Current Pharmaceutical Biotechnology - Online First
Description text for Online First listing goes here...
41 - 60 of 72 results
-
-
In-vitro, In-vivo and Molecular Docking Studies on Dietary Supplement Containing Polar and Non-polar fractions of Persea Americana for Management of Diet-related Chronic Diseases
Authors: Doha A. Mohamed, Gamil Ibrahim, Hoda B. Mabrok and Ibrahim HamedAvailable online: 05 March 2025More LessBackgroundDiet-related chronic diseases, such as cardiovascular diseases, obesity, diabetes, autoimmune diseases and cancer, are largely preventable with a healthy diet and lifestyle. Therefore, searching for dietary supplements rich in antioxidant and anti-inflammatory phytochemicals for the prevention and/or management of diet-related chronic diseases is an important strategy for controlling these diseases to reduce healthcare costs and sustain development.
ObjectiveThe aim of the current research was to prepare dietary supplements from avocado fruit pulp [AFPDS] and evaluate their potential against various diet-related chronic diseases through in-vitro , in-vivo , and molecular docking studies.
MethodsVolatile compounds of avocado pulp were evaluated, and the total phenolic compounds, fatty acids, and phytosterols profiles of the AFPDS were determined.
ResultsD-limonene, methyl propanoate, isobutyl propanoate and pentanol were the principal volatile compounds in the avocado pulp. Total phenolic and flavonoids were present in the AFPDS by 9.65 mg GAE/g and 6.87 mg CE/g, respectively. Chlorogenic acid and cinnamic acid were the major and minor identified phenolic compounds in AFPDS, respectively. Oleic acid [75.06%] and β-Sitosterol [2.19%] were the highest fatty acid and phytosterol present in AFPDS, respectively. AFPDS recorded anti-inflammatory activity against nitric oxide [NO] production in RAW264.7 macrophages by 98.2µg/ml [IC50] and 164.8µg/ml [IC90]. AFPDS showed significant anti-inflammatory activity against carrageenan-induced rat paw edema. AFPDS showed antioxidant activity against DPPH and ABTS by 8.67 mg TE/g and 6.14 mg TE/g. AFPDS possessed anti-cancer activity against MCF7 and HPG2 at10.8µg/ml and 40.5µg/ml, respectively. AFPDS exhibited anti-diabetic activity as an inhibitor of α-amylase and α-glucosidase by26.35±0.77μg/ml and 0.55±0.163mg/ml, respectively. Molecular docking studies revealed high binding affinity of different active compounds present in AFPDS with cyclooxygenase-2, glutathione peroxidase, α-glucosidase and B-cell lymphoma-extra-large proteins.
ConclusionAFPDS can be considered a new agent for the prevention and treatment of diet-related chronic diseases, such as diabetes and cancer, due to its anti-inflammatory, antioxidant, anticancer, and anti-diabetic activities, as demonstrated through in-vivo , in-vitro , and molecular docking studies.
-
-
-
In vitro Antibiofilm Activity-directed In silico Identification of Natural Products Targeting Bacterial Biofilm Regulators SarA and LasR
Available online: 18 February 2025More LessBackgroundAntibiofilm agents serve as an essential tool in the fight against antibiotic resistance, and natural products provide a promising source for potential drug leads.
ObjectiveThis study investigates the activity of twenty Bangladeshi medicinal plants against Staphylococcus aureus and Pseudomonas aeruginosa biofilms and predicts the interactions of selected phytochemicals from five of the best performing plants with the active sites of transcriptional regulatory proteins SarA of S. aureus and LasR of P. aeruginosa.
MethodsThe plant extracts were tested by microtiter plate-based assay against S. aureus and P. aeruginosa biofilms. Molecular docking and molecular dynamics simulation (MD) were conducted using PyRx and GROMACS, respectively.
ResultsThe best activity was identified for Cassia fistula and Ananas comosus, showing ≥ 75% inhibition of biofilm formation. ent-Epicatechin-(4α→8)-epiafzelechin (EEE) of C. fistula, cyanidin-3,3',5-tri-O-β-D-glucopyranoside (CTG) of A. comosus, and 7-O-(4-hydroxy-E-cinnamoyl)-spinoside of A. spinosus showed the best predictive binding affinity (-7.6, -7.6 and -7.7 kcal/mol, respectively) for SarA. EEE was the only ligand to exhibit a stable ligand-protein complex with SarA in the MD simulation of 200 ns (binding energy of MMPBSA analysis -39.899 kJ/mol). Chrysophanol, epicatechin and physcion, of C. fistula (-10.5, -10.5, and -11.0 kcal/mol, respectively) and auraptene of F. limonia (-10.8 kcal/mol) showed the best predictive binding affinity for LasR. Epicatechin showed the most stable ligand-protein complex with LasR (binding energy of MMPBSA analysis -63.717 kJ/mol).
ConclusionEpicatechin and its derivative EEE could be used as scaffolds for the development of new antibiofilm agents against P. aeruginosa and S. aureus, respectively.
-
-
-
The Role of Immunosenescence and Inflammaging in the Susceptibility of Older Adults to SARS-CoV-2 Infection
Available online: 13 February 2025More LessCOVID-19 is an ongoing pandemic caused by the SARS-CoV-2 coronavirus that is one of the most significant challenges to public health over the past few years. Most people are vulnerable to SARS-CoV-2, but older adults are more vulnerable. Aging is one of the major risk factors for the detrimental consequences of COVID-19, likely due to chronic inflammation and immunosenescence, both of which are the characteristics of old age. Immunosenescence refers to the weakening of the immune system with age while inflammaging describes the low-grade chronic inflammation seen in older individuals. One key aspect of human aging is immune deficiency. During aging, our body’s defense system weakens, resulting in decreased responses to infection by novel pathogens and a reduced ability to become immunized. The presence of chronic inflammation and viral infection in old age may cause several adverse unpredictable outcomes increasing the propensity and severity of the disease and requires to be considered, enabling people to better prepare for the potential consequences of this ongoing pandemic. This requires consideration so that individuals can better be prepared to address the potential consequences of this ongoing pandemic. In this review, we discuss the clinical characteristics of elderly COVID-19 patients and survey the associated molecular pathways that are pivotal for the interactions of the coronavirus and host cellular responses, including immunosenescence, inflammation, telomere attrition, impaired autophagy, mitochondrial dysfunction and alterations in major aging signaling pathways, which are crucial for the discovery of new therapeutic and preventive methods in the ongoing pandemic.
-
-
-
Research on Neuroimmune Gastrointestinal Diseases Based on Artificial Intelligence: Molecular Dynamics Analysis of Caffeine and DRD3 Protein
Authors: Yi Qin, Shuran Huo, Ana María González, Lizhong Guo, Javier Sanots and Liangyu LiAvailable online: 04 February 2025More LessObjectiveThe aim of this study was to develop a clinical application model for the rational use of caffeine.
BackgroundCaffeine is related to the incidence of neuro immune gastrointestinal diseases. Coffee consumption needs to be optimized in order to reduce the incidence rate.
PurposeBy using KEEG analysis to explore potential molecular signaling pathways involved in the progression of neurological immune gastrointestinal diseases, and analyzing the details of this signaling Pathway using molecular simulation results, which can support AI system for doctor.
MethodThe research team designed a controlled experiment to analyze the differences in reward and reinforcement of Brain pleasure/addiction and dopamine related signaling pathways function between multiple groups of people with different coffee drinking habits and a blank control group. The study team used molecular dynamics methods to investigate the signaling route that links coffee with the binding of dopamine receptor D3.AI is used to predict the prevalence of gastric reflux disease.
ResultHuman experiments have shown a correlation between caffeine intake and gastroesophageal reflux disease. AI algorithm results can provide clinical support, and molecular simulation results are consistent with human experimental results. Caffeine and DRD3 protein have a stable interaction system.
ConclusionThe research team elucidated the intermolecular interaction between caffeine and DRD3, and AI algorithms can predict the likelihood of disease occurrence, providing a new strategy for clinical practice. This study has passed ethical approval at Chifeng Cancer Hospital, and the ethical documents for this study have been submitted to the World Health Organization for filing.
-
-
-
HYQTD Drug-containing Serum Alleviates H2O2-induced Endothelial Oxidative Damage by Increasing Mitochondrial ATP Synthesis and Inhibiting ROS
Authors: Jin Wu, Lijuan Chen, Ying Du, Xue Leng, Dongchao Yuan, Mingqian Yang, Yeyu Zhao, Bin Lv and Lianqun JiaAvailable online: 27 January 2025More LessBackgroundAtherosclerosis (AS) is caused by the endothelium injury associated with oxidative stress. Previous studies have shown that the Phlegm-Eliminating and Stasis-Transforming Decoction (Huayu Qutan Decoction, HYQTD) has mitochondrial protective function. The objective of this research was to explore how HYQTD drug-containing serum (HYQTD-DS) could potentially protect mitochondrial energy production in endothelial cells (ECs) from injury caused by hydrogen peroxide (H2O2)-induced oxidative damage in AS through SIRT1/PGC-1α/ Nrf2 pathway.
MethodsAfter preparation of containing serum, the cells were divided into various categories, such as control group, H2O2 group (an oxidative damage model), HYQTD group, Selisistat (EX527, a SIRT1 inhibitor) combined with H2O2 group, and EX527 combined with HYQTD group. The evaluation of oxidative stress involved measuring reactive oxygen species (ROS) and malondialdehyde (MDA) generation, as well as Superoxide Dismutase (SOD) activity. Mitochondrial function and ultrastructure were measured by Transmission electron microscopy (TEM), mitochondrial membrane potential (MMP), rate of oxygen consumption (OCR), respiratory chain complex activities, and ATP production. The key proteins and gene levels in the SIRT1/PGC-1α/Nrf2 pathway was quantified by quantitative real-time PCR (RT-PCR) and Western blotting analysis.
ResultsWe found oxidative stress, mitochondrial damage, and mitochondrial energy disorder in H2O2-induced ECs. However it indicated a marked reversal after pretreated with HYQTD-DS. Mechanistically, EX527 induced increased oxidative stress, worse mitochondrial dysfunction, and less ATP synthesis.
ConclusionWe demonstrated that HYQTD-DS attenuated oxidative stress, improved mitochondrial function, and up-regulated mitochondrial ATP synthesis by activating SIRT1/PGC-1α/Nrf2 pathway-induced mitochondrial biogenesis and its downstream NADH dehydrogenase (ubiquinone) flavoprotein 2 (NDV2).
-
-
-
Harmony in Motion: The Role of Exercise in Orchestrating Neuroprotection for Individuals with Alzheimer's Disease and Diabetes Examined from a Psychological Perspective
Authors: Dongzi Zhang, Munir Ullah Khan and Safir UllahAvailable online: 24 January 2025More LessAccording to epidemiological studies, diabetes is more common in patients with AD, which suggests that diabetes is a significant risk factor for AD. Accelerating brain cell degeneration, worsening cognitive decline, and increasing susceptibility to AD can be attributed to pathogenic mechanisms linked to diabetes, such as impaired insulin signaling in the brain, neuroinflammation, oxidative stress, mitochondrial dysfunction, and vascular impairment. These factors can also lead to the accumulation of β-amyloid and tau protein phosphorylation. New research suggests that certain drugs used to manage diabetes have different levels of effectiveness in treating or preventing Alzheimer's disease. Exercise has numerous advantages, including the reduction of neuroinflammation, alleviation of oxidative stress and mitochondrial dysfunction, improvement of endothelial and cerebrovascular function, stimulation of neurogenesis, and prevention of pathological changes associated with diabetes-related Alzheimer's disease through various internal mechanisms. This study examined the development of Alzheimer's disease (AD) in relation to diabetes, evaluated the ability of specific antidiabetic drugs to prevent and treat AD, and investigated the impacts and underlying processes of exercise interventions in improving AD treatment for individuals with diabetes.
-
-
-
A Therapeutic Approach of Chitosan-loaded p-Coumaric Acid Nanoparticles to Alleviate Diabetic Nephropathy in Wister Rats
Available online: 23 January 2025More LessObjectiveThis study evaluated the renoprotective effects of p-Coumaric acid nanoparticles (PCNPs) in nephropathic rats.
MethodsSix groups of male Albino Wistar rats were randomly assigned. Group 1 was the control, while Group 2 received 45 mg/kg of streptozotocin (STZ) to induce diabetic nephropathy. Groups 3, 4, and 5 received STZ (45 mg/kg) along with PCNPs at doses of 20, 40, and 80 mg/kg, respectively. Group 6 received 80 mg/kg of PCNPs without STZ. Body weight, blood glucose, insulin, hemoglobin (Hb), and glycosylated hemoglobin (HbA1c) levels were measured. Blood urea, serum creatinine, kidney antioxidant enzymes, and lipid peroxidation levels were also analyzed. Histological and immunohistochemical studies of kidney tissues were performed.
ResultsPCNPs (80 mg/kg) significantly reduced serum glucose, creatinine, and urea levels while increasing insulin levels and antioxidant activity in the kidneys. Histological analysis revealed that nephropathic rats exhibited cellular damage, including shrinkage of Bowman’s capsule and lesions in the kidneys, along with degeneration in the Islets of Langerhans in the pancreas. PCNPs treatment restored these morphological alterations in the pancreas, liver, and kidneys to near-normal. Furthermore, nephropathic rats had elevated IL-6 and TNF-α expression in the renal tubules and glomeruli, which was reduced following PCNPs treatment.
ConclusionThe findings suggest that PCNPs exhibit antihyperglycemic, antioxidant, anti-glycation, and renoprotective effects in STZ-induced diabetic nephropathy.
-
-
-
A Fed-batch Process for the Production of Recombinant Adeno-Associated Virus (rAAV) Vectors Using the Sf9-Rhabdovirus-Negative Cell Line
Authors: Xinran Li, Jieyi Gu, Haoquan Wu and Yuanyuan XieAvailable online: 23 January 2025More LessBackgroundGene therapy has been effectively applied in many biological studies and for the treatment of many genetic or cancer diseases. Currently Recombinant Adeno-Associated Viruses (rAAVs) are one of the main types of delivery vectors used for gene therapy. rAAV vectors produced via the Sf9 cells have the advantages of high rAAV yields easy scale-up and low cost.
MethodHere we used Sf9 rhabdovirus-negative (Sf9-RVN) cells to validate and optimize the rAAV production process and the fed-batch process increased the rAAV production titre.
ResultsIn the fed-batch procedure the cell density reached 12.9×106 cells/mL which was approximately twice as high as in the batch culture process. The rAAV titre was also approximately 8-fold higher in the fed-batch process reaching 1.5×1012 VG/mL. The optimized process was validated by generating rAAVs with various serotypes and genes of interest (GOI) all of which gave production titres greater than 1×1012 VG/mL.
ConclusionWe used Sf9-RVN cells to develop a fed-batch rAAV production process that replaces Sf9 cells to meet regulatory standards. This process has good applicability and the rAAV titre can reach at least 1×1012 VG/mL which is higher than the level of 1011 VG/mL reported in the literature.
-
-
-
Integrative Bioinformatics and Experimental Validation Reveal the Mechanistic Action of Patchouli Alcohol in Prostate Cancer Treatment
Authors: Songhui Zhai, Juan Zhao and Jian CaiAvailable online: 22 January 2025More LessIntroductionProstate cancer is an androgen-dependent malignancy, and the use of androgen deprivation therapies frequently results in treatment resistance, relapse, and the development of aggressive castration-resistant tumors. Patchouli alcohol, a tricyclic sesquiterpene derived from Pogostemon cablin of the Labiatae family, has demonstrated potential in modulating inflammatory responses and tumor progression. This study aimed to investigate the mechanisms through which patchouli alcohol influences inflammatory pathways associated with prostate cancer using bioinformatics and experimental validation.
MethodsDifferentially Expressed Genes (DEGs) were identified from the GSE46602 dataset, containing 36 prostate cancer and 14 normal prostate biopsy samples, using the GEO2R tool (adjusted P < 0.05). Functional annotation was performed using GO and KEGG databases, while PPI networks were constructed via STRING and Cytoscape. Key hub genes were identified. To validate the bioinformatics findings, qPCR and Western blotting were employed to confirm the differential expression of selected hub genes in DU145 prostate cancer cells treated with patchouli oil.
ResultsBioinformatic analysis revealed 71 DEGs, including 35 upregulated and 36 downregulated genes. Thirteen hub genes were identified (DCK, APRT, ADK, KCNK9, ADSL, PKM, KCNK3, S100A10, ENTPD2, PKLR, ARHGEF38, TPK1, and AK5), which were enriched in pathways, such as MAPK, PI3K-Akt, Ras, and Rap1. Experimental validation confirmed the upregulation of DCK, APRT, KCNK9, ADSL, PKM, S100A10, ENTPD2, PKLR, ARHGEF38, and AK5, and the downregulation of ADK, KCNK3, and TPK1 at both the mRNA and protein levels.
ConclusionPatchouli alcohol appears to influence multiple hub genes associated with prostate cancer progression through its modulation of key cellular signaling and metabolic pathways. These findings support its potential role as a therapeutic agent for prostate cancer.
-
-
-
Identifying Novel Therapeutic Opportunities for Dilated Cardiomyopathy: A Bioinformatics Approach to Drug Repositioning and Herbal Medicine Prediction
Authors: Jiao Wang, Tianwei Meng, Na Si, Haihong Li, Yan Yan and Xinghua LiAvailable online: 15 January 2025More LessBackgroundDilated Cardiomyopathy (DCM) is a debilitating cardiovascular disorder that challenges current therapeutic strategies. The exploration of novel drug repositioning opportunities through gene expression analysis offers a promising avenue for discovering effective treatments.
ObjectiveThis study aims to identify potential drug repositioning opportunities and lead compounds for DCM treatment by optimizing gene expression characteristics using published data.
MethodsOur approach involved analyzing DCM expression profiles from the Gene Expression Omnibus database and identifying differentially expressed genes with GEO2R. A protein interaction network was constructed using the STRING database and visualized with Cytoscape. Enrichment analyses were conducted on these genes through the Omicshare platform, followed by the identification of candidate compounds via the Connectivity Map (CMAP) and validation through molecular docking. The Coremine Medical database was utilized to predict potential herbal medicines.
ResultsWe identified 29 differentially expressed genes, highlighting MYH6, NPPA, and NPPB as central to DCM pathology. Enrichment analyses indicated significant impacts on biological processes, such as organ morphogenesis and inflammatory responses. The AGE-RAGE signaling pathway was notably affected. From over 6,100 compounds analyzed, tenoxicam emerged as a promising candidate, with Radix Salviae Miltiorrhizae (Danshen) being suggested as a potential herbal treatment.
ConclusionThis study underscores the utility of bioinformatics in uncovering new therapeutic candidates for DCM, offering a foundational step towards novel drug development.
-
-
-
COL1A1, COL1A2, CHN1, and FN1 Promote Tumorogenesis and Act as Markers of Diagnosis and Survival in Gastric Cancer Patients
Authors: Yan Yichao, Li Yongbai, Liang Hailiang, Chen Dongbo, Li Bo and Abduh MurshedAvailable online: 13 January 2025More LessObjectivesThis study aimed to comprehensively investigate the molecular landscape of gastric cancer (GC) by integrating various bioinformatics tools and experimental validations.
MethodologyGSE79973 dataset, limma package, STRING, UALCAN, GEPIA, OncoDB, cBioPortal, DAVID, TISIDB, Gene Set Cancer Analysis (GSCA), tissue samples, RT-qPCR, and cell proliferation assay were employed in this study.
ResultsAnalysis of the GSE79973 dataset identified 300 differentially expressed genes (DEGs), from which COL1A1, COL1A2, CHN1, and FN1 emerged as pivotal hub genes using protein-protein interaction network analysis. Subsequent validation across The Cancer Genome Atlas (TCGA) datasets confirmed their up-regulation in GC tissues compared to normal controls. Promoter methylation analysis revealed decreased methylation levels of these hubs in GC tissues, suggesting their potential role in tumorigenesis. Mutational analysis using cBioPortal showcased frequent mutations in these genes, particularly FN1, further highlighting their significance in GC pathogenesis. Survival analysis indicated their correlation with reduced overall survival rates among GC patients, supported by the development of a robust prognostic model. Prediction of hub-associated miRNAs and gene enrichment analysis provided insights into their regulatory mechanisms and downstream pathways, implicating their involvement in extracellular matrix remodeling and cell migration. Drug sensitivity analysis revealed correlations between hub gene expression and drug response, while RT-qPCR validation confirmed their up-regulation in clinical GC samples. Finally, functional assays demonstrated the impact of FN1 knockdown on cellular proliferation, colony formation, and wound healing capacities.
ConclusionOverall, this study elucidates the crucial role of COL1A1, COL1A2, CHN1, and FN1 in GC pathogenesis and underscores their potential as diagnostic markers and therapeutic targets.
-
-
-
Impact and Significance of Viral Vectors for siRNA Delivery in the Treatment of Alzheimer’s Disease
Authors: Chintan Aundhia, Ghanshyam Parmar, Chitrali Talele, Rahul Trivedi, Mamta Kumari and Jay ChudasamaAvailable online: 09 January 2025More LessAlzheimer’s disease (AD) remains a major challenge in developing effective treatments due to its complex pathophysiology, including the accumulation of amyloid-beta plaques and tau tangles. Small interfering RNA (siRNA) technology offers promise for targeted gene silencing, but effective delivery to the central nervous system remains a significant obstacle. Viral vectors have emerged as potent delivery vehicles for transporting siRNA to neural tissues. This review explores the utilization of viral vectors for siRNA delivery in AD, focusing on delivery strategies and challenges. We discuss the design and optimization of viral vectors, targeting strategies, and safety considerations. Additionally, we examine recent advancements and prospects for enhancing viral vector-mediated siRNA delivery in AD.
-
-
-
Biomimetic Fe3O4 Nanozymes Promote Apoptosis in Breast Cancer Cell Lines via Free Radical Scavenging and Inhibition of RelA/p65
Authors: Deepa Mundekkad and William C. ChoAvailable online: 07 January 2025More LessIntroductionIron oxide nanozyme was synthesized from the fruit peel extract of pomegranate, which served as a reducing agent during the green synthesis. The scavenging of reactive oxygen species is often accompanied by immunomodulation following antiproliferative effects due to the crosstalk between the proteins involved in the inter-related signaling pathways.
MethodIn the current study, the green synthesized nanozyme was studied for its ability to induce apoptosis in breast cancer cell lines. The free radical scavenging effect of the nanozyme was reflected as an extension of its intrinsic endogenous enzyme-mimicking property.
Result & DiscussionThe cell cycle analysis revealed that the cell death induced by nanozyme mainly affected the G0/G1 phase. The expression of RelA/p65 and the inflammatory mediators affected by the nanozyme established the role of the Fe3O4 nanozyme in immunomodulation along with its antiproliferative activity.
ConclusionThis is the first report on the antiproliferative and immunomodulatory activities expressed by the biomimetic iron oxide nanozyme.
-
-
-
The Exosome and its Application in Skin Wound Healing: A Systematic Review on In vitro Studies
Available online: 06 January 2025More LessBackgroundWound healing is a complex procedure frequently delayed in patients with underlying chronic conditions. Despite essential advances in tissue engineering and regenerative medicine, wound healing remains challenging, warranting novel methods for promoting wound healing. It has been demonstrated that exosomes are one of the main secretory products of different cell types, such as Mesenchymal Stem Cells (MSCs), for regulating various biological processes, including wound healing. Henceforth, understanding these exosome effects might assist in improving wound management and highlight a novel therapeutic model for cell-free therapies with reduced side effects for repairing wounds.
MethodsThis systematic review involved conducting research electronically on scholarly scientific databases, including PubMed, Science Direct, and Scopus. Eligibility checks were performed based on predefined selection criteria. Finally, thirty-nine studies were considered.
ResultsExosomes have been indicated to use multitargeted pathways to improve wound healing by modulating numerous dysregulated signaling cascades involved in cell proliferation, cell cycle regulation, metastasis, apoptosis, and angiogenesis.
ConclusionThe outcome of this review might guide pre-clinical and clinical studies on the role of exosomes in skin wound healing.
-
-
-
In vitro Investigation of Antimicrobial and Antioxidant Properties of Green Silver Nanoparticles Synthesized Using Ephedra gerardiana Plant Extract
Available online: 06 January 2025More LessBackgroundThe increasing prevalence of antibiotic-resistant bacteria necessitates exploring nanotechnology as a potential solution for microbial elimination.
ObjectivesThis study aimed to investigate the antimicrobial and antioxidant effects of silver nanoparticles synthesized using aqueous extract from the Ephedra gerardiana (E. gerardiana) plant (EG@AgNPs).
MethodsOptimal synthesis conditions, including silver nitrate concentration, time, and temperature, were determined. Characterization of EG@AgNPs was conducted, which was followed by antimicrobial assessment against eight bacterial strains and one fungal strain. Additionally, the antioxidant properties of EG@AgNPs were evaluated using the DPPH method.
ResultsXRD analysis confirmed EG@AgNPs synthesis. DLS analysis revealed a hydrodynamic diameter of 22 nm. FT-IR analysis confirmed the presence of functional groups from the E. gerardiana plant extract in EG@AgNPs. FESEM and TEM images depicted spherical nanoparticles ranging in size from 10 to 20 nm. Antimicrobial investigations using the broth microdilution method demonstrated that E. gerardiana plant extract at 7.5 mg/ml inhibited only Streptococcus mutans and Candida albicans growth, with no antimicrobial effects observed at lower concentrations. However, EG@AgNPs significantly enhanced the antimicrobial properties of the E. gerardiana plant extract. Notably, these nanoparticles exhibited the most significant effect on E. coli and the least on S. salivaris, with MIC value of 125 and 2000 µg/ml, respectively. Furthermore, they inhibited C. albicans growth at a concentration of 62.5 μg/ml. An assessment of the antioxidant properties of EG@AgNPs indicated a significant increase in antioxidant activity.
ConclusionThe E. gerardiana plant extract has emerged as a promising option for silver nanoparticle synthesis. These nanoparticles have been found to exhibit potent antimicrobial properties against Gram-positive and Gram-negative bacterial species, as well as C. albicans. Additionally, they have demonstrated antioxidant properties.
-
-
-
Strengthening Effect of Thalidomide Combined with an Anti-PD1 Antibody on Enhancing Immunity for Lung Cancer Therapy
Authors: Qing Liu, Zu-Chian Chiang, Xiangqian Zhao, Dongya Cui, Xinxin Li, Hao Chen, Fangyu Lin, Tao Jiang, Qi Chen, Xiaoyan Lin and Jizhen LinAvailable online: 03 January 2025More LessObjectiveCombining immune checkpoint inhibitors and antiangiogenic agents offers a promising strategy to counteract the cooperative promotion of solid tumor growth by immune checkpoints and intratumoral angiogenesis.
MethodsWe investigated the potential of thalidomide (THD) and anti-PD-1 antibody (PD-1 mAb) in suppressing tumor growth, enhancing immunity, and inhibiting angiogenesis.
ResultsTHD exhibited regulatory effects on PD-1 in CD4+ T cells and PD-L1 in cancer cells, along with tumor growth inhibition in A549 and Lewis lung carcinoma (LLC) cell lines. Combined with PD-1 mAb, THD increased intracellular IL-2 and IFN-γ expression in CD4+ T cells, enhanced granzyme (Gzm-B) expression in peripheral blood mononuclear cells (PBMCs), and reduced TNF-α expression in CD4+ T cells. In C57BL/6 mice, THD plus PD-1 mAb decreased LLC-derived lung tumor weight and volume, boosted CD8+ T cell infiltration in tumors, and reduced CD34+ intratumoral microvessel density.
ConclusionThis study highlights THD’s role in modifying the tumor microenvironment to enhance PD-1 mAb efficacy, proposing a clinically feasible approach for improving PD-1 mAb treatment outcomes.
-
-
-
CAR-T Cell Therapy: Pioneering Immunotherapy Paradigms in Cancer Treatment
Authors: Dhitri Borah, Sibasree Hojaisa, Indira Sarma, Anil Kumar Mavi, Tejveer Singh, Anita Gulati, Ravi, Kumar Goswami and Saurabh MaruAvailable online: 01 January 2025More LessThe world's one of the major causes of death are cancer. Cancer is still a complex disease over the years that needs to be cured. Traditional cytotoxic approaches, although they have been implemented for years for treating neoplastic diseases, yet are limited due to the intricacy and low efficiency of cancer cells. Researchers are thus compelled to seek more potent therapeutic strategies. Chimeric antigen receptor (CAR-T) cell therapy is one such innovative insight where T lymphocytes are altered genetically to target cancer cells. Despite the outstanding accomplishment in patients with haematological malignancies, CAR-T cell treatment has demonstrated minimal impact on solid tumours due to a number of obstacles, including proliferation, stability, trafficking, and fate within tumors. Furthermore, interactions between the host and tumour microenvironment with CAR-T cells significantly alter CAR-T cell activities. Designing and implementing these treatments additionally also requires a complex workforce. Overcoming these significant challenges, there is a requirement for innovative strategies for developing CAR-T cells with greater anti-tumour efficacy and reduced toxicity. In this chapter, the current advancement in CAR-T cell technology in order to increase clinical efficacy in both solid tumors and haematological, as well as possibilities to conquer the limits of CAR-T cell therapy in both solid and haematological tumours has been discussed.
-
-
-
Effect of Ficus Carica and Zea Mays on Calcium Release from Oxalocalcic Urinary Calculi Using the Potentiometric Method
Available online: 30 December 2024More LessIntroductionA stone is a compact mass of one or more crystallised substances. The essential mechanism of stone formation is an excessive concentration of poorly soluble compounds in the urine. In excessive concentration, these compounds precipitate into crystals, which then aggregate to form a stone. The use of certain plants using the turbidimetric model has shown positive results on oxalocalcic crystallisation and, according to a recent study, has revealed very high inhibition rates.
AimThe aim of this study was to dissolve calcium oxalate urinary stones using two medicinal plants with high inhibition rates by monitoring Ca2+ release, pH variation, and mass loss. The study consisted of treating the stones with two plants, Ficus-carica and Zea mays, at two concentrations of 10g/l and 25g/l for 24 hours.
MethodThe main analytical techniques used in this study were as follows: Morphological analysis using a binocular magnifying glass, Fourier transform infrared spectroscopic method, and potentiometric method along with specific calcium electrode and an analytical balance. The study on the release of Ca2+ in the presence of the different herbal teas during 8 treatments of 3 to 4 hours was carried out on a series of 33 stones with the same chemical composition from several spontaneous expulsions of a 43-year-old male subject with lithiasis.
ResultsThe results showed a very remarkable effect of the Ficus-carica plant on Ca2+ release, which recorded 156.98 ppm, while Zea mays gave 130.63 ppm.
ConclusionThe kinetics of Ca2+ release were monitored by a potentiometer using a Ca2+-specific electrode. Zea mays at 10g/l showed a slightly positive effect on calculus dissolution compared to Ficus-carica.
-
-
-
Advances and Challenges of Microneedle Assisted Drug Delivery for Biomedicals Applications: A Review
Authors: Shiv Bahadur, Radhika, Kantrol Kumar Sahu and Arun Kumar SinghAvailable online: 04 November 2024More LessMicroneedles have been explored as a novel way of delivering active ingredients into the skin. They have various advantages, such as quick and efficient drug delivery, mechanical stability, minimal pain, variable capacity and easy use. Microneedles are enabled for the delivery of vaccine, peptides, medicinal components and in cosmetology, which couldn’t go unnoticed. The novel approaches in the transdermal drug delivery system have increased the efficiency of drug delivery into the skin by crossing the skin barriers. This platform has a wide range of applications and can also be used to deliver non-transdermal biomedicals. The variety in the design of microneedles has demanded similar diversity in their methods of fabrication; micro molding and drawing lithography may be useful methods. There are different types of polymers and materials for the fabrication of microneedles. Several synthetic and natural materials are used in the fabrication of microneedles. Unique shapes, materials, and mechanical properties are modified for organ-specific applications in microneedle engineering. In this review, we discuss several factors and their roles to cross the biological barriers for transdermal drug delivery in various sites, such as in ocular, vascular, oral, and mucosal tissue. Additionally, this article highlights the future scope of transdermal drug delivery systems through microneedles.
-
-
-
Influence of Nanomedicine as a Smart Weapon on Multidrug Resistance in Cancer Therapy
Authors: Safal Kumar Paikray, Liza Sahoo, Nigam Sekhar Tripathy and Fahima DilnawazAvailable online: 31 October 2024More LessCancer is the leading cause of death worldwide. The effectiveness of chemotherapy in cancer patients is still significantly hampered by Multidrug Resistance (MDR). Tumors exploit the MDR pathways to invade the host and limit the efficacy of chemotherapeutic drugs that are delivered as single drugs or combinations. Further, overexpression of ATP-binding Cassette transporter (ABC transporter) proteins augments the efflux of chemotherapeutic drugs and lowers their intracellular accumulation. Recent progress in the development of nanotechnology and nanocarrier-based drug delivery systems has shown a better perspective with respect to the improvement of cancer chemotherapy. Nanoparticles/nanomaterials are designed to target the immune system and tumor microenvironment of cancer cells for a variety of cancer treatments in order to improve bioavailability and reduce toxicity. This review elucidates the successful use of nanomaterials for cancer therapy and addressing the MDR and throws some light on the present obstacles impeding their translation to clinical use.
-