Skip to content
2000
Volume 29, Issue 1
  • ISSN: 1386-2073
  • E-ISSN: 1875-5402

Abstract

Neutrophils release neutrophil extracellular traps (NETs), a reticular structure mainly composed of antimicrobial peptides, DNA, and histones. Neutrophil elastase (NE), matrix metalloproteinase-9, and histone G are the key components of NETs critically involved in breast cancer invasion and migration, which suggests an important role of NETs in tumorigenesis and metastasis. Studies have reported that NETs significantly promote breast cancer invasion, intravascular infiltration, and distant metastasis by inducing epithelial-mesenchymal transition (EMT), remodeling the extracellular matrix, and modulating the immune microenvironment. Meanwhile, NETs also function crucially in capturing circulating tumor cells, forming a pre-metastatic microenvironment, and awakening dormant cancer cells. Notably, NETs are also closely associated with chemotherapy and immunotherapy resistance in breast cancer. Therapeutic strategies targeting NETs, including DNase I, PAD4 inhibitors, elastase inhibitors, and histone C inhibitors, have been widely studied. These targeted therapies can effectively suppress the generation of NETs, improve drug efficacy, and delay tumor metastasis. This review aimed to systematically elucidate the mechanism of action of NETs in the progression and drug resistance of breast cancer and explore potential targeted therapeutic strategies against NETs. These strategies could effectively inhibit the generation of NETs, delay the progression of breast cancer, and improve therapeutic efficacy. An in-depth study of the mechanism of action of NETs and the clinical significance of their targeted interventions is expected to provide a new direction for breast cancer treatment.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073376243250130060239
2025-02-26
2026-02-20
Loading full text...

Full text loading...

References

  1. LoiblS. PoortmansP. MorrowM. DenkertC. CuriglianoG. Breast cancer.Lancet2021397102861750176910.1016/S0140‑6736(20)32381‑3 33812473
    [Google Scholar]
  2. PourhanifehM.H. Farrokhi-KebriaH. MostanadiP. FarkhondehT. SamarghandianS. Anticancer properties of baicalin against breast cancer and other gynecological cancers: Therapeutic opportunities based on underlying mechanisms.Curr. Mol. Pharmacol.202417e1876142926306310.2174/0118761429263063231204095516 38284731
    [Google Scholar]
  3. GiaquintoA.N. SungH. NewmanL.A. FreedmanR.A. SmithR.A. StarJ. JemalA. SiegelR.L. Breast cancer statistics 2024.CA Cancer J. Clin.202474647749510.3322/caac.21863 39352042
    [Google Scholar]
  4. SonkinD. ThomasA. TeicherB.A. Cancer treatments: Past, present, and future.Cancer Genet.2024286-287182410.1016/j.cancergen.2024.06.002 38909530
    [Google Scholar]
  5. DvirK. GiordanoS. LeoneJ.P. Immunotherapy in breast cancer.Int. J. Mol. Sci.20242514751710.3390/ijms25147517 39062758
    [Google Scholar]
  6. TalebiM. FarkhondehT. Harifi-MoodM.S. TalebiM. SamarghandianS. Mechanistic features and therapeutic implications related to the MiRNAs and Wnt signaling regulatory in breast cancer.Curr. Mol. Pharmacol.2023165530541 36263474
    [Google Scholar]
  7. RosalesC. Neutrophils at the crossroads of innate and adaptive immunity.J. Leukoc. Biol.2020108137739610.1002/JLB.4MIR0220‑574RR 32202340
    [Google Scholar]
  8. LecotP. SarabiM. Pereira AbrantesM. MussardJ. KoendermanL. CauxC. Bendriss-VermareN. MichalletM.C. Neutrophil heterogeneity in cancer: From biology to therapies.Front. Immunol.201910215510.3389/fimmu.2019.02155 31616408
    [Google Scholar]
  9. DemkowU. Neutrophil extracellular traps (NETs) in cancer invasion, evasion and metastasis.Cancers (Basel)20211317449510.3390/cancers13174495 34503307
    [Google Scholar]
  10. WuY. MaJ. YangX. NanF. ZhangT. JiS. RaoD. FengH. GaoK. GuX. JiangS. SongG. PanJ. ZhangM. XuY. ZhangS. FanY. WangX. ZhouJ. YangL. FanJ. ZhangX. GaoQ. Neutrophil profiling illuminates anti-tumor antigen-presenting potency.Cell2024187614221439.e2410.1016/j.cell.2024.02.005 38447573
    [Google Scholar]
  11. BrinkmannV. ReichardU. GoosmannC. FaulerB. UhlemannY. WeissD.S. WeinrauchY. ZychlinskyA. Neutrophil extracellular traps kill bacteria.Science200430356631532153510.1126/science.1092385 15001782
    [Google Scholar]
  12. DemersM. KrauseD.S. SchatzbergD. MartinodK. VoorheesJ.R. FuchsT.A. ScaddenD.T. WagnerD.D. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis.Proc. Natl. Acad. Sci. USA201210932130761308110.1073/pnas.1200419109 22826226
    [Google Scholar]
  13. MasucciM.T. MinopoliM. Del VecchioS. CarrieroM.V. The emerging role of neutrophil extracellular traps (NETs) in tumor progression and metastasis.Front. Immunol.202011174910.3389/fimmu.2020.01749 33042107
    [Google Scholar]
  14. ZhengC. XuX. WuM. XueL. ZhuJ. XiaH. DingS. FuS. WangX. WangY. HeG. LiuX. DengX. Neutrophils in triple-negative breast cancer: An underestimated player with increasingly recognized importance.Breast Cancer Res.20232518810.1186/s13058‑023‑01676‑7 37496019
    [Google Scholar]
  15. SnoderlyH.T. BooneB.A. BennewitzM.F. Neutrophil extracellular traps in breast cancer and beyond: Current perspectives on NET stimuli, thrombosis and metastasis, and clinical utility for diagnosis and treatment.Breast Cancer Res.201921114510.1186/s13058‑019‑1237‑6 31852512
    [Google Scholar]
  16. De MeoM.L. SpicerJ.D. The role of neutrophil extracellular traps in cancer progression and metastasis.Semin. Immunol.20215710159510.1016/j.smim.2022.101595 35125298
    [Google Scholar]
  17. OkluR. ShethR.A. WongK.H.K. JahromiA.H. AlbadawiH. Neutrophil extracellular traps are increased in cancer patients but does not associate with venous thrombosis.Cardiovasc. Diagn. Ther.20177S3S140S14910.21037/cdt.2017.08.01 29399517
    [Google Scholar]
  18. Berger-AchituvS. BrinkmannV. AbedU.A. KühnL.I. Ben-EzraJ. ElhasidR. ZychlinskyA. A proposed role for neutrophil extracellular traps in cancer immunoediting.Front. Immunol.201344810.3389/fimmu.2013.00048 23508552
    [Google Scholar]
  19. ErpenbeckL. SchönM.P. Neutrophil extracellular traps: Protagonists of cancer progression?Oncogene201736182483249010.1038/onc.2016.406 27941879
    [Google Scholar]
  20. ZhaC. MengX. LiL. MiS. QianD. LiZ. WuP. HuS. ZhaoS. CaiJ. LiuY. Neutrophil extracellular traps mediate the crosstalk between glioma progression and the tumor microenvironment via the HMGB1/RAGE/IL-8 axis.Cancer Biol. Med.202017115416810.20892/j.issn.2095‑3941.2019.0353 32296583
    [Google Scholar]
  21. KajiokaH. KagawaS. ItoA. YoshimotoM. SakamotoS. KikuchiS. KurodaS. YoshidaR. UmedaY. NomaK. TazawaH. FujiwaraT. Targeting neutrophil extracellular traps with thrombomodulin prevents pancreatic cancer metastasis.Cancer Lett.202149711310.1016/j.canlet.2020.10.015 33065249
    [Google Scholar]
  22. VestweberD. VE-Cadherin.Arterioscler. Thromb. Vasc. Biol.200828222323210.1161/ATVBAHA.107.158014 18162609
    [Google Scholar]
  23. JiangZ.Z. PengZ.P. LiuX.C. GuoH.F. ZhouM.M. JiangD. NingW.R. HuangY.F. ZhengL. WuY. Neutrophil extracellular traps induce tumor metastasis through dual effects on cancer and endothelial cells.OncoImmunology2022111205241810.1080/2162402X.2022.2052418 35309732
    [Google Scholar]
  24. NajmehS. Cools-LartigueJ. RayesR.F. GowingS. VourtzoumisP. BourdeauF. GianniasB. BerubeJ. RousseauS. FerriL.E. SpicerJ.D. Neutrophil extracellular traps sequester circulating tumor cells via β1-integrin mediated interactions.Int. J. Cancer2017140102321233010.1002/ijc.30635 28177522
    [Google Scholar]
  25. CastañoM. Tomás-PérezS. González-CantóE. AghababyanC. Mascarós-MartínezA. SantonjaN. Herreros-PomaresA. OtoJ. MedinaP. GötteM. Mc CormackB.A. Marí-AlexandreJ. Gilabert-EstellésJ. Neutrophil extracellular traps and cancer: Trapping our attention with their involvement in ovarian cancer.Int. J. Mol. Sci.2023246599510.3390/ijms24065995 36983067
    [Google Scholar]
  26. FengL. DongZ. TaoD. ZhangY. LiuZ. The acidic tumor microenvironment: A target for smart cancer nano-theranostics.Natl. Sci. Rev.20185226928610.1093/nsr/nwx062
    [Google Scholar]
  27. KolaczkowskaE. KubesP. Neutrophil recruitment and function in health and inflammation.Nat. Rev. Immunol.201313315917510.1038/nri3399 23435331
    [Google Scholar]
  28. TohmeS. YazdaniH.O. Al-KhafajiA.B. ChidiA.P. LoughranP. MowenK. WangY. SimmonsR.L. HuangH. TsungA. Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress.Cancer Res.20167661367138010.1158/0008‑5472.CAN‑15‑1591 26759232
    [Google Scholar]
  29. SchoepsB. EckfeldC. ProkopchukO. BöttcherJ. HäußlerD. SteigerK. DemirI.E. KnolleP. SoehnleinO. JenneD.E. HermannC.D. KrügerA. TIMP1 triggers neutrophil extracellular trap formation in pancreatic cancer.Cancer Res.202181133568357910.1158/0008‑5472.CAN‑20‑4125 33941611
    [Google Scholar]
  30. GarleyM. JabłońskaE. DąbrowskaD. NETs in cancer.Tumour Biol.20163711143551436110.1007/s13277‑016‑5328‑z 27614687
    [Google Scholar]
  31. RavindranM. KhanM.A. PalaniyarN. Neutrophil extracellular trap formation: Physiology, pathology, and pharmacology.Biomolecules20199836510.3390/biom9080365 31416173
    [Google Scholar]
  32. YinY. DaiH. SunX. XiZ. ZhangJ. PanY. HuangY. MaX. XiaQ. HeK. HRG inhibits liver cancer lung metastasis by suppressing neutrophil extracellular trap formation.Clin. Transl. Med.2023136e128310.1002/ctm2.1283 37254661
    [Google Scholar]
  33. MoweryY.M. LukeJ.J. NETosis impact on tumor biology, radiation, and systemic therapy resistance.Clin. Cancer Res.202430183965396710.1158/1078‑0432.CCR‑24‑1363 39007757
    [Google Scholar]
  34. MoussetA. LecorgneE. BourgetI. LopezP. JenovaiK. Cherfils-ViciniJ. DominiciC. RiosG. Girard-RiboulleauC. LiuB. SpectorD.L. EhmsenS. RenaultS. HegoC. Mechta-GrigoriouF. BidardF.C. TerpM.G. EgebladM. GaggioliC. AlbrenguesJ. Neutrophil extracellular traps formed during chemotherapy confer treatment resistance via TGF-β activation.Cancer Cell2023414757775.e1010.1016/j.ccell.2023.03.008 37037615
    [Google Scholar]
  35. YangL. LiuQ. ZhangX. LiuX. ZhouB. ChenJ. HuangD. LiJ. LiH. ChenF. LiuJ. XingY. ChenX. SuS. SongE. DNA of neutrophil extracellular traps promotes cancer metastasis via CCDC25.Nature2020583781413313810.1038/s41586‑020‑2394‑6 32528174
    [Google Scholar]
  36. TeijeiraÁ. GarasaS. GatoM. AlfaroC. MiguelizI. CirellaA. de AndreaC. OchoaM.C. OtanoI. EtxeberriaI. AnduezaM.P. NietoC.P. ResanoL. AzpilikuetaA. AllegrettiM. de PizzolM. Ponz-SarviséM. RouzautA. SanmamedM.F. SchalperK. CarletonM. MelladoM. Rodriguez-RuizM.E. BerraondoP. Perez-GraciaJ.L. MeleroI. CXCR1 and CXCR2 chemokine receptor agonists produced by tumors induce neutrophil extracellular traps that interfere with immune cytotoxicity.Immunity2020525856871.e810.1016/j.immuni.2020.03.001 32289253
    [Google Scholar]
  37. ShenX.T. XieS.Z. ZhengX. ZouT.T. HuB.Y. XuJ. LiuL. XuY.F. WangX.F. WangH. WangS. ZhuL. YuK.K. ZhuW.W. LuL. ZhangJ.B. ChenJ.H. DongQ.Z. YangL.Y. QinL.X. Cirrhotic-extracellular matrix attenuates aPD-1 treatment response by initiating immunosuppressive neutrophil extracellular traps formation in hepatocellular carcinoma.Exp. Hematol. Oncol.20241312010.1186/s40164‑024‑00476‑9 38388466
    [Google Scholar]
  38. TaifourT. AttallaS.S. ZuoD. GuY. Sanguin-GendreauV. ProudH. SolymossE. BuiT. KuasneH. PapavasiliouV. LeeC.G. KamleS. SiegelP.M. EliasJ.A. ParkM. MullerW.J. The tumor-derived cytokine Chi3l1 induces neutrophil extracellular traps that promote T cell exclusion in triple-negative breast cancer.Immunity2023561227552772.e810.1016/j.immuni.2023.11.002 38039967
    [Google Scholar]
  39. Morimoto-KamataR. YuiS. Insulin‐like growth factor‐1 signaling is responsible for cathepsin G‐induced aggregation of breast cancer MCF‐7 cells.Cancer Sci.201710881574158310.1111/cas.13286 28544544
    [Google Scholar]
  40. WadaY. YoshidaK. TsutaniY. ShigematsuH. OedaM. SanadaY. SuzukiT. MizuiriH. HamaiY. TanabeK. UkonK. HiharaJ. Neutrophil elastase induces cell proliferation and migration by the release of TGF-alpha, PDGF and VEGF in esophageal cell lines.Oncol. Rep.2007171161167 17143494
    [Google Scholar]
  41. BekesE.M. SchweighoferB. KupriyanovaT.A. ZajacE. ArdiV.C. QuigleyJ.P. DeryuginaE.I. Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation.Am. J. Pathol.201117931455147010.1016/j.ajpath.2011.05.031 21741942
    [Google Scholar]
  42. CuiC. ChakrabortyK. TangX.A. ZhouG. SchoenfeltK.Q. BeckerK.M. HoffmanA. ChangY.F. BlankA. ReardonC.A. KennyH.A. VaisarT. LengyelE. GreeneG. BeckerL. Neutrophil elastase selectively kills cancer cells and attenuates tumorigenesis.Cell20211841231633177.e2110.1016/j.cell.2021.04.016 33964209
    [Google Scholar]
  43. HuangH. ZhangH. OnumaA.E. TsungA. Neutrophil elastase and neutrophil extracellular traps in the tumor microenvironment.Adv. Exp. Med. Biol.20201263132310.1007/978‑3‑030‑44518‑8_2 32588320
    [Google Scholar]
  44. YuiS. OsawaY. IchisugiT. Morimoto-KamataR. Neutrophil cathepsin G, but not elastase, induces aggregation of MCF-7 mammary carcinoma cells by a protease activity-dependent cell-oriented mechanism.Mediat. Inflamm.2014201411210.1155/2014/971409 24803743
    [Google Scholar]
  45. YuiS. TomitaK. KudoT. AndoS. YamazakiM. Induction of multicellular 3‐D spheroids of MCF‐7 breast carcinoma cells by neutrophil‐derived cathepsin G and elastase.Cancer Sci.200596956057010.1111/j.1349‑7006.2005.00097.x 16128741
    [Google Scholar]
  46. WilsonT.J. NannuruK.C. FutakuchiM. SadanandamA. SinghR.K. Cathepsin G enhances mammary tumor-induced osteolysis by generating soluble receptor activator of nuclear factor-kappaB ligand.Cancer Res.200868145803581110.1158/0008‑5472.CAN‑07‑5889 18632634
    [Google Scholar]
  47. LiH. QiuZ. LiF. WangC. The relationship between MMP-2 and MMP-9 expression levels with breast cancer incidence and prognosis.Oncol. Lett.20171455865587010.3892/ol.2017.6924 29113219
    [Google Scholar]
  48. YousefE.M. TahirM.R. St-PierreY. GabouryL.A. MMP-9 expression varies according to molecular subtypes of breast cancer.BMC Cancer201414160910.1186/1471‑2407‑14‑609 25151367
    [Google Scholar]
  49. GhajarC.M. PeinadoH. MoriH. MateiI.R. EvasonK.J. BrazierH. AlmeidaD. KollerA. HajjarK.A. StainierD.Y.R. ChenE.I. LydenD. BissellM.J. The perivascular niche regulates breast tumour dormancy.Nat. Cell Biol.201315780781710.1038/ncb2767 23728425
    [Google Scholar]
  50. AlbrenguesJ. ShieldsM.A. NgD. ParkC.G. AmbricoA. PoindexterM.E. UpadhyayP. UyeminamiD.L. PommierA. KüttnerV. BružasE. MaiorinoL. BautistaC. CarmonaE.M. GimottyP.A. FearonD.T. ChangK. LyonsS.K. PinkertonK.E. TrotmanL.C. GoldbergM.S. YehJ.T.H. EgebladM. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice.Science20183616409eaao422710.1126/science.aao4227 30262472
    [Google Scholar]
  51. El RayesT. CatenaR. LeeS. StawowczykM. JoshiN. FischbachC. PowellC.A. DannenbergA.J. AltorkiN.K. GaoD. MittalV. Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1.Proc. Natl. Acad. Sci. USA201511252160001600510.1073/pnas.1507294112 26668367
    [Google Scholar]
  52. Aguirre GhisoJ.A. Inhibition of FAK signaling activated by urokinase receptor induces dormancy in human carcinoma cells in vivo.Oncogene200221162513252410.1038/sj.onc.1205342 11971186
    [Google Scholar]
  53. TayR.E. RichardsonE.K. TohH.C. Revisiting the role of CD4+ T cells in cancer immunotherapy—new insights into old paradigms.Cancer Gene Ther.2021281-251710.1038/s41417‑020‑0183‑x 32457487
    [Google Scholar]
  54. MaY. WeiJ. HeW. RenJ. Neutrophil extracellular traps in cancer.Med. Comm.202458e64710.1002/mco2.647 39015554
    [Google Scholar]
  55. WuG. PanB. ShiH. YiY. ZhengX. MaH. ZhaoM. ZhangZ. ChengL. HuangY. GuoW. Neutrophils’ dual role in cancer: From tumor progression to immunotherapeutic potential.Int. Immunopharmacol.202414011278810.1016/j.intimp.2024.112788 39083923
    [Google Scholar]
  56. ZhengZ. LiY. JiaS. ZhuM. CaoL. TaoM. JiangJ. ZhanS. ChenY. GaoP.J. HuW. WangY. ShaoC. ShiY. Lung mesenchymal stromal cells influenced by Th2 cytokines mobilize neutrophils and facilitate metastasis by producing complement C3.Nat. Commun.2021121620210.1038/s41467‑021‑26460‑z 34707103
    [Google Scholar]
  57. RayesR.F. MouhannaJ.G. NicolauI. BourdeauF. GianniasB. RousseauS. QuailD. WalshL. SangwanV. BertosN. Cools-LartigueJ. FerriL.E. SpicerJ.D. Primary tumors induce neutrophil extracellular traps with targetable metastasis-promoting effects.JCI Insight2019416e12800810.1172/jci.insight.128008 31343990
    [Google Scholar]
  58. PangY. GaraS.K. AchyutB.R. LiZ. YanH.H. DayC.P. WeissJ.M. TrinchieriG. MorrisJ.C. YangL. TGF-β signaling in myeloid cells is required for tumor metastasis.Cancer Discov.20133893695110.1158/2159‑8290.CD‑12‑0527 23661553
    [Google Scholar]
  59. CoffeltS.B. WellensteinM.D. de VisserK.E. Neutrophils in cancer: Neutral no more.Nat. Rev. Cancer201616743144610.1038/nrc.2016.52 27282249
    [Google Scholar]
  60. ManfiolettiG. FedeleM. Epithelial–mesenchymal transition (EMT).Int. J. Mol. Sci.202324141138610.3390/ijms241411386 37511145
    [Google Scholar]
  61. DongreA. WeinbergR.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer.Nat. Rev. Mol. Cell Biol.2019202698410.1038/s41580‑018‑0080‑4 30459476
    [Google Scholar]
  62. Martins-CardosoK. AlmeidaV.H. BagriK.M. RossiM.I.D. MermelsteinC.S. KönigS. MonteiroR.Q. Neutrophil extracellular traps (NETs) promote pro-metastatic phenotype in human breast cancer cells through epithelial–mesenchymal transition.Cancers (Basel)2020126154210.3390/cancers12061542 32545405
    [Google Scholar]
  63. Martins-CardosoK. MaçaoA. SouzaJ.L. SilvaA.G. KönigS. Martins-GonçalvesR. HottzE.D. RondonA.M.R. VersteegH.H. BozzaP.T. AlmeidaV.H. MonteiroR.Q. TF/PAR2 signaling axis supports the protumor effect of neutrophil extracellular traps (NETs) on human breast cancer cells.Cancers (Basel)2023161510.3390/cancers16010005 38201433
    [Google Scholar]
  64. WuJ. DongW. PanY. WangJ. WuM. YuY. Crosstalk between gut microbiota and metastasis in colorectal cancer: Implication of neutrophil extracellular traps.Front. Immunol.202314129678310.3389/fimmu.2023.1296783 37936694
    [Google Scholar]
  65. GuanX. LuY. ZhuH. YuS. ZhaoW. ChiX. XieC. YinZ. The crosstalk between cancer cells and neutrophils enhances hepatocellular carcinoma metastasis via neutrophil extracellular traps-associated cathepsin G component: A potential therapeutic target.J. Hepatocell. Carcinoma2021845146510.2147/JHC.S303588 34046369
    [Google Scholar]
  66. ZengZ. XuS. WangF. PengX. ZhangW. ZhanY. DingY. LiuZ. LiangL. HAO1-mediated oxalate metabolism promotes lung pre-metastatic niche formation by inducing neutrophil extracellular traps.Oncogene202241293719373110.1038/s41388‑022‑02248‑3 35739335
    [Google Scholar]
  67. WculekS.K. MalanchiI. Neutrophils support lung colonization of metastasis-initiating breast cancer cells.Nature2015528758241341710.1038/nature16140 26649828
    [Google Scholar]
  68. FengY. LuoS. FanD. GuoX. MaS. The role of vascular endothelial cells in tumor metastasis.Acta Histochem.2023125615207010.1016/j.acthis.2023.152070 37348328
    [Google Scholar]
  69. McDowellS.A.C. LuoR.B.E. ArabzadehA. DoréS. BennettN.C. BretonV. KarimiE. RezanejadM. YangR.R. LachK.D. IssacM.S.M. SamborskaB. PerusL.J.M. MoldoveanuD. WeiY. FisetB. RayesR.F. WatsonI.R. KazakL. GuiotM.C. FisetP.O. SpicerJ.D. DannenbergA.J. WalshL.A. QuailD.F. Neutrophil oxidative stress mediates obesity-associated vascular dysfunction and metastatic transmigration.Nat. Cancer20212554556210.1038/s43018‑021‑00194‑9 35122017
    [Google Scholar]
  70. TesfamariamB. Involvement of platelets in tumor cell metastasis.Pharmacol. Ther.201615711211910.1016/j.pharmthera.2015.11.005 26615781
    [Google Scholar]
  71. CouplandL.A. ParishC.R. Platelets, selectins, and the control of tumor metastasis.Semin. Oncol.201441342243410.1053/j.seminoncol.2014.04.003 25023359
    [Google Scholar]
  72. LiJ.C. ZouX.M. YangS.F. JinJ.Q. ZhuL. LiC.J. YangH. ZhangA.G. ZhaoT.Q. ChenC.Y. Neutrophil extracellular traps participate in the development of cancer-associated thrombosis in patients with gastric cancer.World J. Gastroenterol.202228263132314910.3748/wjg.v28.i26.3132 36051331
    [Google Scholar]
  73. FuchsT.A. BrillA. DuerschmiedD. SchatzbergD. MonestierM. MyersD.D.Jr WrobleskiS.K. WakefieldT.W. HartwigJ.H. WagnerD.D. Extracellular DNA traps promote thrombosis.Proc. Natl. Acad. Sci. USA201010736158801588510.1073/pnas.1005743107 20798043
    [Google Scholar]
  74. MassbergS. GrahlL. von BruehlM.L. ManukyanD. PfeilerS. GoosmannC. BrinkmannV. LorenzM. BidzhekovK. KhandagaleA.B. KonradI. KennerknechtE. RegesK. HoldenriederS. BraunS. ReinhardtC. SpannaglM. PreissnerK.T. EngelmannB. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases.Nat. Med.201016888789610.1038/nm.2184 20676107
    [Google Scholar]
  75. ZhuW.F. JiW.J. WangQ.Y. QuW. FengF. HanL.F. XueJ.W. LiuF.L. LiuW.Y. Intraoperative cavity local delivery system with NETs‐specific drug release for post‐breast cancer surgery recurrence correction.Adv. Healthc. Mater.20241330240153710.1002/adhm.202401537 39205549
    [Google Scholar]
  76. MiyazonoK. Ten DijkeP. HeldinC.H. TGF-β signaling by Smad proteins.Adv. Immunol.20007511515710.1016/S0065‑2776(00)75003‑6 10879283
    [Google Scholar]
  77. HuY. WangH. LiuY. NETosis: Sculpting tumor metastasis and immunotherapy.Immunol. Rev.2024321126327910.1111/imr.13277 37712361
    [Google Scholar]
  78. ZhouS.L. ZhouZ.J. HuZ.Q. HuangX.W. WangZ. ChenE.B. Tumor-associated neutrophils recruit macrophages and T-regulatory cells to promote progression of hepatocellular carcinoma and resistance to sorafenib.Gastroenterology20161501646165810.1002/mco2.647 39015554
    [Google Scholar]
  79. LiH. LiJ. BaiZ. YanS. LiJ. Collagen-induced DDR1 upregulates CXCL5 to promote neutrophil extracellular traps formation and Treg infiltration in breast cancer.Int. Immunopharmacol.202312011023510.1016/j.intimp.2023.110235 37201403
    [Google Scholar]
  80. ZhangJ. DaiY. WeiC. ZhaoX. ZhouQ. XieL. DNase I improves corneal epithelial and nerve regeneration in diabetic mice.J. Cell. Mol. Med.20202484547455610.1111/jcmm.15112 32168430
    [Google Scholar]
  81. XiaY. HeJ. ZhangH. WangH. TetzG. MaguireC.A. WangY. OnumaA. GenkinD. TetzV. StepanovA. TerekhovS. UkrainskayaV. HuangH. TsungA. AAV‐mediated gene transfer of DNase I in the liver of mice with colorectal cancer reduces liver metastasis and restores local innate and adaptive immune response.Mol. Oncol.202014112920293510.1002/1878‑0261.12787 32813937
    [Google Scholar]
  82. YangC. DongZ.Z. ZhangJ. TengD. LuoX. LiD. ZhouY. Peptidylarginine deiminases 4 as a promising target in drug discovery.Eur. J. Med. Chem.202122611384010.1016/j.ejmech.2021.113840 34520958
    [Google Scholar]
  83. SuzukiM. IkariJ. AnazawaR. TanakaN. KatsumataY. ShimadaA. SuzukiE. TatsumiK. PAD4 deficiency improves bleomycin-induced neutrophil extracellular traps and fibrosis in mouse lung.Am. J. Respir. Cell Mol. Biol.202063680681810.1165/rcmb.2019‑0433OC 32915635
    [Google Scholar]
  84. OkekeE.B. LouttitC. FryC. NajafabadiA.H. HanK. NemzekJ. MoonJ.J. Inhibition of neutrophil elastase prevents neutrophil extracellular trap formation and rescues mice from endotoxic shock.Biomaterials202023811983610.1016/j.biomaterials.2020.119836 32045782
    [Google Scholar]
  85. ShenX.B. ChenX. ZhangZ.Y. WuF.F. LiuX.H. Cathepsin C inhibitors as anti-inflammatory drug discovery: Challenges and opportunities.Eur. J. Med. Chem.202122511381810.1016/j.ejmech.2021.113818 34492551
    [Google Scholar]
  86. SharmaP. GargN. SharmaA. CapalashN. SinghR. Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers.Int. J. Med. Microbiol.2019309815135410.1016/j.ijmm.2019.151354 31495663
    [Google Scholar]
  87. VáradyC.B.S. OliveiraA.C. MonteiroR.Q. GomesT. Recombinant human DNase I for the treatment of cancer-associated thrombosis: A pre-clinical study.Thromb. Res.202120313113710.1016/j.thromres.2021.04.028 34015562
    [Google Scholar]
  88. ParkJ. WysockiR.W. AmoozgarZ. MaiorinoL. FeinM.R. JornsJ. SchottA.F. Kinugasa-KatayamaY. LeeY. WonN.H. NakasoneE.S. HearnS.A. KüttnerV. QiuJ. AlmeidaA.S. PerurenaN. KessenbrockK. GoldbergM.S. EgebladM. Cancer cells induce metastasis-supporting neutrophil extracellular DNA traps.Sci. Transl. Med.20168361361ra13810.1126/scitranslmed.aag1711 27798263
    [Google Scholar]
  89. SadtlerK. EstrellasK. AllenB.W. WolfM.T. FanH. TamA.J. PatelC.H. LuberB.S. WangH. WagnerK.R. PowellJ.D. HousseauF. PardollD.M. ElisseeffJ.H. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells.Science2016352628336637010.1126/science.aad9272 27081073
    [Google Scholar]
  90. ChenJ. HouS. LiangQ. HeW. LiR. WangH. ZhuY. ZhangB. ChenL. DaiX. ZhangT. RenJ. DuanH. Localized degradation of neutrophil extracellular traps by photoregulated enzyme delivery for cancer immunotherapy and metastasis suppression.ACS Nano20221622585259710.1021/acsnano.1c09318 35080858
    [Google Scholar]
  91. LewisH.D. LiddleJ. CooteJ.E. AtkinsonS.J. BarkerM.D. BaxB.D. BickerK.L. BinghamR.P. CampbellM. ChenY.H. ChungC. CraggsP.D. DavisR.P. EberhardD. JobertyG. LindK.E. LockeK. MallerC. MartinodK. PattenC. PolyakovaO. RiseC.E. RüdigerM. SheppardR.J. SladeD.J. ThomasP. ThorpeJ. YaoG. DrewesG. WagnerD.D. ThompsonP.R. PrinjhaR.K. WilsonD.M. Inhibition of PAD4 activity is sufficient to disrupt mouse and human NET formation.Nat. Chem. Biol.201511318919110.1038/nchembio.1735 25622091
    [Google Scholar]
  92. ZengJ. XuH. FanP. XieJ. HeJ. YuJ. GuX. ZhangC. Kaempferol blocks neutrophil extracellular traps formation and reduces tumour metastasis by inhibiting ROS‐PAD4 pathway.J. Cell. Mol. Med.202024137590759910.1111/jcmm.15394 32427405
    [Google Scholar]
  93. GuayD. BeaulieuC. David PercivalM. Therapeutic utility and medicinal chemistry of cathepsin C inhibitors.Curr. Top. Med. Chem.201010770871610.2174/156802610791113469 20337582
    [Google Scholar]
  94. XiaoY. CongM. LiJ. HeD. WuQ. TianP. WangY. YangS. LiangC. LiangY. WenJ. LiuY. LuoW. LvX. HeY. ChengD. ZhouT. ZhaoW. ZhangP. ZhangX. XiaoY. QianY. WangH. GaoQ. YangQ. YangQ. HuG. Cathepsin C promotes breast cancer lung metastasis by modulating neutrophil infiltration and neutrophil extracellular trap formation.Cancer Cell2021393423437.e710.1016/j.ccell.2020.12.012 33450198
    [Google Scholar]
  95. ChenQ. ZhangL. LiX. ZhuoW. Neutrophil extracellular traps in tumor metastasis: Pathological functions and clinical applications.Cancers (Basel)20211311283210.3390/cancers13112832 34204148
    [Google Scholar]
  96. LiR. LiuH. DilgerJ.P. LinJ. Effect of Propofol on breast Cancer cell, the immune system, and patient outcome.BMC Anesthesiol.20181817710.1186/s12871‑018‑0543‑3 29945542
    [Google Scholar]
  97. LiR. XiaoC. LiuH. HuangY. DilgerJ.P. LinJ. Effects of local anesthetics on breast cancer cell viability and migration.BMC Cancer201818166610.1186/s12885‑018‑4576‑2 29914426
    [Google Scholar]
  98. LiuH. DilgerJ.P. LinJ. Lidocaine suppresses viability and migration of human breast cancer cells: TRPM7 as a target for some breast cancer cell lines.Cancers (Basel)202113223410.3390/cancers13020234 33435261
    [Google Scholar]
  99. NakazawaD. KumarS. DesaiJ. AndersH.J. Neutrophil extracellular traps in tissue pathology.Histol. Histopathol.201732320321327593980
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073376243250130060239
Loading
/content/journals/cchts/10.2174/0113862073376243250130060239
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test