Skip to content
2000
image of Causal Association between Arm Fat, Left Leg Fat, and Trunk Fat Masses and Risk of Polycystic Ovarian Syndrome: A Mendelian Randomization Study

Abstract

Background

Observational studies have reported that arm fat, left leg fat, and trunk fat masses have different effects on polycystic ovarian syndrome (PCOS). However, the causal relationship between them remains unknown.

Materials and Methods

A two-sample Mendelian randomization (MR) study was conducted by utilizing pooled data from the largest Genome-Wide Association Study (GWAS). Random effect inverse variance weighted (IVW) method, weighted median (WM), and MR-Egger regression analysis were the main statistical methods utilized. Finally, a sensitivity assessment was conducted. Cochran’s Q test was used to analyze heterogeneity, whereas MR-Egger regression (intercept term) was used to analyze horizontal pleiotropy. The leave-one-out analysis was performed to assess if MR estimates were impacted by a single nucleotide polymorphism (SNP) exhibiting significant horizontal pleiotropy.

Results

This study discovered a significant positive correlation between left leg fat mass, arm fat mass, and trunk fat mass and genetic factors of PCOS (odds ratio (OR): 4.452, confidence interval (CI): 2.740−7.232, p < 0.001, OR: 3.321, CI: 2.248−4.907, p < 0.001, and OR: 2.518, CI: 1.722−3.682, p < 0.001, respectively).

Conclusion

This study indicates that arm fat, left leg fat, and trunk fat masses may be genetically correlated with PCOS.

Loading

Article metrics loading...

/content/journals/cchts/10.2174/0113862073325251241101054306
2025-01-09
2025-09-14
Loading full text...

Full text loading...

References

  1. Azziz R. Carmina E. Chen Z. Dunaif A. Laven J.S.E. Legro R.S. Lizneva D. Natterson-Horowtiz B. Teede H.J. Yildiz B.O. Polycystic ovary syndrome. Nat. Rev. Dis. Primers 2016 2 1 16057 10.1038/nrdp.2016.57 27510637
    [Google Scholar]
  2. Zhang J. Li Y. Gong A. Wang J. From proteome to pathogenesis: investigating polycystic ovary syndrome with Mendelian randomization analysis. Front. Endocrinol. 2024 15 1442483 10.3389/fendo.2024.1442483 39314522
    [Google Scholar]
  3. Rosenfield R.L. Ehrmann D.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr. Rev. 2016 37 5 467 520 10.1210/er.2015‑1104 27459230
    [Google Scholar]
  4. Zhang J. Fan P. Liu H. Bai H. Wang Y. Zhang F. Apolipoprotein A-I and B levels, dyslipidemia and metabolic syndrome in south-west Chinese women with PCOS. Hum. Reprod. 2012 27 8 2484 2493 10.1093/humrep/des191 22674204
    [Google Scholar]
  5. Amiri M. Hatoum S. Hopkins D. Buyalos R.P. Ezeh U. Pace L.A. Bril F. Sheidaei A. Azziz R. The association between obesity and Polycystic Ovary Syndrome: An epidemiologic study of observational data. J. Clin. Endocrinol. Metab. 2024 109 10 2640 2657 10.1210/clinem/dgae488 39078989
    [Google Scholar]
  6. Dutkiewicz E. Rachoń D. Dziedziak M. Kowalewska A. Moryś J. Depression, higher level of tension induction, and impaired coping strategies in response to stress in women with PCOS correlate with clinical and laboratory indices of hyperandrogenism and not with central obesity and insulin resistance. Arch. Womens Ment. Heal. 2024 Epub ahead of print. 10.1007/s00737‑024‑01500‑x
    [Google Scholar]
  7. Kong Y. Yang G. Feng X. Ji Z. Wang X. Shao Y. Meng J. Yao G. Ren C. Yang G. CTBP1 links metabolic syndrome to polycystic ovary syndrome through interruption of aromatase and SREBP1. Commun. Biol. 2024 7 1 1174 10.1038/s42003‑024‑06857‑4 39294274
    [Google Scholar]
  8. Veličković N. Mićić B. Teofilović A. Milovanovic M. Jovanović M. Djordjevic A. Macut D. Milutinović D. Overfeeding in the early postnatal period aggravates inflammation and hepatic insulin sensitivity in the 5α-dihydrotestosterone-induced animal model of PCOS. Front. Endocrinol. 2024 15 1402905 10.3389/fendo.2024.1402905 39268230
    [Google Scholar]
  9. Luo M. Zheng L.W. Wang Y.S. Huang J.C. Yang Z.Q. Yue Z.P. Guo B. Genistein exhibits therapeutic potential for PCOS mice via the ER-Nrf2-Foxo1-ROS pathway. Food Funct. 2021 12 18 8800 8811 10.1039/D1FO00684C 34374402
    [Google Scholar]
  10. González F. Rote N.S. Minium J. Kirwan J.P. Increased activation of nuclear factor kappaB triggers inflammation and insulin resistance in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2006 91 4 1508 1512 10.1210/jc.2005‑2327 16464947
    [Google Scholar]
  11. Albardan L. Platat C. Kalupahana N.S. Role of omega-3 fatty acids in improving metabolic dysfunctions in polycystic ovary syndrome. Nutrients 2024 16 17 2961 10.3390/nu16172961 39275277
    [Google Scholar]
  12. Virtanen N. Saarela U. Karpale M. Arffman R.K. Mäkelä K.A. Herzig K.H. Koivunen P. Piltonen T. Roxadustat alleviates metabolic traits in letrozole-induced PCOS mice. Biochem. Pharmacol. 2024 229 116522 10.1016/j.bcp.2024.116522 39245394
    [Google Scholar]
  13. Stańczak N.A. Grywalska E. Dudzińska E. The latest reports and treatment methods on polycystic ovary syndrome. Ann. Med. 2024 56 1 2357737 10.1080/07853890.2024.2357737 38965663
    [Google Scholar]
  14. González F. Rote N.S. Minium J. Kirwan J.P. Evidence of proatherogenic inflammation in polycystic ovary syndrome. Metabolism 2009 58 7 954 962 10.1016/j.metabol.2009.02.022 19375763
    [Google Scholar]
  15. Li X. Yang J. Blockeel C. Lin M. Tian X. Wu H. Cao Y. Deng L. Zhou X. Xie J. Hu Y. Chen X. Association of severity of menstrual dysfunction with cardiometabolic risk markers among women with polycystic ovary syndrome. Acta Obstet. Gynecol. Scand. 2024 103 8 1606 1614 10.1111/aogs.14863 38715377
    [Google Scholar]
  16. Harada M. Pathophysiology of polycystic ovary syndrome revisited: Current understanding and perspectives regarding future research. Reprod. Med. Biol. 2022 21 1 e12487 10.1002/rmb2.12487 36310656
    [Google Scholar]
  17. Dabadghao P. Polycystic ovary syndrome in adolescents. Best Pract. Res. Clin. Endocrinol. Metab. 2019 33 3 101272 10.1016/j.beem.2019.04.006 31027973
    [Google Scholar]
  18. Chang K.J. Chen J.H. Chen K.H. The pathophysiological mechanism and clinical treatment of Polycystic Ovary Syndrome: A molecular and cellular review of the literature. Int. J. Mol. Sci. 2024 25 16 9037 10.3390/ijms25169037 39201722
    [Google Scholar]
  19. Wang Z. Van Faassen M. Groen H. Cantineau A.E.P. Van Oers A. Van der Veen A. Hawley J.M. Keevil B.G. Kema I.P. Hoek A. Resumption of ovulation in anovulatory women with PCOS and obesity is associated with reduction of 11β-hydroxyandrostenedione concentrations. Hum. Reprod. 2024 39 5 1078 1088 10.1093/humrep/deae058
    [Google Scholar]
  20. Zheng L. Yang L. Guo Z. Yao N. Zhang S. Pu P. Obesity and its impact on female reproductive health: Unraveling the connections. Front. Endocrinol. 2024 14 1326546 10.3389/fendo.2023.1326546 38264286
    [Google Scholar]
  21. Armanini D. Boscaro M. Bordin L. Sabbadin C. Controversies in the pathogenesis, diagnosis and treatment of PCOS: Focus on insulin resistance, inflammation, and hyperandrogenism. Int. J. Mol. Sci. 2022 23 8 4110 10.3390/ijms23084110 35456928
    [Google Scholar]
  22. Zhang S. Tu H. Yao J. Le J. Jiang Z. Tang Q. Zhang R. Huo P. Lei X. Combined use of Diane-35 and metformin improves the ovulation in the PCOS rat model possibly via regulating glycolysis pathway. Reprod. Biol. Endocrinol. 2020 18 1 58 10.1186/s12958‑020‑00613‑z 32493421
    [Google Scholar]
  23. Parween S. Rihs S. Flück C.E. Metformin inhibits the activation of melanocortin receptors 2 and 3 in vitro: A possible mechanism for its anti-androgenic and weight balancing effects in vivo? J. Steroid Biochem. Mol. Biol. 2020 200 105684 10.1016/j.jsbmb.2020.105684 32360359
    [Google Scholar]
  24. Zhao Y. Pang J. Fang X. Yan Z. Yang H. Deng Q. Ma T. Lv M. Li Y. Tu Z. Zou L. Causal relationships between modifiable risk factors and polycystic ovary syndrome: A comprehensive Mendelian randomization study. Front. Endocrinol. 2024 15 1348368 10.3389/fendo.2024.1348368 38779450
    [Google Scholar]
  25. Cai J. Yue J. Lu N. Li S. Zheng J. Huang R. Jiang Y. Shan C. Liu W. Ma J. Wang L. Association of fat mass and skeletal muscle mass with cardiometabolic risk varied in distinct PCOS subtypes: A propensity score-matched case-control study. J. Clin. Med. 2024 13 2 483 10.3390/jcm13020483 38256617
    [Google Scholar]
  26. Echiburú B. Pérez-Bravo F. Galgani J.E. Sandoval D. Saldías C. Crisosto N. Maliqueo M. Sir-Petermann T. Enlarged adipocytes in subcutaneous adipose tissue associated to hyperandrogenism and visceral adipose tissue volume in women with polycystic ovary syndrome. Steroids 2018 130 15 21 10.1016/j.steroids.2017.12.009 29273198
    [Google Scholar]
  27. Glintborg D. Petersen M.H. Ravn P. Hermann A.P. Andersen M. Comparison of regional fat mass measurement by whole body DXA scans and anthropometric measures to predict insulin resistance in women with polycystic ovary syndrome and controls. Acta Obstet. Gynecol. Scand. 2016 95 11 1235 1243 10.1111/aogs.12964 27529295
    [Google Scholar]
  28. Zhu S. Li Z. Hu C. Sun F. Wang C. Yuan H. Li Y. Imaging-based body fat distribution in Polycystic Ovary Syndrome: A systematic review and meta-analysis. Front. Endocrinol. 2021 12 697223 10.3389/fendo.2021.697223 34566888
    [Google Scholar]
  29. Dumesic D.A. Padmanabhan V. Chazenbalk G.D. Abbott D.H. Polycystic ovary syndrome as a plausible evolutionary outcome of metabolic adaptation. Reprod. Biol. Endocrinol. 2022 20 1 12 10.1186/s12958‑021‑00878‑y 35012577
    [Google Scholar]
  30. Dumesic D.A. Akopians A.L. Madrigal V.K. Ramirez E. Margolis D.J. Sarma M.K. Thomas A.M. Grogan T.R. Haykal R. Schooler T.A. Okeya B.L. Abbott D.H. Chazenbalk G.D. Hyperandrogenism accompanies increased intra-abdominal fat storage in normal weight Polycystic Ovary Syndrome Women. J. Clin. Endocrinol. Metab. 2016 101 11 4178 4188 10.1210/jc.2016‑2586 27571186
    [Google Scholar]
  31. Teede H. Deeks A. Moran L. Polycystic ovary syndrome: A complex condition with psychological, reproductive and metabolic manifestations that impacts on health across the lifespan. BMC Med. 2010 8 1 41 10.1186/1741‑7015‑8‑41 20591140
    [Google Scholar]
  32. Zhu S. Zhang B. Jiang X. Li Z. Zhao S. Cui L. Chen Z.J. Metabolic disturbances in non-obese women with polycystic ovary syndrome: A systematic review and meta-analysis. Fertil. Steril. 2019 111 1 168 177 10.1016/j.fertnstert.2018.09.013 30611404
    [Google Scholar]
  33. Burgess S. Daniel R.M. Butterworth A.S. Thompson S.G. Network Mendelian randomization: using genetic variants as instrumental variables to investigate mediation in causal pathways. Int. J. Epidemiol. 2015 44 2 484 495 10.1093/ije/dyu176 25150977
    [Google Scholar]
  34. Lawlor D.A. Commentary: Two-sample Mendelian randomization: opportunities and challenges. Int. J. Epidemiol. 2016 45 3 908 915 10.1093/ije/dyw127 27427429
    [Google Scholar]
  35. Lovegrove C.E. Howles S.A. Furniss D. Holmes M.V. Causal inference in health and disease: a review of the principles and applications of Mendelian randomization. J. Bone Miner. Res. 2024 zjae136 10.1093/jbmr/zjae136 39167758
    [Google Scholar]
  36. Ren Y. Zhang Y. Cheng Y. Qin H. Zhao H. Genetic liability of gut microbiota for idiopathic pulmonary fibrosis and lung function: A two-sample Mendelian randomization study. Front. Cell. Infect. Microbiol. 2024 14 1348685 10.3389/fcimb.2024.1348685 38841114
    [Google Scholar]
  37. Milchevskaya V. Bugnon P. ten Buren E.B.J. Vanhecke D. Brand F. Tresch A. Buch T. Group size planning for breedings of gene-modified mice and other organisms following Mendelian inheritance. Lab Anim. 2023 52 8 183 188 10.1038/s41684‑023‑01213‑1 37488410
    [Google Scholar]
  38. Li J. Li C. Huang Y. Guan P. Huang D. Yu H. Yang X. Liu L. Mendelian randomization analyses in ocular disease: A powerful approach to causal inference with human genetic data. J. Transl. Med. 2022 20 1 621 10.1186/s12967‑022‑03822‑9 36572895
    [Google Scholar]
  39. Richardson T.G. Hemani G. Gaunt T.R. Relton C.L. Davey Smith G. A transcriptome-wide Mendelian randomization study to uncover tissue-dependent regulatory mechanisms across the human phenome. Nat. Commun. 2020 11 1 185 10.1038/s41467‑019‑13921‑9 31924771
    [Google Scholar]
  40. Normand E.A. Braxton A. Nassef S. Ward P.A. Vetrini F. He W. Patel V. Qu C. Westerfield L.E. Stover S. Dharmadhikari A.V. Muzny D.M. Gibbs R.A. Dai H. Meng L. Wang X. Xiao R. Liu P. Bi W. Xia F. Walkiewicz M. Van den Veyver I.B. Eng C.M. Yang Y. Clinical exome sequencing for fetuses with ultrasound abnormalities and a suspected Mendelian disorder. Genome Med. 2018 10 1 74 10.1186/s13073‑018‑0582‑x 30266093
    [Google Scholar]
  41. Norouzitallab P. Baruah K. Vanrompay D. Bossier P. Can epigenetics translate environmental cues into phenotypes? Sci. Total Environ. 2019 647 1281 1293 10.1016/j.scitotenv.2018.08.063 30180336
    [Google Scholar]
  42. Liu J. Zhou Y. Liu S. Song X. Yang X.Z. Fan Y. Chen W. Akdemir Z.C. Yan Z. Zuo Y. Du R. Liu Z. Yuan B. Zhao S. Liu G. Chen Y. Zhao Y. Lin M. Zhu Q. Niu Y. Liu P. Ikegawa S. Song Y.Q. Posey J.E. Qiu G. Zhang F. Wu Z. Lupski J.R. Wu N. The coexistence of copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) at a locus can result in distorted calculations of the significance in associating SNPs to disease. Hum. Genet. 2018 137 6-7 553 567 10.1007/s00439‑018‑1910‑3 30019117
    [Google Scholar]
  43. Haycock P.C. Burgess S. Wade K.H. Bowden J. Relton C. Davey Smith G. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am. J. Clin. Nutr. 2016 103 4 965 978 10.3945/ajcn.115.118216 26961927
    [Google Scholar]
  44. Alageel A.A. Alshammary A.F. Ali Khan I. Molecular role of non-exonic variants in CALPAIN 10 gene in polycystic ovarian syndrome in Saudi women. Front. Endocrinol. 2023 14 1303747 10.3389/fendo.2023.1303747 38213994
    [Google Scholar]
  45. Singh S. Kaur M. Beri A. Kaur A. Significance of LHCGR polymorphisms in polycystic ovary syndrome: An association study. Sci. Rep. 2023 13 1 22841 10.1038/s41598‑023‑48881‑0 38129424
    [Google Scholar]
  46. Granados M.C. Villalba G.E. Castro M. Exploring genetic interactions in colombian women with Polycystic Ovarian Syndrome: A study on SNP-SNP associations. Int. J. Mol. Sci. 2024 25 17 9212 10.3390/ijms25179212 39273163
    [Google Scholar]
  47. Cooney L.G. Gyorfi K. Sanneh A. Bui L.M. Mousa A. Tay C.T. Teede H. Stener-Victorin E. Brennan L. Increased prevalence of binge eating disorder and bulimia nervosa in women with Polycystic Ovary Syndrome: A systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 2024 dgae462 10.1210/clinem/dgae462 39115340
    [Google Scholar]
  48. Sabag A. Patten R.K. Moreno-Asso A. Colombo G.E. Dafauce Bouzo X. Moran L.J. Harrison C. Kazemi M. Mousa A. Tay C.T. Hirschberg A.L. Redman L.M. Teede H.J. Exercise in the management of polycystic ovary syndrome: A position statement from exercise and sports science Australia. J. Sci. Med. Sport 2024 27 10 668 677 10.1016/j.jsams.2024.05.015 38960811
    [Google Scholar]
  49. Mao L. Liu A. Zhang X. Effects of intermittent fasting on female reproductive function: A review of animal and human studies. Curr. Nutr. Rep. 2024 10.1007/s13668‑024‑00569‑1 39320714
    [Google Scholar]
  50. Niepsuj J. Piwowar A. Franik G. Bizoń A. Impact of smoking and obesity on the selected peptide hormones and metabolic parameters in the blood of women with polycystic ovary syndrome—preliminary study. Int. J. Mol. Sci. 2024 25 16 8713 10.3390/ijms25168713 39201400
    [Google Scholar]
  51. Wang S. Xu K. Du W. Gao X. Ma P. Yang X. Chen M. Exposure to environmental doses of DEHP causes phenotypes of polycystic ovary syndrome. Toxicology 2024 509 153952 10.1016/j.tox.2024.153952 39265699
    [Google Scholar]
  52. Parker J. O’Brien C. Yeoh C. Gersh F. Brennecke S. Reducing the risk of pre-eclampsia in women with polycystic ovary syndrome using a combination of pregnancy screening, lifestyle, and medical management strategies. J. Clin. Med. 2024 13 6 1774 10.3390/jcm13061774 38541997
    [Google Scholar]
  53. Goss A.M. Chandler-Laney P.C. Ovalle F. Goree L.L. Azziz R. Desmond R.A. Wright Bates G. Gower B.A. Effects of a eucaloric reduced-carbohydrate diet on body composition and fat distribution in women with PCOS. Metabolism 2014 63 10 1257 1264 10.1016/j.metabol.2014.07.007 25125349
    [Google Scholar]
  54. de Zegher F. Díaz M. Ibáñez L. Adolescent polycystic ovary syndrome without obesity: HOTAIR rs1443512 genotype relates to fat mass and to the redistribution of fat mass on low-dose pioglitazone. J. Endocrinol. Invest. 2023 47 4 1037 1043 10.1007/s40618‑023‑02206‑0 37805962
    [Google Scholar]
  55. Liu Q. Zhu Z. Kraft P. Deng Q. Stener-Victorin E. Jiang X. Genomic correlation, shared loci, and causal relationship between obesity and polycystic ovary syndrome: A large-scale genome-wide cross-trait analysis. BMC Med. 2022 20 1 66 10.1186/s12916‑022‑02238‑y 35144605
    [Google Scholar]
  56. Romualdi D. Versace V. Tagliaferri V. De Cicco S. Immediata V. Apa R. Guido M. Lanzone A. The resting metabolic rate in women with polycystic ovary syndrome and its relation to the hormonal milieu, insulin metabolism, and body fat distribution: a cohort study. J. Endocrinol. Invest. 2019 42 9 1089 1097 10.1007/s40618‑019‑01029‑2 30847861
    [Google Scholar]
  57. Kuai D. Tang Q. Wang X. Yan Q. Tian W. Zhang H. Relationship between serum apelin, visfatin levels, and body composition in Polycystic Ovary Syndrome patients. Eur. J. Obstet. Gynecol. Reprod. Biol. 2024 297 24 29 10.1016/j.ejogrb.2024.03.034 38555852
    [Google Scholar]
  58. Ferrer M.L. Sánchez E. Gonzalo J.J. Prieto-Sánchez M.T. González I. Barnosi A. Mendiola J. Cantero A.M. Body composition and characterization of skinfold thicknesses from polycystic ovary syndrome phenotypes. A preliminar case-control study. Int. J. Environ. Res. Public Health 2021 18 6 2977 10.3390/ijerph18062977 33799425
    [Google Scholar]
  59. Kogure G.S. Miranda-Furtado C.L. Silva R.C. Melo A.S. Ferriani R.A. De Sá M.F.S. Reis R.M.D. Resistance exercise impacts lean muscle mass in women with Polycystic Ovary Syndrome. Med. Sci. Sports Exerc. 2016 48 4 589 598 10.1249/MSS.0000000000000822 26587847
    [Google Scholar]
  60. Wehr E. Möller R. Horejsi R. Giuliani A. Kopera D. Schweighofer N. Groselj-Strele A. Pieber T.R. Obermayer-Pietsch B. Subcutaneous adipose tissue topography and metabolic disturbances in polycystic ovary syndrome. Wien. Klin. Wochenschr. 2009 121 7-8 262 269 10.1007/s00508‑009‑1162‑2 19562283
    [Google Scholar]
  61. Votruba S.B. Mattison R.S. Dumesic D.A. Koutsari C. Jensen M.D. Meal fatty acid uptake in visceral fat in women. Diabetes 2007 56 10 2589 2597 10.2337/db07‑0439 17664244
    [Google Scholar]
  62. de Medeiros S.F. Barbosa J.S. Yamamoto M.M.W. Comparison of steroidogenic pathways among normoandrogenic and hyperandrogenic polycystic ovary syndrome patients and normal cycling women. J. Obstet. Gynaecol. Res. 2015 41 2 254 263 10.1111/jog.12524 25256274
    [Google Scholar]
  63. Kumarendran B. O’Reilly M.W. Manolopoulos K.N. Toulis K.A. Gokhale K.M. Sitch A.J. Wijeyaratne C.N. Coomarasamy A. Arlt W. Nirantharakumar K. Polycystic ovary syndrome, androgen excess, and the risk of nonalcoholic fatty liver disease in women: A longitudinal study based on a United Kingdom primary care database. PLoS Med. 2018 15 3 e1002542 10.1371/journal.pmed.1002542 29590099
    [Google Scholar]
  64. Kahal H. Kyrou I. Uthman O.A. Brown A. Johnson S. Wall P.D.H. Metcalfe A. Parr D.G. Tahrani A.A. Randeva H.S. The prevalence of obstructive sleep apnoea in women with polycystic ovary syndrome: A systematic review and meta-analysis. Sleep Breath. 2020 24 1 339 350 10.1007/s11325‑019‑01835‑1 31111411
    [Google Scholar]
  65. Yang S. Wang Q. Huang W. Song Y. Feng G. Zhou L. Tan J. Are serum chemerin levels different between obese and non-obese polycystic ovary syndrome women? Gynecol. Endocrinol. 2016 32 1 38 41 10.3109/09513590.2015.1075501 26291816
    [Google Scholar]
  66. Borruel S. Durán E. Alpañés M. Martí D. Blasco F. Ramírez M. Morreale H.F. Global adiposity and thickness of intraperitoneal and mesenteric adipose tissue depots are increased in women with polycystic ovary syndrome (PCOS). J. Clin. Endocrinol. Metab. 2013 98 3 1254 1263 10.1210/jc.2012‑3698 23386652
    [Google Scholar]
  67. Neeland I.J. Ross R. Després J.P. Matsuzawa Y. Yamashita S. Shai I. Seidell J. Magni P. Santos R.D. Arsenault B. Cuevas A. Hu F.B. Griffin B. Zambon A. Barter P. Fruchart J.C. Eckel R.H. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: A position statement. Lancet Diabetes Endocrinol. 2019 7 9 715 725 10.1016/S2213‑8587(19)30084‑1 31301983
    [Google Scholar]
  68. Carmina E. Bucchieri S. Mansueto P. Rini G. Ferin M. Lobo R.A. Circulating levels of adipose products and differences in fat distribution in the ovulatory and anovulatory phenotypes of polycystic ovary syndrome. Fertil. Steril. 2009 91 4 Suppl. 1332 1335 10.1016/j.fertnstert.2008.03.007 18455165
    [Google Scholar]
  69. Choudhury A.K. Jena D. Mangaraj S. Singh M. Mohanty B. Baliarsinha A. Study of visceral and subcutaneous abdominal fat thickness and its correlation with cardiometabolic risk factors and hormonal parameters in polycystic ovary syndrome. Indian J. Endocrinol. Metab. 2018 22 3 321 327 10.4103/ijem.IJEM_646_17 30090722
    [Google Scholar]
  70. Teede H.J. Tay C.T. Laven J. Dokras A. Moran L.J. Piltonen T.T. Costello M.F. Boivin J. Redman L.M. Boyle J.A. Norman R.J. Mousa A. Joham A.E. Arlt W. Azziz R. Balen A. Bedson L. Berry L. Boivin J. Boyle J. Brennan L. Brown W. Burgert T. Busby M. Ee C. Garad R.M. Gibson-Helm M. Harrison C. Hart R. Hopkins K. Hirschberg A.L. Ho T. Hoeger K. Jordan C. Legro R.S. Li R. Lujan M. Ma R. Mansfield D. Marsh K. Mocanu E. Mol B. Mormon R. Norman R. Oberfield S. Patel M. Pattuwage L. Peña A. Redman L. Rombauts L. Romualdi D. Shah D. Spritzer P.M. Stener-Victorin E. Tehrani F.R. Thangaratinam S. Thondan M. Vanky E. Wijeyaratne C. Witchel S. Yang D. Yildiz B. Alesi S. Alur-Gupta S. Avery J. Khomami M.B. Benham J. Bidstrup H. Chua S.J. Cooney L. Coster T. Ee C. Fitz V. Flanagan M. Forslund M. Jiskoot G. Kazemi M. Kempegowda P. Louwers Y. Lujan M. Melin J. Melson E. Mengistu Y.B. Naderpoor N. Neven A. Pastoor H. Rocha T. Sabag A. Subramanian A. Tan K. Recommendations from the 2023 International evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2023 38 9 1655 1679 10.1093/humrep/dead156 37580037
    [Google Scholar]
  71. Darand M. Sadeghi N. Salimi Z. Nikbaf-Shandiz M. Panjeshahin A. Fateh H.L. Hosseinzadeh M. Is the MIND diet useful for polycystic ovary syndrome? A case-control study. BMC Womens Health 2024 24 1 282 10.1186/s12905‑024‑03090‑3 38724955
    [Google Scholar]
  72. Wang Y. Chen L. Tao Y. Luo M. Risk factors of ectopic pregnancy after in vitro fertilization-embryo transfer in Chinese population: A meta-analysis. PLoS One 2024 19 1 e0296497 10.1371/journal.pone.0296497 38166058
    [Google Scholar]
  73. Doğan Ş.E. Kuşkonmaz Ş.M. Koc G. Aypar E. Çulha C. Case series: Exposure to glucagon-like peptide-1 receptor agonist in the first trimester of pregnancy in two siblings. Endocr. Metab. Immune Disord. Drug Targets 2023 24 10 1237 1239 37937565
    [Google Scholar]
  74. Tosti G. Barberio A. Tartaglione L. Rizzi A. Di Leo M. Viti L. Sirico A. De Carolis S. Pontecorvi A. Lanzone A. Pitocco D. Lights and shadows on the use of metformin in pregnancy: From the preconception phase to breastfeeding and beyond. Front. Endocrinol. 2023 14 1176623 10.3389/fendo.2023.1176623 37409227
    [Google Scholar]
  75. Fang Y.Q. Zhang H.K. Wei Q.Q. Li Y.H. Brown adipose tissue‐derived exosomes improve polycystic ovary syndrome in mice via STAT3 / GPX4 signaling pathway. FASEB J. 2024 38 18 e70062 10.1096/fj.202401346R 39305125
    [Google Scholar]
/content/journals/cchts/10.2174/0113862073325251241101054306
Loading
/content/journals/cchts/10.2174/0113862073325251241101054306
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Mendelian randomization ; trunk fat ; Polycystic ovarian syndrome ; arm fat ; left leg fat
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test