
  32. Fu S. Zhou Y. Hu C. Xu Z. Hou J. Network pharmacology and molecular docking technology-based predictive study of the active ingredients and potential targets of rhubarb for the treatment of diabetic nephropathy. BMC Complementary Medicine and Therapies 2022 22 1 210 10.1186/s12906‑022‑03662‑6 35932042
    [Google Scholar]
  33. Du Y. Wang J. Jiang L. Li J. Li J. Ren C. Yan T. Jia Y. He B. Screening the components in multi-biological samples and the comparative pharmacokinetic study in healthy and depression model rats of Suan-Zao-Ren decoction combined with a network pharmacology. J. Ethnopharmacol. 2024 319 Pt 3 117360 10.1016/j.jep.2023.117360 37898440
    [Google Scholar]
  34. Shi M. Zhang S. Zheng Z. Maoz I. Zhang L. Kai G. Molecular regulation of the key specialized metabolism pathways in medicinal plants. J. Integr. Plant Biol. 2024 66 3 510 531 10.1111/jipb.13634 38441295
    [Google Scholar]
  35. Li L. Yang L. Yang L. He C. He Y. Chen L. Dong Q. Zhang H. Chen S. Li P. Network pharmacology: a bright guiding light on the way to explore the personalized precise medication of traditional Chinese medicine. Chin. Med. 2023 18 1 146 10.1186/s13020‑023‑00853‑2 37941061
    [Google Scholar]
  36. Zheng S. Liang Y. Xue T. Wang W. Li S. Zhang P. Li X. Cao X. Liu Q. Qi W. Ye Y. Zao X. Application of network pharmacology in traditional Chinese medicine for the treatment of digestive system diseases. Front. Pharmacol. 2024 15 1412997 10.3389/fphar.2024.1412997 39086391
    [Google Scholar]
  37. Miao M. Xiang L. Miao Y. Specification for preparation of Animal Model of Allergic rhinitis (draft). Chin. Herb. Med. 2018 ••• 50 57
    [Google Scholar]
  38. Wang Y. Bryant S.H. Cheng T. Wang J. Gindulyte A. Shoemaker B.A. Thiessen P.A. He S. Zhang J. PubChem BioAssay: 2017 update. Nucleic Acids Res. 2017 45 D1 D955 D963 10.1093/nar/gkw1118 27899599
    [Google Scholar]
  39. Gfeller D. Grosdidier A. Wirth M. Daina A. Michielin O. Zoete V. SwissTargetPrediction: a web server for target prediction of bioactive small molecules. Nucleic Acids Res. 2014 42 W1 W32 W38 10.1093/nar/gku293 24792161
    [Google Scholar]
  40. Amberger J. Bocchini C. Hamosh A. A new face and new challenges for Online Mendelian Inheritance in Man (OMIM®). Hum. Mutat. 2011 32 5 564 567 10.1002/humu.21466 21472891
    [Google Scholar]
  41. Fishilevich S. Zimmerman S. Kohn A. Iny Stein T. Olender T. Kolker E. Safran M. Lancet D. Genic insights from integrated human proteomics in GeneCards. Database (Oxford) 2016 2016 baw030 10.1093/database/baw030 27048349
    [Google Scholar]
  42. Piñero J. Ramírez-Anguita J.M. Saüch-Pitarch J. Ronzano F. Centeno E. Sanz F. Furlong L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2019 48 D1 gkz1021 10.1093/nar/gkz1021 31680165
    [Google Scholar]
  43. Szklarczyk D. Gable A.L. Lyon D. Junge A. Wyder S. Huerta-Cepas J. Simonovic M. Doncheva N.T. Morris J.H. Bork P. Jensen L.J. Mering C. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019 47 D1 D607 D613 10.1093/nar/gky1131 30476243
    [Google Scholar]
  44. Huang D.W. Sherman B.T. Lempicki R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009 4 1 44 57 10.1038/nprot.2008.211
    [Google Scholar]
  45. Berman H.M. Westbrook J. Feng Z. Gilliland G. Bhat T.N. Weissig H. Shindyalov I.N. Bourne P.E. 2000 The Protein Data Bank 2000
    [Google Scholar]
  46. Luo H. Zhang J. Yu Y. Liu J. Jiang Y. Yan N. Wang P. Clinical value of the high expression of corticosteroid receptor-beta mRNA in the nasal mucosa of steroid-resistant patients with allergic rhinitis. ORL J. Otorhinolaryngol. Relat. Spec. 2014 76 1 1 7 10.1159/000357738 24525713
    [Google Scholar]
  47. Kim H.Y. Kim J. Jeong H.J. Kim H.M. Potential anti-inflammatory effect of Madi-Ryuk and its active ingredient tannic acid on allergic rhinitis. Mol. Immunol. 2019 114 362 368 10.1016/j.molimm.2019.08.013 31450181
    [Google Scholar]
  48. Xu N. Zhang C.S. Tan X. Lai Y. Cen Y. Zhou S. Xia J. Li Y. Luo Q. The effectiveness and safety of acupoint herbal patching for allergic rhinitis: protocol for a systematic review and meta-analysis. Syst. Rev. 2024 13 1 172 10.1186/s13643‑024‑02598‑x 38971762
    [Google Scholar]
  49. Du S. Chen S. Wang S. Wang G. Du S. Guo W. Xie X. Peng B. Yang C. Zhao J. Clinical practice guideline for acupuncture and moxibustion: Allergic rhinitis. J. Integr. Med. 2024 22 3 245 257 10.1016/j.joim.2024.03.009 38616445
    [Google Scholar]
  50. Shi Z. Jiang W. Wang M. Wang X. Li X. Chen X. Qiao L. Inhibition of JAK/STAT pathway restrains TSLP-activated dendritic cells mediated inflammatory T helper type 2 cell response in allergic rhinitis. Mol. Cell. Biochem. 2017 430 1-2 161 169 10.1007/s11010‑017‑2963‑7 28214951
    [Google Scholar]
  51. Sohn Y. Gwak N-G. Kim E-Y. Lee B. Kim J-H. Im Y-S. Lee K-Y. Jun-Kum C. Kim H-S. Cho H-J. Jung H-S. Xanthii Fructus inhibits allergic response in the ovalbumin-sensitized mouse allergic rhinitis model. Pharmacogn. Mag. 2015 11 44 Suppl. 2 352 10.4103/0973‑1296.166058 26664025
    [Google Scholar]
  52. Bhattacharya R. Alam M.R. Kamal M.A. Seo K.J. Singh L.R. AGE-RAGE axis culminates into multiple pathogenic processes: a central road to neurodegeneration. Front. Mol. Neurosci. 2023 16 1155175 10.3389/fnmol.2023.1155175 37266370
    [Google Scholar]
  53. Snelson M. Lucut E. Coughlan M.T. The Role of AGE-RAGE Signalling as a Modulator of Gut Permeability in Diabetes. Int. J. Mol. Sci. 2022 23 3 1766 10.3390/ijms23031766 35163688
    [Google Scholar]
  54. Yamagishi S. Matsui T. Therapeutic Potential of DNA-aptamers Raised Against AGE-RAGE Axis in Diabetes-related Complications. Curr. Pharm. Des. 2018 24 24 2802 2809 10.2174/1381612824666180829110124 30156152
    [Google Scholar]
  55. Yang S. Fu Q. Deng H. Liu Z. Zhong J. Zhu X. Wang Q. Sun C. Wu J. Mechanisms and molecular targets of the Yu-Ping-Feng powder for allergic rhinitis, based on network pharmacology. Medicine (Baltimore) 2021 100 35 e26929 10.1097/MD.0000000000026929 34477124
    [Google Scholar]
  56. Dai J. Xia K. Huai D. Li S. Zhou L. Wang S. Chen L. Identification of diagnostic signature, molecular subtypes, and potential drugs in allergic rhinitis based on an inflammatory response gene set. Front. Immunol. 2024 15 1348391 10.3389/fimmu.2024.1348391 38469312
    [Google Scholar]
  57. Pavela R. Benelli G. Essential Oils as Ecofriendly Biopesticides? Challenges and Constraints. Trends Plant Sci. 2016 21 12 1000 1007 10.1016/j.tplants.2016.10.005 27789158
    [Google Scholar]
  58. Pezantes-Orellana C. German Bermúdez F. Matías De la Cruz C. Montalvo J.L. Orellana-Manzano A. Essential oils: a systematic review on revolutionizing health, nutrition, and omics for optimal well-being. Front. Med. (Lausanne) 2024 11 1337785 10.3389/fmed.2024.1337785 38435393
    [Google Scholar]
  59. Stojanović N.M. Ranđelović P.J. Simonović M. Radić M. Todorović S. Corrigan M. Harkin A. Boylan F. Essential Oil Constituents as Anti-Inflammatory and Neuroprotective Agents: An Insight through Microglia Modulation. Int. J. Mol. Sci. 2024 25 10 5168 10.3390/ijms25105168 38791205
    [Google Scholar]
  60. Ri H.J. Anti-inflammatory and antioxidant in vitro activities of Magnoliae flos ethanol extract. Prev. Nutr. Food Sci. 2021
    [Google Scholar]
  61. Fan K. Zhou S. Jin L. Tan S. Lai J. Zhang Z. Li J. Xu X. Yao C. Yan Z. Yu S. Identification of key genes and the pathophysiology associated with allergen-specific immunotherapy for allergic rhinitis. BMC Immunol. 2023 24 1 19 10.1186/s12865‑023‑00556‑1 37430199
    [Google Scholar]
  62. Gil T.Y. Jin B.R. Cha Y.Y. An H.J. Magnoliae flos Downregulated Lipopolysaccharide-Induced Inflammatory Responses via NF-κB/ERK-JNK MAPK/STAT3 Pathways. Mediators Inflamm. 2022 2022 1 11 10.1155/2022/6281892 35795403
    [Google Scholar]
  63. Nie A.Z. Gao M.M. Jia W.R. Zhu C.S. Zhang X.C. Zhou Z. Zhang B. [Discussion on safety of Xanthii Fructus and consideration on its rational use]. Zhongguo Zhongyao Zazhi 2019 44 24 5336 5344 10.19540/j.cnki.cjcmm.20190701.403 32237377
    [Google Scholar]
  64. Zhang X.M. Li D. Liu C.B. Yu N.J. Li Y.J. Xie D.M. [Multiplex PCR method for simultaneous identification of Xanthii Fructus and its adulterants]. Zhongguo Zhongyao Zazhi 2022 47 10 2605 2613 [Multiplex PCR method for simultaneous identification of Xanthii Fructus and its adulterants]. 10.19540/j.cnki.cjcmm.20220115.103 35718478
    [Google Scholar]
  65. Liu X. Yang Y. Li Y. Zhang Q. Wang J. Guo J. Song Z. Liu Z. Zhang Y. Song X. Network Pharmacology‐Based Approach for Investigating the Role of Xanthii Fructus in Treatment of Allergic Rhinitis. Chem. Biodivers. 2023 20 4 e202200785 10.1002/cbdv.202200785 36855022
    [Google Scholar]
  66. Demirci F. Karaca N. Tekin M. Demirci B. Anti-inflammatory and antibacterial evaluation of Thymus sipyleus Boiss. subsp. sipyleus var. sipyleus essential oil against rhinosinusitis pathogens. Microb. Pathog. 2018 122 117 121 10.1016/j.micpath.2018.06.025 29908309
    [Google Scholar]
  67. Moon P.D. Choi I.S. Go J.H. Lee B.J. Kang S.W. Yoon S. Han S.J. Nam S.Y. Oh H.A. Han N.R. Kim Y.S. Kim J.S. Kim M.J. Jeong H.J. Kim H.M. Inhibitory effects of BiRyuChe-bang on mast cell-mediated allergic reactions and inflammatory cytokines production. Am. J. Chin. Med. 2013 41 6 1267 1282 10.1142/S0192415X13500857 24228600
    [Google Scholar]
  68. Remberg P. Björk L. Hedner T. Sterner O. Characteristics, clinical effect profile and tolerability of a nasal spray preparation of Artemisia abrotanum L. for allergic rhinitis. Phytomedicine 2004 11 1 36 42 10.1078/0944‑7113‑00350 14971719
    [Google Scholar]
  69. Pan C. Dong Z. Antiasthmatic Effects of Eugenol in a Mouse Model of Allergic Asthma by Regulation of Vitamin D3 Upregulated Protein 1/NF-κB Pathway. Inflammation 2015 38 4 1385 1393 10.1007/s10753‑015‑0110‑8 25588851
    [Google Scholar]
  70. Vinola S.M.J. Karthikeyan K. Sharma A. Sudheshna S. Sekar M. Anti-inflammatory efficacy of petasin-incorporated zinc oxide eugenol sealer - An in vivo zebrafish study. J. Conserv. Dent. 2021 24 6 539 543 10.4103/jcd.jcd_433_21 35558677
    [Google Scholar]
  71. Lu M. Yan W. Zhu X. Zhu H. [Exogenous lipoid pneumonia induced by long-term usage of compound menthol nasal drops: a case report]. Beijing Da Xue Xue Bao 2019 51 2 359 361 [Exogenous lipoid pneumonia induced by long-term usage of compound menthol nasal drops: a case report]. 10.19723/j.issn.1671‑167X.2019.02.030 30996383
    [Google Scholar]
  72. Pathak M.P. Patowary P. Das A. Goyary D. Karmakar S. Bhutia Y.D. Roy P.K. Das S. Chattopadhyay P. Crosstalk between AdipoR1/AdipoR2 and Nrf2/HO‐1 signal pathways activated by β‐caryophyllene suppressed the compound 48/80 induced pseudo‐allergic reactions. Clin. Exp. Pharmacol. Physiol. 2021 48 11 1523 1536 10.1111/1440‑1681.13555 34314522
    [Google Scholar]
  73. Sun J. Qian J. Zhao J. Liu L. [Clinical observation of mucoregulatory agents' application after chronic rhinosinusitis surgery]. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi 2011 922 924
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073333657241216040227
Loading
/content/journals/cchts/10.2174/0113862073333657241216040227
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test