Skip to content
2000
image of Combating TB Pathology: Advanced Diagnostics, Innovative Therapies, and Public Health Strategies: A Review

Abstract

Tuberculosis (TB) continues to be a major global health challenge largely due to the complex nature of . Its early detection and effective management are heavily reliant on advanced diagnostic methods. New drug delivery systems and repurposing existing drugs show great promise in improving TB treatment. This study explores the progress and hurdles in developing anti-TB drugs focusing on those currently in clinical trials. Additionally innovative approaches like immunotherapy combination therapy and adjunct therapy which include the use of phytochemicals are examined for their potential to enhance treatment outcomes and tackle drug resistance. These innovative approaches could be the key to the future of the fight against TB. It also highlights how these strategies could accelerate TB treatment. It incorporates public health strategies for preventing TB transmission and ensuring patients adhere to treatments. By addressing these key areas this work aims to contribute to the global fight against TB and improve the lives of those affected by the disease.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010355430250330074301
2025-04-15
2025-12-11
Loading full text...

Full text loading...

References

  1. Schito M Migliori GB Fletcher HA McNerney R Centis R D'Ambrosio L Bates M Kibiki G Kapata N Corrah T Bomanji J Vilaplana C Johnson D Mwaba P Maeurer M Zumla A Perspectives on advances in tuberculosis diagnostics, drugs, and vaccines. Clin. Infect. Dis. 2015 61 61 Suppl. 3 S102 S118 10.1093/cid/civ609 26409271
    [Google Scholar]
  2. Prakash R. Kumar D. Gupta V.K. Jain S. Chauhan D.S. Tiwari P.K. Katoch V.M. Status of multidrug resistant tuberculosis (MDR-TB) among the Sahariya tribe of North Central India. J. Infect. Public Health 2016 9 3 289 297 10.1016/j.jiph.2015.10.008 26775848
    [Google Scholar]
  3. Garcia-Prats A.J. Svensson E.M. Weld E.D. Schaaf H.S. Hesseling A.C. Current status of pharmacokinetic and safety studies of multidrug-resistant tuberculosis treatment in children. Int. J. Tuberc. Lung Dis. 2018 22 5 15 23 10.5588/ijtld.17.0355 29665949
    [Google Scholar]
  4. Karekar S.R. Marathe P.A. Current status of delamanid in the management of MDR tuberculosis. J. Assoc. Physicians India 2018 66 7 72 75 31325268
    [Google Scholar]
  5. Gautam N. Karki R.R. Khanam R. Knowledge on tuberculosis and utilization of DOTS service by tuberculosis patients in Lalitpur District, Nepal. PLoS One 2021 16 1 e0245686 10.1371/journal.pone.0245686 33493188
    [Google Scholar]
  6. Yang X. Yuan Y. Pang Y. Wang B. Bai Y. Wang Y. Yu B. Zhang Z. Fan M. Zhao Y. The burden of MDR/XDR tuberculosis in coastal plains population of China. PLoS One 2015 10 2 e0117361 10.1371/journal.pone.0117361 25689373
    [Google Scholar]
  7. Pinheiro M.B. Antonelli L.R. Sathler-Avelar R. Vitelli-Avelar D.M. Spindola-de-Miranda S. Guimarães T.M.P.D. Teixeira-Carvalho A. Martins-Filho O.A. Toledo V.P.C.P. CD4-CD8-αβ and γδ T cells display inflammatory and regulatory potentials during human tuberculosis. PLoS One 2012 7 12 e50923 10.1371/journal.pone.0050923 23239994
    [Google Scholar]
  8. Shu C.C. Wu M.F. Wang J.Y. Lai H.C. Lee L.N. Chiang B.L. Yu C.J. Decreased T helper 17 cells in tuberculosis is associated with increased percentages of programmed death ligand 1, T helper 2 and regulatory T cells. Respir. Res. 2017 18 1 128 10.1186/s12931‑017‑0580‑3 28651576
    [Google Scholar]
  9. Fatima S. Kamble S.S. Dwivedi V.P. Bhattacharya D. Kumar S. Ranganathan A. Van Kaer L. Mohanty S. Das G. Mycobacterium tuberculosis programs mesenchymal stem cells to establish dormancy and persistence. J. Clin. Invest. 2019 130 2 655 661 10.1172/JCI128043 31647784
    [Google Scholar]
  10. P K C. Nagaral J. M N N. G P. B R H. Vinaykumar M.V. TB-DOTS outcome in relation to HIV status: Experience in a medical college. J. Clin. Diagn. Res. 2014 8 1 74 76 10.7860/JCDR/2014/7416.3975 24596728
    [Google Scholar]
  11. Bekker A. Schaaf H.S. Draper H.R. van der Laan L. Murray S. Wiesner L. Donald P.R. McIlleron H.M. Hesseling A.C. Pharmacokinetics of Rifampin, Isoniazid, Pyrazinamide, and Ethambutol in infants dosed according to revised WHO-recommended treatment guidelines. Antimicrob. Agents Chemother. 2016 60 4 2171 2179 10.1128/AAC.02600‑15 26810651
    [Google Scholar]
  12. Haratiasl A.A. Hamzelou G. Amini S. Kardan-Yamchi J. Haeili M. Heidari F. Feizabadi M.M. Molecular identification of mutations conferring resistance to rifampin, isoniazid and pyrazinamide among Mycobacterium tuberculosis isolates from Iran. J. Chemother. 2020 32 2 75 82 10.1080/1120009X.2020.1716479 32009582
    [Google Scholar]
  13. Girum T. Muktar E. Lentiro K. Wondiye H. Shewangizaw M. Epidemiology of multidrug-resistant tuberculosis (MDR-TB) in Ethiopia: A systematic review and meta-analysis of the prevalence, determinants and treatment outcome. Trop. Dis. Travel Med. Vaccines 2018 4 1 5 10.1186/s40794‑018‑0065‑5 29942536
    [Google Scholar]
  14. Zhang Y. Chiu Chang K. Leung C.C. Wai Yew W. Gicquel B. Fallows D. Kaplan G. Chaisson R.E. Zhang W. ‘Z S -MDR-TB’ versus ‘Z R -MDR-TB’: Improving treatment of MDR-TB by identifying pyrazinamide susceptibility. Emerg. Microbes Infect. 2012 1 1 1 4 10.1038/emi.2012.18 26038418
    [Google Scholar]
  15. Borgdorff M.W. van Soolingen D. The re-emergence of tuberculosis: What have we learnt from molecular epidemiology? Clin. Microbiol. Infect. 2013 19 10 889 901 10.1111/1469‑0691.12253 23731470
    [Google Scholar]
  16. Stein C.M. Genetic epidemiology of tuberculosis susceptibility: Impact of study design. PLoS Pathog. 2011 7 1 e1001189 10.1371/journal.ppat.1001189 21283783
    [Google Scholar]
  17. García de Viedma D. Mokrousov I. Rastogi N. Innovations in the molecular epidemiology of tuberculosis. Enferm. Infecc. Microbiol. Clin. 2011 29 Suppl. 1 8 13 10.1016/S0213‑005X(11)70012‑X 21420561
    [Google Scholar]
  18. García de Viedma D. Pathways and strategies followed in the genomic epidemiology of Mycobacterium tuberculosis. Infect. Genet. Evol. 2019 72 4 9 10.1016/j.meegid.2019.01.027 30682552
    [Google Scholar]
  19. Yang C. Gao Q. Recent transmission of Mycobacterium tuberculosis in China: The implication of molecular epidemiology for tuberculosis control. Front. Med. 2018 12 1 76 83 10.1007/s11684‑017‑0609‑5 29357036
    [Google Scholar]
  20. Daley C.L. Molecular epidemiology: A tool for understanding control of tuberculosis transmission. Clin. Chest Med. 2005 26 2 217 231, vi 10.1016/j.ccm.2005.02.005 15837107
    [Google Scholar]
  21. Cardona P.J. Pathogenesis of tuberculosis and other mycobacteriosis. Enferm. Infecc. Microbiol. Clin. (Engl Ed). 2018 36 1 38 46 10.1016/j.eimce.2017.10.009
    [Google Scholar]
  22. Skevaki C.L. Kafetzis D.A. Tuberculosis in neonates and infants: Epidemiology, pathogenesis, clinical manifestations, diagnosis, and management issues. Paediatr. Drugs 2005 7 4 219 234 10.2165/00148581‑200507040‑00002 16117559
    [Google Scholar]
  23. Dam H.G. Pio A. Pathogenesis of tuberculosis and effectiveness of BCG vaccination. Tubercle 1982 63 3 225 233 10.1016/S0041‑3879(82)80036‑6 6758255
    [Google Scholar]
  24. Lack C.H. The pathogenesis of tuberculosis as shown in studies of omental spreads. Am. Rev. Tuberc. 1956 73 3 362 377 10.1164/artpd.1956.73.3.362 13292706
    [Google Scholar]
  25. Stead W.W. Pathogenesis of tuberculosis: Clinical and epidemiologic perspective. Clin. Infect. Dis. 1989 11 2 S366 S368 10.1093/clinids/11.Supplement_2.S366 2711098
    [Google Scholar]
  26. Ostrik A.A. Azhikina T.L. Salina E.G. Small noncoding RNAs and their role in the pathogenesis of Mycobacterium tuberculosis infection. Biochemistry (Mosc.) 2021 86 S1 Suppl. 1 S109 S119 10.1134/S000629792114008X 33827403
    [Google Scholar]
  27. Peng Q Wu N Huang Y Zhao SJ Tang W Liang M Ran YL Xiao T Yang L Liang X Diagnostic values of conventional tumor markers and their combination with chest CT for patients with stageⅠA lung cancer. Chin. Med. J. 2023 45 11 934 941 37968078
    [Google Scholar]
  28. Song SB Dou LZ Liu Y Zhang YM He S Wang GQ Endoscopic hand-suturing combined with titanium clips for rectal defects closure after endoscopic submucosal dissection: a pilot study. Chin. Med. J. 2023 45 8 697 703 37580276
    [Google Scholar]
  29. Xie TC Tang J He QR Wang WP Wang C Research progress in transcriptional and immunological biomarkers associated with tuberculosis infection. Chin. J. Prev. Med 2023 57 4 584 590 37032169
    [Google Scholar]
  30. Ma Y Du J Shu W Xie SH Wang HH Tan SY Li XQ Fu YY Ma LP Zhang LY Liu FY Hu DY Zhang YL Liu YH Li L Effect of alcohol drinking on sputum conversion at the end of second month and outcome of smear-positive pulmonary tuberculosis patients. Chin. Med. J. 2019 99 14 1090 1094 30982258
    [Google Scholar]
  31. Li L Gao JT The tuberculosis sanitariums during era of the Republic of China. Chin. Med. J. 2021 51 2 103 110 34098703
    [Google Scholar]
  32. Cao B Fan XT Wang RH Luan XL Qian CY Yu JJ Liu HC Li MC Li GL Zhao XQ Yuan XQ Wan KL Preliminary evaluation of immunogenicity and protective effect of multicomponent recombinant protein vaccine EPRHP014 against tuberculosis. Chin. Med. J. 2023 44 10 1653 1660 37875456
    [Google Scholar]
  33. Wang Z Wang WJ Ding XY Lu P Zhu LM Liu Q Lu W Progress in research of prophylactic therapy in contacts of rifampicin-resistant tuberculosis patients. Chin. Med. J. 2023 44 3 470 476 36942344
    [Google Scholar]
  34. Kim A. Park K.J. Kim Y.S. Cho S.N. Dockrell H.M. Hur Y.G. Diagnostic potential of a PPE protein derived from Mycobacterium tuberculosis Beijing/K Strain. Yonsei Med. J. 2020 61 9 789 796 10.3349/ymj.2020.61.9.789 32882763
    [Google Scholar]
  35. Liang Z. Li H. Qu M. Liu Y. Wang Y. Wang H. Dong Y. Chen Y. Ge X. Zhou X. Intranasal bovine β-defensin-5 enhances antituberculosis immunity in a mouse model by a novel protein-based respiratory mucosal vaccine. Virulence 2022 13 1 949 962 10.1080/21505594.2022.2080342 35603910
    [Google Scholar]
  36. Fihiruddin F. Inayati N. Jannah R. Unsunnidhal L. Kusumawati A. Expression and epitope prediction of MPT64 recombinant proteins from clinical isolates of Mycobacterium tuberculosis as immunoserodiagnostic candidates. Vet. World 2022 15 10 2376 2383 10.14202/vetworld.2022.2376‑2383 36425128
    [Google Scholar]
  37. Roy A. Tomé I. Romero B. Lorente-Leal V. Infantes-Lorenzo J.A. Domínguez M. Martín C. Aguiló N. Puentes E. Rodríguez E. de Juan L. Risalde M.A. Gortázar C. Domínguez L. Bezos J. Evaluation of the immunogenicity and efficacy of BCG and MTBVAC vaccines using a natural transmission model of tuberculosis. Vet. Res. 2019 50 1 82 10.1186/s13567‑019‑0702‑7 31615555
    [Google Scholar]
  38. Bovine T.B. Bovine TB: Researchers adapt the BCG vaccine for cattle use. Vet. Rec. 2019 185 22 676 677 10.1136/vr.l6839 31806825
    [Google Scholar]
  39. Gao L Quan ZS Cheng J Jin Q Application of two-step approach for tuberculosis infection testing in tuberculosis control in schools. Chin. J. Prev. Med 2020 54 4 385 391 32268646 2020
    [Google Scholar]
  40. Yang H Hu Z Sha W Lu J Cui Z Wang J Huang X Xiao H. Induction in vitro and stability of Mycobacterium tuberculosis resistance to ofloxacin. Chin. J. Prev. Med 2014 48 4 318 323 24969458 2014
    [Google Scholar]
  41. Xu J. Wang G. Zhang Y. Zhang G. Xing J. Qi L. Zhuang Y. Zeng H. Chang J. An outbreak of tuberculosis in a middle school in Henan, China: Epidemiology and risk factors. PLoS One 2019 14 11 e0225042 10.1371/journal.pone.0225042 31730664
    [Google Scholar]
  42. Oliwa J.N. Gathara D. Ogero M. van Hensbroek M.B. English M. van’t Hoog A. Clinical Information Network Diagnostic practices and estimated burden of tuberculosis among children admitted to 13 government hospitals in Kenya: An analysis of two years’ routine clinical data. PLoS One 2019 14 9 e0221145 10.1371/journal.pone.0221145 31483793
    [Google Scholar]
  43. Zhou G. Luo Q. Luo S. Teng Z. Ji Z. Yang J. Wang F. Wen S. Ding Z. Li L. Chen T. Abi M.E. Jian M. Luo L. Liu A. Bao F. Interferon-γ release assays or tuberculin skin test for detection and management of latent tuberculosis infection: A systematic review and meta-analysis. Lancet Infect. Dis. 2020 20 12 1457 1469 10.1016/S1473‑3099(20)30276‑0 32673595
    [Google Scholar]
  44. Mangayarkarasi V Kalaiselvi K Kavitha D Chitraleka V Balaji R. Program-based teaching and learning to increase competency in undergraduate medical students using a model of the revised national tuberculosis control program. J. Microbiol Biol Educ. 2019 20 1 20.1.13 10.1128/jmbe.v20i1.1649
    [Google Scholar]
  45. Annamalai R. Mohanakumar M. Raghu K. Muthayya M. Newer trends in tubercular uveitis: A case series with systemic correlation. Int. J. Ophthalmol. 2020 13 11 1739 1744 10.18240/ijo.2020.11.09 33215004
    [Google Scholar]
  46. Singal A. Kaur I. Pandhi D. Gandhi V. Jakhar D. Grover C. Clinico‐epidemiological profile of lichen scrofulosorum: A 22‐year, single‐center, retrospective study. Int. J. Dermatol. 2021 60 10 1278 1284 10.1111/ijd.15737 34181284
    [Google Scholar]
  47. Saadi A. Antoine-Moussiaux N. Marcotty T. Thys S. Sahibi H. Using qualitative approaches to explore the challenges of integrated programmes for zoonosis control in developing countries: Example of hydatidosis control in Morocco. Zoonoses. Public. Health. 2021 68 5 393 401 10.1111/zph.12814 33554481
    [Google Scholar]
  48. Luciano S.A. Roess A. Human zoonotic tuberculosis and livestock exposure in low‐ and middle‐income countries: A systematic review identifying challenges in laboratory diagnosis. Zoonoses Public Health 2020 67 2 97 111 10.1111/zph.12684 31919980
    [Google Scholar]
  49. Zhang C Zhuoga RZG Sangmu LSM Zhong B Zhao XQ Ouyang HW Deng SM Zhuoma WZM Epidemiological characteristics of pulmonary tuberculosis in Motuo County, Tibet Autonomous region from 2012 to 2021. Chin. J. Prev. Med 2023 57 8 1160 1163 37574306 2023
    [Google Scholar]
  50. Yu XR Wang SJ Yang XM Fang M Zeng X Qi H Jiao WW Sun L Analysis of changes in reporting and diagnosis of pulmonary tuberculosis among children in Liangshan Yi autonomous prefecture, Sichuan province from 2019 to 2021. Chin. J. Prev. Med 2023 57 8 1153 1159 37574305 2023
    [Google Scholar]
  51. Xie JH Yu R Shi GM Ma XH Xiao SF Yi YH Zhou T Xiang YG Correlation study between changes in intestinal microflora structure and immune indexes in newly treated patients with pulmonary tuberculosis. Chin. J. Prev. Med 2021 55 12 1486 1490 34963248 10.3760/cma.j.cn112150‑20210728‑00721
    [Google Scholar]
  52. Wang M Zhao JY Li X Wu LY Zhou QQ Huang YF Sui WJ Zhang SY Xu J Jin JM Gu HT Lu XX Study on the etiological characteristics and prevention and control of adult community-acquired pneumonia in hospitalized patients in a hospital in Beijing from 2015 to 2019. Chin. J. Prev. Med 2021 55 12 1410 1418 34963237 10.3760/cma.j.cn112150‑20210706‑00645
    [Google Scholar]
  53. Fletcher H.A. Filali-Mouhim A. Nemes E. Hawkridge A. Keyser A. Njikan S. Hatherill M. Scriba T.J. Abel B. Kagina B.M. Veldsman A. Agudelo N.M. Kaplan G. Hussey G.D. Sekaly R.P. Hanekom W.A. BCG study team Human newborn bacille Calmette–Guérin vaccination and risk of tuberculosis disease: A case-control study. BMC Med. 2016 14 1 76 10.1186/s12916‑016‑0617‑3 27183822
    [Google Scholar]
  54. Shah A.P. Dave J.D. Makwana M.N. Rupani M.P. Shah I.A. A mixed-methods study on impact of active case finding on pulmonary tuberculosis treatment outcomes in India. Arch Public Health. 2024 82 1 92 10.1186/s13690‑024‑01326‑0
    [Google Scholar]
  55. Begun M. Newall A.T. Marks G.B. Wood J.G. Contact tracing of tuberculosis: A systematic review of transmission modelling studies. PLoS One 2013 8 9 e72470 10.1371/journal.pone.0072470 24023742
    [Google Scholar]
  56. Tang P. Johnston J. Treatment of latent tuberculosis infection. Curr. Treat. Options Infect. Dis. 2017 9 4 371 379 10.1007/s40506‑017‑0135‑7 29238270
    [Google Scholar]
  57. Houghton C. Meskell P. Delaney H. Smalle M. Glenton C. Booth A. Chan X.H.S. Devane D. Biesty L.M. Barriers and facilitators to healthcare workers’ adherence with infection prevention and control (IPC) guidelines for respiratory infectious diseases: A rapid qualitative evidence synthesis. Cochrane Libr. 2020 2020 8 CD013582 10.1002/14651858.CD013582 32315451
    [Google Scholar]
  58. Taylor M. Montoya J.A. Cantrell R. Mitchell S.J. Williams M. Jordahl L. Freeman M. Brown J. Broussard D. Roland E. Interventions in the commercial sex industry during the rise in syphilis rates among men who have sex with men (MSM). Sex. Transm. Dis. 2005 32 10 Suppl. 10 S53 S59 10.1097/01.olq.0000180453.31255.2d 16205294
    [Google Scholar]
  59. Hargreaves J.R. Boccia D. Evans C.A. Adato M. Petticrew M. Porter J.D. The social determinants of tuberculosis: From evidence to action. Am J. Public Health. 2011 101 4 654 662 10.2105/AJPH.2010.199505
    [Google Scholar]
  60. Gupta K. Gupta R. Atreja A. Verma M. Vishvkarma S. Tuberculosis and nutrition. Lung India 2009 26 1 9 16 10.4103/0970‑2113.45198 20165588
    [Google Scholar]
  61. Sambo L.G. Kirigia J.M. Investing in health systems for universal health coverage in Africa. BMC Int. Health Hum. Rights 2014 14 1 28 10.1186/s12914‑014‑0028‑5 25345988
    [Google Scholar]
  62. Chang L. Su Y. Zhu R. Duan Z. Mapping international collaboration in tuberculosis research from 1998 to 2017. Medicine (Baltimore) 2019 98 37 e17027 10.1097/MD.0000000000017027 31517822
    [Google Scholar]
  63. Tang XZ Huang T Ma Y Fu XY Qian K Yi YL Wu GH Meta-analysis of efficacy and safety of vitamin D supplementation in the treatment of pulmonary tuberculosis. Chin. Med. J. 2020 100 32 2525 2531 32829600
    [Google Scholar]
  64. Hu XL Wang SQ A case of silicosis complicated with non-tuberculous mycobacterium pulmonary disease. Chinese J. Industr. Hygien. Occupation. Diseases. 2024 42 3 210 212 38538244
    [Google Scholar]
  65. Jin Y Wang HQ Fan JG Pang J Zhang PY Li T Evaluation of GeneXpert MTB/RIF and BACTEC-MGIT 960 for the detection of tuberculosis among pneumoconiosis-associated tuberculosis patients. Chinese J. Industr. Hygien. Occupation. Diseases. 2019 37 9 690 693 31594129
    [Google Scholar]
  66. Zhang TH Ma ZC Liu RM Shang YY Ma LP Han M Pang Y Evaluation of the efficacy of urine-based lipoarabinomannan antigen test in the diagnosis of pulmonary tuberculosis. Chinese. J. Tuberculosis. Resp. Dis. 2024 47 2 132 10.3760/cma.j.cn112147‑20230814‑00074
    [Google Scholar]
  67. Liu YY Shi J Chu P Wu TY Li L Pang Y Lu J Guo YL Exploratory study on detection of drug resistance of Mycobacterium tuberculosis in sputum specimens by next-generation sequencing. Chinese. J. Tuberculosis. Resp. Dis. 2022 45 6 552 559 35658379 10.3760/cma.j.cn112147‑20211104‑00775
    [Google Scholar]
  68. Sun WW Gu J Fan L Application value of metagenomic next-generation sequencing (mNGS) in the diagnosis of different types of tuberculosis. Chinese. J. Tuberculosis. Resp. Dis. 2021 44 2 96 100 33535323
    [Google Scholar]
  69. Kooti S. Kadivarian S. Abiri R. Mohajeri P. Atashi S. Ahmadpor H. Alvandi A. Modified gold nanoparticle colorimetric probe-based biosensor for direct and rapid detection of Mycobacterium tuberculosis in sputum specimens. World J. Microbiol. Biotechnol. 2023 39 5 118 10.1007/s11274‑023‑03564‑w 36918442
    [Google Scholar]
  70. Njagi L.N. Kaguthi G. Mecha J.O. Hawn T.R. Nduba V. Attenuated tuberculin skin test responses associated with Mycobacterium intracellulare sputum colonization in an adolescent TB prevalence survey in Western Kenya. Tuberculosis (Edinb.) 2024 147 102514 10.1016/j.tube.2024.102514 38723342
    [Google Scholar]
  71. Chen R Li MC Zhao LL Zhao XQ Liu HC Liu ZG Lu Y Deng YL Chen ZX Wan KL Yuan XQ Analysis on drug sensitivity spectrum of 167 multidrug-resistant Mycobacterium tuberculosis in China. Chinese. J. Tuberculosis. Resp. Dis. 2020 41 5 764 769 32447922 10.3760/cma.j.cn112338‑20191121‑00823
    [Google Scholar]
  72. Wang G. Wang S. Jiang G. Fu Y. Shang Y. Huang H. Incremental cost-effectiveness of the second Xpert MTB/RIF assay to detect Mycobacterium tuberculosis J. Thorac. Dis. 2018 10 3 1689 1695 10.21037/jtd.2018.02.60 29707322
    [Google Scholar]
  73. Thomas J. Balseiro A. Gortázar C. Risalde M.A. Diagnosis of tuberculosis in wildlife: A systematic review. Vet. Res. 2021 52 1 31 10.1186/s13567‑020‑00881‑y 33627188
    [Google Scholar]
  74. Infantes-Lorenzo J.A. Dave D. Moreno I. Anderson P. Lesellier S. Gormley E. Dominguez L. Balseiro A. Gortázar C. Dominguez M. Salguero F.J. New serological platform for detecting antibodies against Mycobacterium tuberculosis complex in European badgers. Vet. Med. Sci. 2019 5 1 61 69 10.1002/vms3.134 30656864
    [Google Scholar]
  75. Tritar F. Ben Saad S. Ferchichi M. Ben Mansour A. Slim A. Naffati O. Bellali H. Slim L. Daghfous H. Risk factors for treatment failure in multidrug resistant tuberculosis in Tunisia: An analytic study. Tunis. Med. 2024 102 1 44 48 10.62438/tunismed.v102i1.4521 38545729
    [Google Scholar]
  76. Ünlü N Can Sarınoğlu R Duman N Küçüksu U Karahasan Yağcı A. Evaluation of the molecular assays for detection of Mycobacterium tuberculosis complex in extrapulmonary specimens. Tuberk. Toraks 2021 69 3 314 320 34581152 10.5578/tt.20219703
    [Google Scholar]
  77. Hasbek M Taşkın Kafa AH Çelik C Evaluation of the diagnostic performance of the Xpert® MTB/RIF assay in pulmonary and extrapulmonary samples. Tuberk. Toraks 2021 69 2 160 166 10.5578/tt.20219805 34256506
    [Google Scholar]
  78. Singhal R. Hingane S. Bhalla M. Sharma A. Ferdosh S. Tiwari A. Jayaswal P. Yadav R.N. Arora J. Dewan R.K. Sharma S. Evaluation of AAICare®-TB sequence analysis tool for accurate diagnosis of drug-resistant tuberculosis: A comparative study with TB-Profiler and Mykrobe. Tuberculosis (Edinb.) 2024 147 102515 10.1016/j.tube.2024.102515 38744006
    [Google Scholar]
  79. Fan D. Yue Y. Li H. Shang X. Li H. Xiao R. Cai L. Evaluation of the performances of InnowaveDx MTB-RIF assay in the diagnosis of pulmonary tuberculosis using bronchoalveolar lavage fluid. Tuberculosis (Edinb.) 2023 140 102349 10.1016/j.tube.2023.102349 37187053
    [Google Scholar]
  80. Rodriguez J Alcántara R Rodríguez J Vargas J Roncal E Antiparra R Gilman RH Grandjean L Moore D Zimic M Sheen P Evaluation of three alternatives cost-effective culture media for Mycobacterium tuberculosis detection and drug susceptibility determination using the microscopic observation drug susceptibility (MODS) assay. Tuberculosis (Edinb.) 2022 137 102273 10.1016/j.tube.2022.102273 36403561
    [Google Scholar]
  81. Shi J. He G. Ning H. Wu L. Wu Z. Ye X. Qiu C. Jiang X. Application of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in the detection of drug resistance of Mycobacterium tuberculosis in re-treated patients. Tuberculosis (Edinb.) 2022 135 102209 10.1016/j.tube.2022.102209 35550524
    [Google Scholar]
  82. Kambli P. Ajbani K. Kazi M. Sadani M. Naik S. Shetty A. Tornheim J.A. Singh H. Rodrigues C. Targeted next generation sequencing directly from sputum for comprehensive genetic information on drug resistant Mycobacterium tuberculosis Tuberculosis (Edinb.) 2021 127 102051 10.1016/j.tube.2021.102051 33450448
    [Google Scholar]
  83. Haiqing Cai Chen L. Yin C. Liao Y. Meng X. Lu C. Tang S. Li X. Wang X. The effect of micro-nutrients on malnutrition, immunity and therapeutic effect in patients with pulmonary tuberculosis: A systematic review and meta‐analysis of randomised controlled trials. Tuberculosis (Edinb.) 2020 125 101994 10.1016/j.tube.2020.101994 33049436
    [Google Scholar]
  84. Steingart K.R. Ramsay A. Dowdy D.W. Pai M. Serological tests for the diagnosis of active tuberculosis: Relevance for India. Indian J. Med. Res. 2012 135 5 695 702 22771604
    [Google Scholar]
  85. Steingart K.R. Henry M. Laal S. Hopewell P.C. Ramsay A. Menzies D. Cunningham J. Weldingh K. Pai M. A systematic review of commercial serological antibody detection tests for the diagnosis of extrapulmonary tuberculosis. Postgrad. Med. J. 2007 83 985 705 712 10.1136/thx.2006.075754 17675320
    [Google Scholar]
  86. Steingart K.R. Henry M. Laal S. Hopewell P.C. Ramsay A. Menzies D. Cunningham J. Weldingh K. Pai M. Commercial serological antibody detection tests for the diagnosis of pulmonary tuberculosis: A systematic review. PLoS Med. 2007 4 6 e202 10.1371/journal.pmed.0040202 17564490
    [Google Scholar]
  87. Tong M. Jacobi C.E. van de Rijke F.M. Kuijper S. van de Werken S. Lowary T.L. Hokke C.H. Appelmelk B.J. Nagelkerke N.J.D. Tanke H.J. van Gijlswijk R.P.M. Veuskens J. Kolk A.H.J. Raap A.K. A multiplexed and miniaturized serological tuberculosis assay identifies antigens that discriminate maximally between TB and non-TB sera. J. Immunol. Methods 2005 301 1-2 154 163 10.1016/j.jim.2005.04.004 15979638
    [Google Scholar]
  88. Stadler J.A.M. Maartens G. Meintjes G. Wasserman S. Clofazimine for the treatment of tuberculosis. Front. Pharmacol. 2023 14 1100488 10.3389/fphar.2023.1100488 36817137
    [Google Scholar]
  89. Kayukova L.A. Berikova E.A. Modern anti-tuberculosis drugs and their classification. Part I: First-line drugs. Pharm. Chem. J. 2020 54 6 555 563 10.1007/s11094‑020‑02239‑2
    [Google Scholar]
  90. Chetty S. Ramesh M. Singh-Pillay A. Soliman M.E.S. Recent advancements in the development of anti-tuberculosis drugs. Bioorg. Med. Chem. Lett. 2017 27 3 370 386 10.1016/j.bmcl.2016.11.084 28017531
    [Google Scholar]
  91. Mourenza Á. Gil J.A. Mateos L.M. Letek M. Novel treatments against Mycobacterium tuberculosis based on drug repurposing. Antibiotics 2020 9 9 550 10.3390/antibiotics9090550 32872158
    [Google Scholar]
  92. Barry C.E. III Slayden R.A. Mdluli K. Mechanisms of isoniazid resistance in Mycobacterium tuberculosis Drug Resist. Updat. 1998 1 2 128 134 10.1016/S1368‑7646(98)80028‑9 16904399
    [Google Scholar]
  93. Reddy D.S. Sinha A. Kumar A. Saini V.K. Drug re‐engineering and repurposing: A significant and rapid approach to tuberculosis drug discovery. Arch. Pharm. (Weinheim) 2022 355 11 2200214 10.1002/ardp.202200214 35841594
    [Google Scholar]
  94. Sharma K. Ahmed F. Sharma T. Grover A. Agarwal M. Grover S. Potential Repurposed drug candidates for tuberculosis treatment: Progress and update of drugs identified in over a decade. ACS Omega 2023 8 20 17362 17380 10.1021/acsomega.2c05511 37251185
    [Google Scholar]
  95. Almeida Da Silva P.E. Palomino J.C. Molecular basis and mechanisms of drug resistance in Mycobacterium tuberculosis: Classical and new drugs. J. Antimicrob. Chemother. 2011 66 7 1417 1430 10.1093/jac/dkr173 21558086
    [Google Scholar]
  96. Lange C. Chesov D. Heyckendorf J. Leung C.C. Udwadia Z. Dheda K. Drug‐resistant tuberculosis: An update on disease burden, diagnosis and treatment. Respirology 2018 23 7 656 673 10.1111/resp.13304 29641838
    [Google Scholar]
  97. Yee D. Valiquette C. Pelletier M. Parisien I. Rocher I. Menzies D. Incidence of serious side effects from first-line antituberculosis drugs among patients treated for active tuberculosis. Am. J. Respir. Crit. Care Med. 2003 167 11 1472 1477 10.1164/rccm.200206‑626OC 12569078
    [Google Scholar]
  98. Imam F. Sharma M. Khayyam K.U. Al-Harbi N.O. Rashid M.K. Ali M.D. Ahmad A. Qamar W. Adverse drug reaction prevalence and mechanisms of action of first-line anti-tubercular drugs. Saudi Pharm. J. 2020 28 3 316 324 10.1016/j.jsps.2020.01.011 32194333
    [Google Scholar]
  99. Ramachandran G. Swaminathan S. Safety and tolerability profile of second-line anti-tuberculosis medications. Drug Saf. 2015 38 3 253 269 10.1007/s40264‑015‑0267‑y 25676682
    [Google Scholar]
  100. Rathod K.B. Borkar M.S. Lamb A.R. Suryavanshi S.L. Surwade G.A. Pandey V.R. Adverse events among patients of multi drug resistant tuberculosis receiving second line anti TB treatment. Int. J. Sci. Res. 2015 1 6 253 10.18203/issn.2454‑2156.IntJSciRep20150955
    [Google Scholar]
  101. Dartois V.A. Rubin E.J. Anti-tuberculosis treatment strategies and drug development: Challenges and priorities. Nat. Rev. Microbiol. 2022 20 11 685 701 10.1038/s41579‑022‑00731‑y 35478222
    [Google Scholar]
  102. Ginsberg A.M. Spigelman M. Challenges in tuberculosis drug research and development. Nat. Med. 2007 13 3 290 294 10.1038/nm0307‑290 17342142
    [Google Scholar]
  103. Nguyen L. Pieters J. Mycobacterial subversion of chemotherapeutic reagents and host defense tactics: Challenges in tuberculosis drug development. Annu. Rev. Pharmacol. Toxicol. 2009 49 1 427 453 10.1146/annurev‑pharmtox‑061008‑103123 19281311
    [Google Scholar]
  104. Ginsberg AM Tuberculosis drug development: Progress, challenges, and the road ahead. Tuberculosis (Edinb.) 2010 90 3 162 167 10.1016/j.tube.2010.03.003 20382086
    [Google Scholar]
  105. Sharma S. Sharma D. Kalia N.P. Editorial: Approaches to address resistance, drug discovery, and vaccine development in Mycobacterium tuberculosis: Challenges and opportunities. Front. Microbiol. 2022 13 871464 10.3389/fmicb.2022.871464 35572633
    [Google Scholar]
  106. Estrada García I. Hernández Pando R. Ivanyi J. Editorial: Advances in immunotherapeutic approaches to tuberculosis. Front. Immunol. 2021 12 684200 10.3389/fimmu.2021.684200 33968090
    [Google Scholar]
  107. Afkhami S. Villela A.D. D’Agostino M.R. Jeyanathan M. Gillgrass A. Xing Z. Advancing immunotherapeutic vaccine strategies against pulmonary tuberculosis. Front. Immunol. 2020 11 557809 10.3389/fimmu.2020.557809 33013927
    [Google Scholar]
  108. Dheda K. Schwander S.K. Zhu B. Van ZYL-SMIT R.N. Zhang Y. The immunology of tuberculosis: From bench to bedside. Respirology 2010 15 3 433 450 10.1111/j.1440‑1843.2010.01739.x 20415982
    [Google Scholar]
  109. Rook GA Hernandez-Pando R . Immunological and endocrinological characteristics of tuberculosis that provide opportunities for immunotherapeutic intervention. Novartis Found Symp. 1998 217 73 87 9949802
    [Google Scholar]
  110. Aqdas M. Maurya S.K. Pahari S. Singh S. Khan N. Sethi K. Kaur G. Agrewala J.N. Immunotherapeutic role of NOD-2 and TLR-4 signaling as an adjunct to antituberculosis chemotherapy. ACS Infect. Dis. 2021 7 11 2999 3008 10.1021/acsinfecdis.1c00136 34613696
    [Google Scholar]
  111. Dorhoi A. Kotzé L.A. Berzofsky J.A. Sui Y. Gabrilovich D.I. Garg A. Hafner R. Khader S.A. Schaible U.E. Kaufmann S.H.E. Walzl G. Lutz M.B. Mahon R.N. Ostrand-Rosenberg S. Bishai W. du Plessis N. Therapies for tuberculosis and AIDS: Myeloid-derived suppressor cells in focus. J. Clin. Invest. 2020 130 6 2789 2799 10.1172/JCI136288 32420917
    [Google Scholar]
  112. du Plessis N. Kotze L.A. Leukes V. Walzl G. Translational potential of therapeutics targeting regulatory myeloid cells in tuberculosis. Front. Cell. Infect. Microbiol. 2018 8 332 10.3389/fcimb.2018.00332 30298121
    [Google Scholar]
  113. Yan J. Nielsen T.B. Lu P. Talyansky Y. Slarve M. Reza H. Novakovic B. Netea M.G. Keller A.E. Warren T. DiGiandomenico A. Sellman B.R. Luna B.M. Spellberg B. A protein-free vaccine stimulates innate immunity and protects against nosocomial pathogens. Sci. Transl. Med. 2023 15 716 eadf9556 10.1126/scitranslmed.adf9556 37792959
    [Google Scholar]
  114. Hall V. Foulkes S. Insalata F. Kirwan P. Saei A. Atti A. Wellington E. Khawam J. Munro K. Cole M. Tranquillini C. Taylor-Kerr A. Hettiarachchi N. Calbraith D. Sajedi N. Milligan I. Themistocleous Y. Corrigan D. Cromey L. Price L. Stewart S. de Lacy E. Norman C. Linley E. Otter A.D. Semper A. Hewson J. D’Arcangelo S. Chand M. Brown C.S. Brooks T. Islam J. Charlett A. Hopkins S. SIREN Study Group Protection against SARS-CoV-2 after Covid-19 vaccination and previous infection. N. Engl. J. Med. 2022 386 13 1207 1220 10.1056/NEJMoa2118691 35172051
    [Google Scholar]
  115. Silvério D. Gonçalves R. Appelberg R. Saraiva M. Advances on the role and applications of interleukin-1 in tuberculosis. MBio 2021 12 6 e03134-21 10.1128/mBio.03134‑21 34809460
    [Google Scholar]
  116. Dermani F.K. Samadi P. Rahmani G. Kohlan A.K. Najafi R. PD‐1/PD‐L1 immune checkpoint: Potential target for cancer therapy. J. Cell. Physiol. 2019 234 2 1313 1325 10.1002/jcp.27172 30191996
    [Google Scholar]
  117. Amaral E.P. Foreman T.W. Namasivayam S. Hilligan K.L. Kauffman K.D. Barbosa Bomfim C.C. Costa D.L. Barreto-Duarte B. Gurgel-Rocha C. Santana M.F. Cordeiro-Santos M. Du Bruyn E. Riou C. Aberman K. Wilkinson R.J. Barber D.L. Mayer-Barber K.D. Andrade B.B. Sher A. GPX4 regulates cellular necrosis and host resistance in Mycobacterium tuberculosis infection. J. Exp. Med. 2022 219 11 e20220504 10.1084/jem.20220504 36069923
    [Google Scholar]
  118. Chiesa R. Georgiadis C. Syed F. Zhan H. Etuk A. Gkazi S.A. Preece R. Ottaviano G. Braybrook T. Chu J. Kubat A. Adams S. Thomas R. Gilmour K. O’Connor D. Vora A. Qasim W. Base-Edited C.A.R.T. Base-edited CAR T group. Base-edited CAR7 T cells for relapsed T-cell acute lymphoblastic leukemia. N. Engl. J. Med. 2023 389 10 899 10.1056/NEJMoa2300709
    [Google Scholar]
  119. Ferluga J. Yasmin H. Al-Ahdal M.N. Bhakta S. Kishore U. Natural and trained innate immunity against Mycobacterium tuberculosis Immunobiology 2020 225 3 151951 10.1016/j.imbio.2020.151951 32423788
    [Google Scholar]
  120. Luxembourg A.T. Cooper N.R. T cell-dependent, B cell-activating properties of antibody-coated small latex beads. A new model for B cell activation. J. Immunol. 1994 153 2 604 614 10.4049/jimmunol.153.2.604 8021498
    [Google Scholar]
  121. Tiberi S. du Plessis N. Walzl G. Vjecha M.J. Rao M. Ntoumi F. Mfinanga S. Kapata N. Mwaba P. McHugh T.D. Ippolito G. Migliori G.B. Maeurer M.J. Zumla A. Tuberculosis: Progress and advances in development of new drugs, treatment regimens, and host-directed therapies. Lancet Infect. Dis. 2018 18 7 e183 e198 10.1016/S1473‑3099(18)30110‑5 29580819
    [Google Scholar]
  122. Seung K.J. Keshavjee S. Rich M.L. Multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis. Cold Spring Harb. Perspect. Med. 2015 5 9 a017863 10.1101/cshperspect.a017863 25918181
    [Google Scholar]
  123. Zainabadi K. Vilbrun S.C. Mathurin L.D. Walsh K.F. Pape J.W. Fitzgerald D.W. Lee M.H. A bedaquiline, pyrazinamide, levofloxacin, linezolid, clofazimine second line regimen for tuberculosis displays similar early bactericidal activity as the standard rifampin based first line regimen. J. Infect. Dis. 2023 230 2 e447 10.1093/infdis/jiad564 38060827
    [Google Scholar]
  124. Kaniga K. Cirillo D.M. Hoffner S. Ismail N.A. Kaur D. Lounis N. Metchock B. Pfyffer G.E. Venter A. A multilaboratory, multicountry study to determine mic quality control ranges for phenotypic drug susceptibility testing of selected first-line antituberculosis drugs, second-line injectables, fluoroquinolones, clofazimine, and linezolid. J. Clin. Microbiol. 2016 54 12 2963 2968 10.1128/JCM.01138‑16 27654338
    [Google Scholar]
  125. Conradie F. Bagdasaryan T.R. Borisov S. Howell P. Mikiashvili L. Ngubane N. Samoilova A. Skornykova S. Tudor E. Variava E. Yablonskiy P. Everitt D. Wills G.H. Sun E. Olugbosi M. Egizi E. Li M. Holsta A. Timm J. Bateson A. Crook A.M. Fabiane S.M. Hunt R. McHugh T.D. Tweed C.D. Foraida S. Mendel C.M. Spigelman M. ZeNix Trial Team Bedaquiline–pretomanid–linezolid regimens for drug-resistant tuberculosis. N. Engl. J. Med. 2022 387 9 810 823 10.1056/NEJMoa2119430 36053506
    [Google Scholar]
  126. Tweed C.D. Dawson R. Burger D.A. Conradie A. Crook A.M. Mendel C.M. Conradie F. Diacon A.H. Ntinginya N.E. Everitt D.E. Haraka F. Li M. van Niekerk C.H. Okwera A. Rassool M.S. Reither K. Sebe M.A. Staples S. Variava E. Spigelman M. Bedaquiline, moxifloxacin, pretomanid, and pyrazinamide during the first 8 weeks of treatment of patients with drug-susceptible or drug-resistant pulmonary tuberculosis: A multicentre, open-label, partially randomised, phase 2b trial. Lancet Respir. Med. 2019 7 12 1048 1058 10.1016/S2213‑2600(19)30366‑2 31732485
    [Google Scholar]
  127. Amin A. Vartanian A. Yegiazaryan A. Al-Kassir A.L. Venketaraman V. Review of the effectiveness of various adjuvant therapies in treating Mycobacterium tuberculosis Infect. Dis. Rep. 2021 13 3 821 834 10.3390/idr13030074 34562999
    [Google Scholar]
  128. Desalegn G. Tsegaye A. Gebreegziabiher D. Aseffa A. Howe R. Enhanced IFN-γ, but not IL-2, response to Mycobacterium tuberculosis antigens in HIV/latent TB co-infected patients on long-term HAART. BMC Immunol. 2019 20 1 35 10.1186/s12865‑019‑0317‑9 31601184
    [Google Scholar]
  129. Ji Z. Jian M. Chen T. Luo L. Li L. Dai X. Bai R. Ding Z. Bi Y. Wen S. Zhou G. Abi M.E. Liu A. Bao F. Immunogenicity and safety of the M72/AS01E Candidate vaccine against tuberculosis: A meta-analysis. Front. Immunol. 2019 10 2089 10.3389/fimmu.2019.02089 31552037
    [Google Scholar]
  130. Qu P. Li X. Liu W. Zhou F. Xu X. Tang J. Sun M. Li J. Li H. Han Y. Hu C. Lei Y. Pan Q. Zhan L. Absence of PD-L1 signaling hinders macrophage defense against Mycobacterium tuberculosis via upregulating STAT3/IL-6 pathway. Microbes Infect. 2024 26 5-6 105352 10.1016/j.micinf.2024.105352 38729294
    [Google Scholar]
  131. Svaton M. Zemanova M. Zemanova P. Kultan J. Fischer O. Skrickova J. Jakubikova L. Cernovska M. Hrnciarik M. Jirousek M. Krejci J. Krejci D. Bilek O. Blazek J. Hurdalkova K. Barinova M. Melichar B. Impact of concomitant medication administered at the time of initiation of nivolumab therapy on outcome in non-small cell lung cancer. Anticancer Res. 2020 40 4 2209 2217 10.21873/anticanres.14182 32234916
    [Google Scholar]
  132. Fatima S Kumari A Dwivedi VP Advances in adjunct therapy against tuberculosis: Deciphering the emerging role of phytochemicals. MedComm 2021 2 4 494 513 10.1002/mco2.82 34977867
    [Google Scholar]
  133. Gautam S. Qureshi K.A. Jameel Pasha S.B. Dhanasekaran S. Aspatwar A. Parkkila S. Alanazi S. Atiya A. Khan M.M.U. Venugopal D. Medicinal plants as therapeutic alternatives to combat Mycobacterium tuberculosis: A comprehensive review. Antibiotics 2023 12 3 541 10.3390/antibiotics12030541 36978408
    [Google Scholar]
  134. Swain S.S. Hussain T. Combined bioinformatics and combinatorial chemistry tools to locate drug‐Able Anti‐TB phytochemicals: A cost‐effective platform for natural product‐based drug discovery. Chem. Biodivers. 2022 19 11 e202200267 10.1002/cbdv.202200267 36307750
    [Google Scholar]
  135. Dara Y. Volcani D. Shah K. Shin K. Venketaraman V. Potentials of host-directed therapies in tuberculosis management. J. Clin. Med. 2019 8 8 1166 10.3390/jcm8081166 31382631
    [Google Scholar]
  136. Gupta P.K. Jahagirdar P. Tripathi D. Devarajan P.V. Kulkarni S. Macrophage targeted polymeric curcumin nanoparticles limit intracellular survival of Mycobacterium tuberculosis through induction of autophagy and augment anti-TB activity of isoniazid in RAW 264.7 macrophages. Front. Immunol. 2023 14 1233630 10.3389/fimmu.2023.1233630 37583694
    [Google Scholar]
  137. Ozturk M. Chia J.E. Hazra R. Saqib M. Maine R.A. Guler R. Suzuki H. Mishra B.B. Brombacher F. Parihar S.P. Evaluation of Berberine as an adjunct to TB treatment. Front. Immunol. 2021 12 656419 10.3389/fimmu.2021.656419 34745081
    [Google Scholar]
  138. Dwivedi V.P. Bhattacharya D. Singh M. Bhaskar A. Kumar S. Fatima S. Sobia P. Kaer L.V. Das G. Allicin enhances antimicrobial activity of macrophages during Mycobacterium tuberculosis infection. J. Ethnopharmacol. 2019 243 111634 10.1016/j.jep.2018.12.008 30537531
    [Google Scholar]
  139. Lin F. Chen J. Chen M. Lin S. Dong S. Protective effect and possible mechanisms of resveratrol in animal models of osteoporosis: A preclinical systematic review and meta‐analysis. Phytother. Res. 2023 37 11 5223 5242 10.1002/ptr.7954 37482965
    [Google Scholar]
  140. Al-Attar A.M. Hematological and biochemical investigations on the effect of curcumin and Thymoquinone in male mice exposed to Thioacetamide. Saudi J. Biol. Sci. 2022 29 1 660 665 10.1016/j.sjbs.2021.10.037 35002463
    [Google Scholar]
  141. Shaghaghi M. Rashtbari S. Vejdani S. Dehghan G. Jouyban A. Yekta R. Exploring the interactions of a Tb(III)–quercetin complex with serum albumins (HSA and BSA): Spectroscopic and molecular docking studies. Luminescence 2020 35 4 512 524 10.1002/bio.3757 31883206
    [Google Scholar]
  142. Son E.S. Lee S.K. Cho S.N. Park H.R. Lee J.S. Anti-tuberculosis effects of frankincense through immune responses of Mycobacterium tuberculosis-infected macrophages. Korean J. Food Sci. Technol. 2021 53 6 756 760 10.9721/KJFST.2021.53.6.756
    [Google Scholar]
  143. Sharma S. Kalia N.P. Suden P. Chauhan P.S. Kumar M. Ram A.B. Khajuria A. Bani S. Khan I.A. Protective efficacy of piperine against Mycobacterium tuberculosis Tuberculosis (Edinb.) 2014 94 4 389 396 10.1016/j.tube.2014.04.007 24880706
    [Google Scholar]
  144. Dey A. Anand K. Singh A. Prasad R. Barthwal R. Binding-induced thermal stabilization of mosR and ndhA G-quadruplex comprising genes by emodin leads to downregulation and growth inhibition in Mtb: Potential as anti-tuberculosis drug. Results Chem. 2023 6 101114 10.1016/j.rechem.2023.101114
    [Google Scholar]
  145. Zhang C. Song D. Zhang L. Liu L. Zhu B. Artemisinin promotes apoptosis of spinal tuberculosis macrophages by inhibiting NF- κ B. Mater. Express 2023 13 2 260 266 10.1166/mex.2023.2354
    [Google Scholar]
  146. Singh D.K. Tousif S. Bhaskar A. Devi A. Negi K. Moitra B. Ranganathan A. Dwivedi V.P. Das G. Luteolin as a potential host-directed immunotherapy adjunct to isoniazid treatment of tuberculosis. PLoS Pathog. 2021 17 8 e1009805 10.1371/journal.ppat.1009805 34415976
    [Google Scholar]
  147. Bhaskar A. Kumari A. Singh M. Kumar S. Kumar S. Dabla A. Chaturvedi S. Yadav V. Chattopadhyay D. Prakash Dwivedi V. [6]-Gingerol exhibits potent anti-mycobacterial and immunomodulatory activity against tuberculosis. Int. Immunopharmacol. 2020 87 106809 10.1016/j.intimp.2020.106809 32693356
    [Google Scholar]
  148. Vidya Raj C.K. Venugopal J. Muthaiah M. Chadha V.K. Brammacharry U. Swappna M. Sangeetha A.V. Dhandapani S.P. Kareedhi V.R. Calivarathan L. Karthick M. Jayapal K. In-vitro anti-Mycobacterium tuberculosis effect of Eugenol. Indian J. Tuberc. 2022 69 4 647 654 10.1016/j.ijtb.2021.09.016 36460403
    [Google Scholar]
  149. Sawicki R. Golus J. Przekora A. Ludwiczuk A. Sieniawska E. Ginalska G. Antimycobacterial activity of Cinnamaldehyde in a Mycobacterium tuberculosis(H37Ra) model. Molecules 2018 23 9 2381 10.3390/molecules23092381 30231479
    [Google Scholar]
  150. Rodrigues G.C.S. dos Santos Maia M. de Souza T.A. de Oliveira Lima E. dos Santos L.E.C.G. Silva S.L. da Silva M.S. Filho J.M.B. da Silva Rodrigues Junior V. Scotti L. Scotti M.T. Antimicrobial potential of betulinic acid and investigation of the mechanism of action against nuclear and metabolic enzymes with molecular modeling. Pathogens 2023 12 3 449 10.3390/pathogens12030449 36986372
    [Google Scholar]
  151. Saharan V.D. Mahajan S.S. Development of gallic acid formazans as novel enoyl acyl carrier protein reductase inhibitors for the treatment of tuberculosis. Bioorg. Med. Chem. Lett. 2017 27 4 808 815 10.1016/j.bmcl.2017.01.026 28117201
    [Google Scholar]
  152. Kim T.S. Jin Y.B. Kim Y.S. Kim S. Kim J.K. Lee H.M. Suh H.W. Choe J.H. Kim Y.J. Koo B.S. Kim H.N. Jung M. Lee S.H. Kim D.K. Chung C. Son J.W. Min J.J. Kim J.M. Deng C.X. Kim H.S. Lee S.R. Jo E.K. SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions. Autophagy 2019 15 8 1356 1375 10.1080/15548627.2019.1582743 30774023
    [Google Scholar]
  153. Tembe N. Machaba K.E. Ndagi U. Kumalo H.M. Mhlongo N.N. Ursolic acid as a potential inhibitor of Mycobacterium tuberculosis cytochrome bc1 oxidase: A molecular modelling perspective. J. Mol. Model. 2022 28 2 35 10.1007/s00894‑021‑04993‑w 35022913
    [Google Scholar]
  154. Talebi A. Soltani R. Khorvash F. Jouabadi S.M. The effectiveness of Silymarin in the prevention of anti-tuberculosis drug-induced hepatotoxicity: A randomized controlled clinical trial. Int. J. Prev. Med. 2023 14 1 48 10.4103/ijpvm.ijpvm_81_22 37351038
    [Google Scholar]
  155. Bedir F. Kocaturk H. Turangezli O. Sener E. Akyuz S. Ozgeris F.B. Dabanlioglu B. Suleyman H. Altuner D. Suleyman B. The protective effect of lycopene against oxidative kidney damage associated with combined use of isoniazid and rifampicin in rats. Braz. J. Med. Biol. Res. 2021 54 8 e10660 10.1590/1414‑431x2020e10660 34037090
    [Google Scholar]
  156. Donald P.R. Lamprecht J.H. Freestone M. Albrecht C.F. Bouic P.J. Kotze D. van Jaarsveld P.P. A randomised placebo-controlled trial of the efficacy of beta-sitosterol and its glucoside as adjuvants in the treatment of pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 1997 1 6 518 522 9487449
    [Google Scholar]
  157. Ma T. Mao X. Meng X. Wang Q. Ginsenoside Rg1 inhibits STAT3 expression by miR-15b-5p to attenuate lung injury in mice with type 2 diabetes mellitus-associated pulmonary tuberculosis. Evid. Based Complement. Alternat. Med. 2022 2022 1 9 10.1155/2022/9017021 36248428
    [Google Scholar]
  158. Meng R Dong W Gao J Lu C Zhang C Liao Q Chen L Wu H Hu J Wei W Jiang Z. Clostridium, bacteroides and prevotella associates with increased fecal metabolites Trans-4-Hydroxy-L-proline and Genistein in active pulmonary tuberculosis patients during anti-tuberculosis chemotherapy with isoniazid-rifampin-pyrazinamide-ethambutol (HRZE). Indian J. Microbiol. 2022 62 3 374 383 10.1007/s12088‑022‑01003‑2 35974910
    [Google Scholar]
  159. Zhang Q. Sun J. Wang Y. He W. Wang L. Zheng Y. Wu J. Zhang Y. Jiang X. Antimycobacterial and anti-inflammatory mechanisms of baicalin via induced autophagy in macrophages infected with Mycobacterium tuberculosis Front. Microbiol. 2017 8 2142 10.3389/fmicb.2017.02142 29163427
    [Google Scholar]
  160. Raju A. Degani M.S. Khambete M.P. Ray M.K. Rajan M.G.R. Antifolate activity of plant polyphenols against Mycobacterium tuberculosis. Phytother. Res. 2015 29 10 1646 1651 10.1002/ptr.5437 26275674
    [Google Scholar]
  161. Guzmán-Beltrán S. Rubio-Badillo M.Á. Juárez E. Hernández-Sánchez F. Torres M. Nordihydroguaiaretic acid (NDGA) and α-mangostin inhibit the growth of Mycobacterium tuberculosis by inducing autophagy. Int. Immunopharmacol. 2016 31 149 157 10.1016/j.intimp.2015.12.027 26735610
    [Google Scholar]
  162. Kumari A Pahuja I Negi K Ghoshal A Mukopadhyay S Agarwal M Mathew B Maras JS Chaturvedi S Bhaskar A Dwivedi VP Withaferin a protects against primary and recurrent tuberculosis by modulating mycobacterium-specific host immune responses. Microbiol. Spectr. 2023 11 2 e00583-23 10.1128/spectrum.00583‑23 36916966
    [Google Scholar]
  163. Sarkar N. Khanal P. Rawat R. Dey Y.N. Roy K.K. Rosmarinic acid and its derivative’s duel as antitubercular agents: Insights from computational prediction to functional response in vitro. J. Biomol. Struct. Dyn. 2023 42 23 1 10 10.1080/07391102.2023.2272754 37878080
    [Google Scholar]
  164. Shilpi J.A. Ali M.T. Saha S. Hasan S. Gray A.I. Seidel V. Molecular docking studies on InhA, MabA and PanK enzymes from Mycobacterium tuberculosis of ellagic acid derivatives from Ludwigia adscendens and Trewia nudiflora. In Silico Pharmacol. 2015 3 1 10 10.1186/s40203‑015‑0014‑1 26820895
    [Google Scholar]
  165. Nakamura de Vasconcelos S.S. Caleffi-Ferracioli K.R. Hegeto L.A. Baldin V.P. Nakamura C.V. Stefanello T.F. Freitas Gauze G. Yamazaki D.A.S. Scodro R.B.L. Siqueira V.L.D. Cardoso R.F. Carvacrol activity & morphological changes in Mycobacterium tuberculosis Future Microbiol. 2018 13 8 877 888 10.2217/fmb‑2017‑0232 29877104
    [Google Scholar]
  166. Szulczyk D. Woziński M. Koliński M. Kmiecik S. Głogowska A. Augustynowicz-Kopeć E. Dobrowolski M.A. Roszkowski P. Struga M. Ciura K. Menthol- and thymol-based ciprofloxacin derivatives against Mycobacterium tuberculosis: In vitro activity, lipophilicity, and computational studies. Sci. Rep. 2023 13 1 16328 10.1038/s41598‑023‑43708‑4 37770610
    [Google Scholar]
  167. Elsaman T. Mohamed M.S. Eltayib E.M. Abdalla A.E. Mohamed M.A. Xanthone: A promising antimycobacterial scaffold. Med. Chem. 2021 17 4 310 331 10.2174/1573406416666200619114124 32560609
    [Google Scholar]
  168. Jeffries C. Lobue P. Chorba T. Metchock B. Kashef I. Role of the health department in tuberculosis prevention and control—legal and public health considerations. Microbiol. Spectr. 2017 5 2 5.2.07 10.1128/microbiolspec.TNMI7‑0034‑2016 28256190
    [Google Scholar]
  169. Montesanti S.R. Thurston W.E. Mapping the role of structural and interpersonal violence in the lives of women: Implications for public health interventions and policy. BMC Womens Health 2015 15 1 100 10.1186/s12905‑015‑0256‑4 26554358
    [Google Scholar]
  170. Dawson E.R. Stennett M. Daly B. Macpherson L.M.D. Cannon P. Watt R.G. Upstream interventions to promote oral health and reduce socioeconomic oral health inequalities: A scoping review protocol. BMJ Open 2022 12 6 e059441 10.1136/bmjopen‑2021‑059441 35738648
    [Google Scholar]
  171. Zellweger J.P. Sotgiu G. Corradi M. Durando P. The diagnosis of latent tuberculosis infection (LTBI): Currently available tests, future developments, and perspectives to eliminate tuberculosis (TB). Med. Lav. 2020 111 3 170 183 10.23749/mdl.v111i3.9983 32624559
    [Google Scholar]
  172. Dookie N. Ngema S.L. Perumal R. Naicker N. Padayatchi N. Naidoo K. The changing paradigm of drug-resistant tuberculosis treatment: Successes, pitfalls, and future perspectives. Clin. Microbiol. Rev. 2022 35 4 e00180-19 10.1128/cmr.00180‑19 36200885
    [Google Scholar]
  173. Terreni M. Taccani M. Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: Latest research developments and future perspectives. Molecules 2021 26 9 2671 10.3390/molecules26092671 34063264
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010355430250330074301
Loading
/content/journals/cpb/10.2174/0113892010355430250330074301
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test