Skip to content
2000
image of A Comprehensive 4-Layered In Silico Pharmacogenomics Analysis of the Genetic Addiction Risk Severity (GARS) Test: Strong Genetic Evidence Supporting GARS as a Novel Personalized Pre-Addiction Assessment Tool in the Opioid Crisis Era

Abstract

Background

Overdose involving opioids is the black heart of the addiction crisis. “Pre-addiction,” as an encouraging concept by NIDA and NIAAA, seems best captured with the construct of dopamine dysregulation. Referring to the abundant publications on “Reward Deficiency Syndrome” (RDS), Genetic Addiction Risk Score (GARS) test, RDSQ29, and KB220, Pre-addiction can be referred to as “reward dysregulation” as a suitable suggestion. The hypothesis is that the true phenotype is RDS, and other behavioral disorders are endophenotypes where the genetic variants play important roles, specifically in the Brain Reward Cascade (BRC).

Methods

This study tested the pharmacogenomics of the GARS panel by a multi-model in silico investigation in four layers: 1) Protein-Protein Interactions (PPIs); 2) Gene Regulatory Networks (GRNs); 3) Disease, drugs and chemicals (DDCs); and 4) Gene Coexpression Networks (GCNs).

Results

All in silico findings were combined in an Enrichment Analysis for 59 refined genes, which represented highly significant associations of dopamine pathways in the BRC and supported our hypothesis.

Conclusion

This paper provides scientific evidence for the importance of incorporating GARS as a predictive test to identify Pre-addiction, introduce unique therapeutic targets assisting in the treatment of pain, drug dosing of prescription pharmaceuticals, and identify the risk for subsequent addiction early in -life.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010353450250408114725
2025-04-16
2025-11-09
Loading full text...

Full text loading...

References

  1. Mattson C.L. Tanz L.J. Quinn K. Kariisa M. Patel P. Davis N.L. Trends and geographic patterns in drug and synthetic opioid overdose deaths—United States, 2013–2019. MMWR Morb. Mortal. Wkly. Rep. 2021 70 6 202 207 10.15585/mmwr.mm7006a4 33571180
    [Google Scholar]
  2. Friedman J. Godvin M. Shover C.L. Gone J.P. Hansen H. Schriger D.L. Trends in drug overdose deaths among US adolescents, January 2010 to June 2021. JAMA 2022 327 14 1398 1400 10.1001/jama.2022.2847 35412573
    [Google Scholar]
  3. Singh G.K. Kim I.E. Jr Girmay M. Perry C. Daus G.P. Vedamuthu I.P. De Los Reyes A.A. Ramey C.T. Martin E.K. Jr Allender M. Opioid epidemic in the United States: empirical trends, and a literature review of social determinants and epidemiological, pain management, and treatment patterns. Int. J. MCH AIDS 2019 8 2 89 100 10.21106/ijma.284 31723479
    [Google Scholar]
  4. Paulozzi L.J. Jones M.J. Mack K.A. Rudd R.A. Vital signs: Overdoses of prescription opioid pain relievers - United States, 1999-2008. MMWR Morb. Mortal. Wkly. Rep. 2011 60 43 1487 1492 22048730
    [Google Scholar]
  5. Gladden R.M. Martinez P. Seth P. Fentanyl law enforcement submissions and increases in synthetic opioid–involved overdose deaths—27 states, 2013–2014. MMWR Morb. Mortal. Wkly. Rep. 2016 65 33 837 843 10.15585/mmwr.mm6533a2 27560775
    [Google Scholar]
  6. O’Donnell J.K. Gladden R.M. Seth P. Trends in deaths involving heroin and synthetic opioids excluding methadone, and law enforcement drug product reports, by census region—United States, 2006–2015. MMWR Morb. Mortal. Wkly. Rep. 2017 66 34 897 903 10.15585/mmwr.mm6634a2
    [Google Scholar]
  7. O’Donnell J.K. Halpin J. Mattson C.L. Goldberger B.A. Gladden R.M. Deaths involving fentanyl, fentanyl analogs, and U-47700—10 states, July–December 2016. MMWR Morb. Mortal. Wkly. Rep. 2017 66 43 1197 1202 10.15585/mmwr.mm6643e1
    [Google Scholar]
  8. US Department of Justice Drug Enforcement Administration Strategic Intelligence Section. US Department of Justice 2020 https://www.dea.gov/sites/default/files/2025-02/508_5.23.2024%20NDTA-updated.pdf
    [Google Scholar]
  9. Gladden R.M. O’Donnell J. Mattson C.L. Seth P. Changes in opioid-involved overdose deaths by opioid type and presence of benzodiazepines, cocaine, and methamphetamine—25 states, July–December 2017 to January–June 2018. MMWR Morb. Mortal. Wkly. Rep. 2019 68 34 737 744 10.15585/mmwr.mm6834a2 31465320
    [Google Scholar]
  10. Kariisa M. Scholl L. Wilson N. Seth P. Hoots B. Drug overdose deaths involving cocaine and psychostimulants with abuse potential—United States, 2003–2017. MMWR Morb. Mortal. Wkly. Rep. 2019 68 17 388 395 10.15585/mmwr.mm6817a3 31048676
    [Google Scholar]
  11. McLellan A.T. Koob G.F. Volkow N.D. Preaddiction—a missing concept for treating substance use disorders. JAMA Psychiatry 2022 79 8 749 751 10.1001/jamapsychiatry.2022.1652 35793096
    [Google Scholar]
  12. Day E. Facing addiction in America: The surgeon general's report on alcohol, drugs, and health U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, OFFICE OF THE SURGEON GENERAL Washington, DC, USA: U.S. Department of Health and Human Services, 2016 382 pp. Online (grey literature): https://addiction.Surgeongeneral.Gov/Drug Alcohol Rev., 37(2), 283-284. 10.1111/dar.12580 29388331
  13. Knowler W.C. Fowler S.E. Hamman R.F. Christophi C.A. Hoffman H.J. Brenneman A.T. Brown-Friday J.O. Goldberg R. Venditti E. Nathan D.M. 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study. Lancet 2009 374 9702 1677 1686 10.1016/S0140‑6736(09)61457‑4 19878986
    [Google Scholar]
  14. Glechner A. Keuchel L. Affengruber L. Titscher V. Sommer I. Matyas N. Wagner G. Kien C. Klerings I. Gartlehner G. Effects of lifestyle changes on adults with prediabetes: A systematic review and meta-analysis. Prim. Care Diabetes 2018 12 5 393 408 10.1016/j.pcd.2018.07.003 30076075
    [Google Scholar]
  15. Blum K. Sheridan P.J. Wood R.C. Braverman E.R. Chen T.J.H. Cull J.G. Comings D.E. The D2 dopamine receptor gene as a determinant of reward deficiency syndrome. J. R. Soc. Med. 1996 89 7 396 400 10.1177/014107689608900711 8774539
    [Google Scholar]
  16. Renard J. Rosen L.G. Loureiro M. De Oliveira C. Schmid S. Rushlow W.J. Laviolette S.R. Adolescent cannabinoid exposure induces a persistent sub-cortical hyper-dopaminergic state and associated molecular adaptations in the prefrontal cortex. Cereb. Cortex 2016 27 2 bhv335 10.1093/cercor/bhv335 26733534
    [Google Scholar]
  17. Edwards D. Boyett B. Badgaiyan R.D. Thanos P.K. Baron D. Hauser M. Badgaiyan S. Addiction by any other name is still addiction: Embracing molecular neurogenetic/epigenetic basis of reward deficiency. J. Addict Sci. 2020 6 1 1 4
    [Google Scholar]
  18. Blum K. Chen A.L.C. Thanos P.K. Febo M. Demetrovics Z. Dushaj K. Kovoor A. Baron D. Smith D.E. Roy A.K. III Fried L. Chen T.J.H. Chapman E. Sr Modestino E.J. Steinberg B. Badgaiyan R.D. Genetic addiction risk score GARS trade a predictor of vulnerability to opioid dependence. Front. Biosci. (Elite Ed.) 2018 10 1 175 196 10.2741/e816 28930612
    [Google Scholar]
  19. Kótyuk E. Urbán R. Hende B. Richman M. Magi A. Király O. Barta C. Griffiths M.D. Potenza M.N. Badgaiyan R.D. Blum K. Demetrovics Z. Development and validation of the Reward Deficiency Syndrome Questionnaire (RDSQ-29). J. Psychopharmacol. 2022 36 3 409 422 10.1177/02698811211069102 35102768
    [Google Scholar]
  20. Novi M. Paraskevopoulou M. Van Rooij D. Schene A.H. Buitelaar J.K. Schellekens A.F.A. Effects of substance misuse and current family history of substance use disorder on brain structure in adolescents and young adults with attention-deficit/hyperactivity disorder. Drug Alcohol Depend. 2021 228 109032 10.1016/j.drugalcdep.2021.109032 34555690
    [Google Scholar]
  21. Blum K. McLaughlin T. Bowirrat A. Modestino E.J. Baron D. Gomez L.L. Ceccanti M. Braverman E.R. Thanos P.K. Cadet J.L. Elman I. Badgaiyan R.D. Jalali R. Green R. Simpatico T.A. Gupta A. Gold M.S. Reward deficiency syndrome (RDS) surprisingly is evolutionary and found everywhere: Is it “blowin’in the wind”? J. Pers. Med. 2022 12 2 321 10.3390/jpm12020321 35207809
    [Google Scholar]
  22. Gondré-Lewis M.C. Bassey R. Blum K. Pre-clinical models of reward deficiency syndrome: A behavioral octopus. Neurosci. Biobehav. Rev. 2020 115 164 188 10.1016/j.neubiorev.2020.04.021 32360413
    [Google Scholar]
  23. Levey D.F. Stein M.B. Wendt F.R. Pathak G.A. Zhou H. Aslan M. Quaden R. Harrington K.M. Nuñez Y.Z. Overstreet C. Radhakrishnan K. Sanacora G. McIntosh A.M. Shi J. Shringarpure S.S. Concato J. Polimanti R. Gelernter J. Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat. Neurosci. 2021 24 7 954 963 10.1038/s41593‑021‑00860‑2 34045744
    [Google Scholar]
  24. Cohen M.R. Pickar D. Extein I. Gold M.S. Sweeney D.R. Plasma cortisol and beta-endorphin immunoreactivity in nonmajor and major depression. Am. J. Psychiatry 1984 141 5 628 632 10.1176/ajp.141.5.628 6324598
    [Google Scholar]
  25. Madigan M. Gupta A. Bowirrat A. Baron D. Badgaiyan R. Elman I. Dennen C. Braverman E. Gold M. Blum K. Precision behavioral management (PBM) and cognitive control as a potential therapeutic and prophylactic modality for reward deficiency syndrome (RDS): Is there enough evidence? Int. J. Environ. Res. Public Health 2022 19 11 6395 10.3390/ijerph19116395 35681980
    [Google Scholar]
  26. Fischer K.D. Knackstedt L.A. Rosenberg P.A. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior. Neurochem. Int. 2021 144 104896 10.1016/j.neuint.2020.104896 33159978
    [Google Scholar]
  27. Koob G.F. Le Moal M. Addiction and the brain antireward system. Annu. Rev. Psychol. 2008 59 1 29 53 10.1146/annurev.psych.59.103006.093548 18154498
    [Google Scholar]
  28. Zunhammer M. Schweizer L.M. Witte V. Harris R.E. Bingel U. Schmidt-Wilcke T. Combined glutamate and glutamine levels in pain-processing brain regions are associated with individual pain sensitivity. Pain 2016 157 10 2248 2256 10.1097/j.pain.0000000000000634 27649042
    [Google Scholar]
  29. Chen Z. Muscoli C. Doyle T. Bryant L. Cuzzocrea S. Mollace V. Mastroianni R. Masini E. Salvemini D. NMDA-receptor activation and nitroxidative regulation of the glutamatergic pathway during nociceptive processing. Pain 2010 149 1 100 106 10.1016/j.pain.2010.01.015 20167432
    [Google Scholar]
  30. Kambur O. Männistö P.T. Catechol-O-methyltransferase and pain. Int. Rev. Neurobiol. 2010 95 227 279 10.1016/B978‑0‑12‑381326‑8.00010‑7 21095465
    [Google Scholar]
  31. Smith M.T. Muralidharan A. Pharmacogenetics of pain and analgesia. Clin. Genet. 2012 82 4 321 330 10.1111/j.1399‑0004.2012.01936.x 22779698
    [Google Scholar]
  32. Ding W. Yang L. Shi E. Kim B. Low S. Hu K. Gao L. Chen P. Author correction: The endocannabinoid N-arachidonoyl dopamine is critical for hyperalgesia induced by chronic sleep disruption. Nat. Commun. 2023 14 1 6696 10.1038/s41467‑023‑42283‑6
    [Google Scholar]
  33. Blum K. Kazmi S. Modestino E.J. Downs B.W. Bagchi D. Baron D. McLaughlin T. Green R. Jalali R. Thanos P.K. Elman I. Badgaiyan R.D. Bowirrat A. Gold M.S. A novel precision approach to overcome the “addiction pandemic” by incorporating genetic addiction risk severity (GARS) and dopamine homeostasis restoration. J. Pers. Med. 2021 11 3 212 10.3390/jpm11030212 33809702
    [Google Scholar]
  34. Blum K. Oscar-Berman M. Demetrovics Z. Barh D. Gold M.S. Genetic addiction risk score (GARS): Molecular neurogenetic evidence for predisposition to reward deficiency syndrome (RDS). Mol. Neurobiol. 2014 50 3 765 796 10.1007/s12035‑014‑8726‑5 24878765
    [Google Scholar]
  35. Blum K. Blum K. Blum K. Blum K. Blum K. Biotechnical development of genetic addiction risk score (GARS) and selective evidence for inclusion of polymorphic allelic risk in substance use disorder (SUD). J. Syst. Integr. Neurosci. 2019 6 2
    [Google Scholar]
  36. Blum K. Brodie M. Pandey S. Cadet J. Gupta A. Elman I. Thanos P. Gondre-Lewis M. Baron D. Kazmi S. Bowirrat A. Febo M. Badgaiyan R. Braverman E. Dennen C. Gold M. Researching mitigation of alcohol binge drinking in polydrug abuse: KCNK13 and RASGRF2 gene (s) risk polymorphisms coupled with genetic addiction risk severity (GARS) guiding precision pro-dopamine regulation. J. Pers. Med. 2022 12 6 1009 10.3390/jpm12061009 35743793
    [Google Scholar]
  37. Vereczkei A. Barta C. Magi A. Farkas J. Eisinger A. Király O. Belik A. Griffiths M.D. Szekely A. Sasvári-Székely M. Urbán R. Potenza M.N. Badgaiyan R.D. Blum K. Demetrovics Z. Kotyuk E. FOXN3 and GDNF polymorphisms as common genetic factors of substance use and addictive behaviors. J. Pers. Med. 2022 12 5 690 10.3390/jpm12050690 35629112
    [Google Scholar]
  38. Moran M. Blum K. Ponce J.V. Lott L. Gondré-Lewis M.C. Badgaiyan S. Brewer R. Downs B.W. Fynman P. Weingarten A. Cadet J.L. Smith D.E. Baron D. Thanos P.K. Modestino E.J. Badgaiyan R.D. Elman I. Gold M.S. High genetic addiction risk score (GARS) in chronically prescribed severe chronic opioid probands attending multi-pain clinics: an open clinical pilot trial. Mol. Neurobiol. 2021 58 7 3335 3346 10.1007/s12035‑021‑02312‑1 33683627
    [Google Scholar]
  39. Fried L. Modestino E.J. Siwicki D. Lott L. Thanos P.K. Baron D. Badgaiyan R.D. Ponce J.V. Giordano J. Downs W.B. Gondré-Lewis M.C. Bruce S. Braverman E.R. Boyett B. Blum K. Hypodopaminergia and “Precision Behavioral Management”(PBM): It is a generational family affair. Curr. Pharm. Biotechnol. 2020 21 6 528 541 10.2174/1389201021666191210112108 31820688
    [Google Scholar]
  40. Thanos P.K. Hanna C. Mihalkovic A. Hoffman A.B. Posner A.R. Busch J. Smith C. Badgaiyan R.D. Blum K. Baron D. Mastrandrea L.D. Quattrin T. The first exploratory personalized medicine approach to improve bariatric surgery outcomes utilizing psychosocial and genetic risk assessments: Encouraging clinical research. J. Pers. Med. 2023 13 7 1164 10.3390/jpm13071164 37511777
    [Google Scholar]
  41. Thanos P.K. Hanna C. Mihalkovic A. Hoffman A. Posner A. Butsch J. Blum K. Georger L. Mastrandrea L.D. Quattrin T. Genetic correlates as a predictor of bariatric surgery outcomes after 1 year. Biomedicines 2023 11 10 2644 10.3390/biomedicines11102644 37893019
    [Google Scholar]
  42. Thanos P.K. Gold M.S. Blum K. Badgaiyan R.D. Avena N.M. Bariatric surgery: Potential post-operative heightened sensitivity to substances or behaviors. J. Syst. Integr. Neurosci. 2021 8 1 35965990
    [Google Scholar]
  43. Steffen K.J. Engel S.G. Wonderlich J.A. Pollert G.A. Sondag C. Alcohol and other addictive disorders following bariatric surgery: prevalence, risk factors and possible etiologies. Eur. Eat. Disord. Rev. 2015 23 6 442 450 10.1002/erv.2399 26449524
    [Google Scholar]
  44. Blum K. Bowirrat A. Lewis M.C.G. Simpatico T.A. Ceccanti M. Steinberg B. Modestino E.J. Thanos P.K. Baron D. McLaughlin T. Brewer R. Badgaiyan R.D. Ponce J.V. Lott L. Gold M.S. Exploration of epigenetic state hyperdopaminergia (Surfeit) and genetic trait hypodopaminergia (Deficit) during adolescent brain development. Curr. Psychopharmacol. 2021 10 3 181 196 10.2174/2211556010666210215155509 34707969
    [Google Scholar]
  45. Dennen C.A. Blum K. Bowirrat A. Thanos P.K. Elman I. Ceccanti M. Badgaiyan R.D. McLaughlin T. Gupta A. Bajaj A. Baron D. Downs B.W. Bagchi D. Gold M.S. Genetic addiction risk severity assessment identifies polymorphic reward genes as antecedents to reward deficiency syndrome (RDS) hypodopaminergia’s effect on addictive and non-addictive behaviors in a nuclear family. J. Pers. Med. 2022 12 11 1864 10.3390/jpm12111864 36579592
    [Google Scholar]
  46. Palmour R.M. Ervin F.R. Baker G.B. Young S.N. An amino acid mixture deficient in phenylalanine and tyrosine reduces cerebrospinal fluid catecholamine metabolites and alcohol consumption in vervet monkeys. Psychopharmacology (Berl.) 1998 136 1 1 7 10.1007/s002130050532 9537676
    [Google Scholar]
  47. Gondré-Lewis M.C. Elman I. Alim T. Chapman E. Settles-Reaves B. Galvao C. Gold M.S. Baron D. Kazmi S. Gardner E. Gupta A. Dennen C. Blum K. Frequency of the dopamine receptor D3 (rs6280) vs. opioid receptor µ1 (rs1799971) polymorphic risk alleles in patients with opioid use disorder: A preponderance of dopaminergic mechanisms? Biomedicines 2022 10 4 870 10.3390/biomedicines10040870 35453620
    [Google Scholar]
  48. Blum K. Siwicki D. Baron D.J. Modestino E.D. Badgaiyan R. The benefits of genetic addiction risk score (GARS®) and pro-dopamine regulation in combating suicide in the American Indian population. J. Syst. Integr. Neurosci. 2018 4 2 4 10.15761/JSIN.1000195 31660252
    [Google Scholar]
  49. Blum K. Green R. Mullen P. Han D. Bowirrat A. Elman I. Floyd J.B. Thanos P.K. Baron D. Gold M.S. Badgaiyan R.D. Reward Deficiency Syndrome Solution System (RDSSS) A genetically driven putative inducer of “Dopamine Homeostasis” as a futuristic alternative to enhance rehabilitation instead of incarceration. Asian J. Complement. Altern. Med 2023 11 1 11 14 10.53043/2347‑3894.acam11003 36865662
    [Google Scholar]
  50. Blum K. Baron D. Hauser M. Henriksen S. Thanos P.K. Black C. Siwicki D. Modestino E.J. Downs B.W. Badgaiyan S. Simpatico T.A. Boyett B. Badgaiyan R.D. Americas’ opioid/psychostimulant epidemic would benefit from general population early identification of genetic addiction risk especially in children of alcoholics (COAs). J. Syst. Integr. Neurosci. 2019 5 2 1 3 32082617
    [Google Scholar]
  51. Blum K. Dennen C.A. Braverman E.R. Gupta A. Baron D. Downs B.W. Bagchi D. Thanos P. Pollock M. Khalsa J. Elman I. Bowirrat A. Badgaiyan R.D. Hypothesizing that Pediatric Autoimmune Neuropsychiatric Associated Streptococcal (PANDAS) causes rapid onset of Reward Deficiency Syndrome (RDS) behaviors and may require induction of “Dopamine Homeostasis”. Open J. Immunol. 2022 12 3 65 75 10.4236/oji.2022.123004 36407790
    [Google Scholar]
  52. Blum K. Whitney D. Fried L. Febo M. Waite R.L. Braverman E.R. Dushaj K. Li M. Giordano J. Demetrovics Z. Badgaiyan R.D. Hypothesizing that a pro-dopaminergic regulator (KB220z™ liquid variant) can induce “dopamine homeostasis” and provide adjunctive detoxification benefits in opiate/opioid dependence. Clin. Med. Rev. Case Rep. 2016 3 8 125 10.23937/2378‑3656/1410125 29034323
    [Google Scholar]
  53. Bajaj A. Blum K. Bowirrat A. Gupta A. Baron D. Fugel D. Nicholson A. Fitch T. Downs B.W. Bagchi D. Dennen C.A. Badgaiyan R.D. DNA directed pro-dopamine regulation coupling subluxation repair, H-Wave® and other neurobiologically based modalities to address complexities of chronic pain in a female diagnosed with reward deficiency syndrome (RDS): Emergence of Induction of “Dopamine Homeostasis” in the face of the opioid crisis. J. Pers. Med. 2022 12 9 1416 10.3390/jpm12091416 36143203
    [Google Scholar]
  54. Knopf A. SAMHSA: Substance use by teens across sexual identities. Alcohol. Drug Abuse Wkly. 2024 36 44 4 5 10.1002/adaw.34327
    [Google Scholar]
  55. Lee Y.K. Gold M.S. Blum K. Thanos P.K. Hanna C. Fuehrlein B.S. Opioid use disorder: Current trends and potential treatments. Front. Public Health 2024 11 1274719 10.3389/fpubh.2023.1274719 38332941
    [Google Scholar]
  56. Morazán-Fernández D. Mora J. Molina-Mora J.A. In silico pipeline to identify tumor-specific antigens for cancer immunotherapy using exome sequencing data. Phenomics 2023 3 2 130 137 10.1007/s43657‑022‑00084‑9 37197645
    [Google Scholar]
  57. Dilokthornsakul W. Kosiyaporn R. Wuttipongwaragon R. Dilokthornsakul P. Potential effects of propolis and honey in COVID-19 prevention and treatment: A systematic review of in silico and clinical studies. J. Integr. Med. 2022 20 2 114 125 10.1016/j.joim.2022.01.008 35144898
    [Google Scholar]
  58. Lewandrowski K.U. Sharafshah A. Elfar J. Schmidt S.L. Blum K. Wetzel F.T. A pharmacogenomics-based in silico investigation of opioid prescribing in post-operative spine pain management and personalized therapy. Cell. Mol. Neurobiol. 2024 44 1 47 10.1007/s10571‑024‑01466‑5 38801645
    [Google Scholar]
  59. Lewandrowski K-U. Genetic and regulatory mechanisms of comorbidity of anxiety, depression and ADHD: A GWAS meta-meta-analysis through the lens of a system biological and pharmacogenomic perspective in 18.5 M subjects. J. Pers. Med. 2025 15 3 103
    [Google Scholar]
  60. Blum K. Genes and Genetic Testing in Addiction Medicine 2024
  61. Assefi M. Lewandrowski K.U. Lorio M. Fiorelli R.K.A. Landgraeber S. Sharafshah A. Network-based in silico analysis of new combinations of modern drug targets with methotrexate for response-Based treatment of rheumatoid arthritis. J. Pers. Med. 2023 13 11 1550 10.3390/jpm13111550 38003865
    [Google Scholar]
  62. Raad M. López W.O.C. Sharafshah A. Assefi M. Lewandrowski K.U. Personalized medicine in cancer pain management. J. Pers. Med. 2023 13 8 1201 10.3390/jpm13081201 37623452
    [Google Scholar]
  63. Sabaie H. Khorami Rouz S. Kouchakali G. Heydarzadeh S. Asadi M.R. Sharifi-Bonab M. Hussen B.M. Taheri M. Ayatollahi S.A. Rezazadeh M. Identification of potential regulatory long non-coding RNA-associated competing endogenous RNA axes in periplaque regions in multiple sclerosis. Front. Genet. 2022 13 1011350 10.3389/fgene.2022.1011350 36324503
    [Google Scholar]
  64. Liu Z.P. Wu C. Miao H. Wu H. RegNetwork: An integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse. Database (Oxford) 2015 2015 bav095 10.1093/database/bav095 26424082
    [Google Scholar]
  65. Atreya R.V. Sun J. Zhao Z. Exploring drug-target interaction networks of illicit drugs. BMC Genomics, 2013 14 Suppl 4(Suppl 4), S1 10.1186/1471‑2164‑14‑S4‑S1 24268016
    [Google Scholar]
  66. Wang X. Shi Z. Zhao Z. Chen H. Lang Y. Kong L. Lin X. Du Q. Wang J. Zhou H. The causal relationship between neuromyelitis optica spectrum disorder and other autoimmune diseases. Front. Immunol. 2022 13 959469 10.3389/fimmu.2022.959469 36248893
    [Google Scholar]
  67. Marballi K.K. Alganem K. Brunwasser S.J. Barkatullah A. Meyers K.T. Campbell J.M. Ozols A.B. Mccullumsmith R.E. Gallitano A.L. Identification of activity-induced Egr3-dependent genes reveals genes associated with DNA damage response and schizophrenia. Transl. Psychiatry 2022 12 1 320 10.1038/s41398‑022‑02069‑8 35941129
    [Google Scholar]
  68. Fan X. Chen H. Jiang F. Xu C. Wang Y. Wang H. Li M. Wei W. Song J. Zhong D. Li G. Comprehensive analysis of cuproptosis-related genes in immune infiltration in ischemic stroke. Front. Neurol. 2023 13 1077178 10.3389/fneur.2022.1077178 36818726
    [Google Scholar]
  69. Zhou Y. Zhou B. Pache L. Chang M. Khodabakhshi A.H. Tanaseichuk O. Benner C. Chanda S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019 10 1 1523 10.1038/s41467‑019‑09234‑6 30944313
    [Google Scholar]
  70. Breuer K. Foroushani A.K. Laird M.R. Chen C. Sribnaia A. Lo R. Winsor G.L. Hancock R.E.W. Brinkman F.S.L. Lynn D.J. Innate D.B. Systems biology of innate immunity and beyond—recent updates and continuing curation. Nucleic Acids Res. 2013 41 D1 D1228 D1233 10.1093/nar/gks1147 23180781
    [Google Scholar]
  71. Blum K. Noble E.P. Sheridan P.J. Montgomery A. Ritchie T. Jagadeeswaran P. Nogami H. Briggs A.H. Cohn J.B. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 1990 263 15 2055 2060 10.1001/jama.1990.03440150063027 1969501
    [Google Scholar]
  72. Gordis E. Tabakoff B. Goldman D. Berg K. Finding the gene(s) for alcoholism. JAMA 1990 263 15 2094 2095 10.1001/jama.1990.03440150102034 2157075
    [Google Scholar]
  73. Edenberg H.J. Foroud T. Koller D.L. Goate A. Rice J. Van Eerdewegh P. Reich T. Cloninger C.R. Nurnberger J.I. Jr Kowalczuk M. Wu B. Li T.K. Conneally P.M. Tischfield J.A. Wu W. Shears S. Crowe R. Hesselbrock V. Schuckit M. Porjesz B. Begleiter H. A family-based analysis of the association of the dopamine D2 receptor (DRD2) with alcoholism. Alcohol. Clin. Exp. Res. 1998 22 2 505 512 10.1111/j.1530‑0277.1998.tb03680.x 9581660
    [Google Scholar]
  74. Neville M.J. Johnstone E.C. Walton R.T. Identification and characterization of ANKK1: A novel kinase gene closely linked to DRD2 on chromosome band 11q23.1. Hum. Mutat. 2004 23 6 540 545 10.1002/humu.20039 15146457
    [Google Scholar]
  75. Volkow N.D. Fowler J.S. Wolf A.P. Schlyer D. Shiue C.Y. Alpert R. Dewey S.L. Logan J. Bendriem B. Christman D. Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am. J. Psychiatry 1990 147 6 719 724 10.1176/ajp.147.6.719 2343913
    [Google Scholar]
  76. Noble E.P. Blum K. Ritchie T. Montgomery A. Sheridan P.J. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism. Arch. Gen. Psychiatry 1991 48 7 648 654 10.1001/archpsyc.1991.01810310066012 2069496
    [Google Scholar]
  77. Jung Y. Montel R.A. Shen P.H. Mash D.C. Goldman D. Assessment of the association of D2 dopamine receptor gene and reported allele frequencies with alcohol use disorders: a systematic review and meta-analysis. JAMA Netw. Open 2019 2 11 e1914940 e1914940 10.1001/jamanetworkopen.2019.14940 31702801
    [Google Scholar]
  78. Blum K. Thompson B. Demotrovics Z. Femino J. Giordano J. Oscar-Berman M. Teitelbaum S. Smith D.E. Roy A.K. Agan G. Fratantonio J. Badgaiyan R.D. Gold M.S. The molecular neurobiology of twelve steps program & fellowship: Connecting the dots for recovery. J. Reward Defic. Syndr. 2015 1 1 46 64 10.17756/jrds.2015‑008 26306329
    [Google Scholar]
  79. Browning B.D. Kirkland A.E. Green R. Engevik M. Alekseyenko A.V. Leggio L. Tomko R.L. Squeglia L.M. The adolescent and young adult microbiome and its association with substance use: A scoping review. Alcohol Alcohol. 2024 59 1 agad055 10.1093/alcalc/agad055 37665023
    [Google Scholar]
  80. Wang D. Feng Y. Yang M. Sun H. Zhang Q. Wang R. Tong S. Su R. Jin Y. Wang Y. Lu Z. Han L. Sun Y. Variations in the oral microbiome and metabolome of methamphetamine users. mSystems 2024 9 1 e00991 e23 10.1128/msystems.00991‑23 38112416
    [Google Scholar]
  81. Choi H.J. Cutting-edge research on eating disorders beyond eating: Comprehensive understanding linking autism, gut-brain axis, gut microbiota, digital tools, and food addiction. J. Korean Acad. Child Adolesc. Psychiatry 2024 35 1 2 3 10.5765/jkacap.230075 38204749
    [Google Scholar]
  82. Meckel K.R. Simpson S.S. Godino A. Peck E.G. Sens J.P. Leonard M.Z. George O. Calipari E.S. Hofford R.S. Kiraly D.D. Microbial short-chain fatty acids regulate drug seeking and transcriptional control in a model of cocaine seeking. Neuropsychopharmacology 2024 49 2 386 395 10.1038/s41386‑023‑01661‑w 37528220
    [Google Scholar]
  83. Bi K. Lei Y. Kong D. Li Y. Fan X. Luo X. Yang J. Wang G. Li X. Xu Y. Luo H. Progress in the study of intestinal microbiota involved in morphine tolerance. Heliyon 2024 10 6 e27187 10.1016/j.heliyon.2024.e27187 38533077
    [Google Scholar]
  84. Acuña A.M. Olive M.F. Influence of gut microbiome metabolites on cocaine demand and cocaine-seeking behavior. Neuropsychopharmacology 2024 49 2 357 358 10.1038/s41386‑023‑01743‑9 37740056
    [Google Scholar]
  85. Liu W. Liu L. Deng Z. Liu R. Ma T. Xin Y. Xie Y. Zhou Y. Tang Y. Associations between impulsivity and fecal microbiota in individuals abstaining from methamphetamine. CNS Neurosci. Ther. 2024 30 2 e14580 10.1111/cns.14580 38421126
    [Google Scholar]
  86. Worth T. Could the gut give rise to alcohol addiction? Nature 2024 10.1038/d41586‑024‑00667‑8 38454030
    [Google Scholar]
  87. Gong Z. Xue Q. Luo Y. Yu B. Hua B. Liu Z. The interplay between the microbiota and opioid in the treatment of neuropathic pain. Front. Microbiol. 2024 15 1390046 10.3389/fmicb.2024.1390046 38919504
    [Google Scholar]
  88. He L. Zhou J.H. Li H. Zhang W.L. Liu T.Q. Jiang H.F. Zhai R.W. Characterization of Gut Microbiota in rats and rhesus monkeys after methamphetamine self-administration. Mol. Neurobiol. 2024 62 1 861 870 38922485
    [Google Scholar]
  89. Doura M.B. Unterwald E.M. MicroRNAs modulate interactions between stress and risk for cocaine addiction. Front. Cell. Neurosci. 2016 10 125 10.3389/fncel.2016.00125 27303265
    [Google Scholar]
  90. Most D. Workman E. Harris R.A. Synaptic adaptations by alcohol and drugs of abuse: Changes in microRNA expression and mRNA regulation. Front. Mol. Neurosci. 2014 7 85 10.3389/fnmol.2014.00085 25565954
    [Google Scholar]
  91. Gyollai Á.Z. Griffiths M.D. Barta C. Vereczkei Á. Urbán R. Kun B. Kökönyei G. Székely Á. The genetics of problem and pathological gambling. J Gambl Stud., 2003 19 1 11 22 10.2174/13816128113199990626
  92. Strom N.I. Gerring Z.F. Barta C. Galimberti M. Yu D. Halvorsen M.W. Abdellaoui A. Rodriguez-Fontenla C. Genome-wide association study identifies 30 obsessive-compulsive disorder associated loci. medRxiv 2024 10.1101/2024.03.13.24304161
    [Google Scholar]
  93. Braverman E. Dennen C. Gold M. Bowirrat A. Gupta A. Baron D. Roy A. Smith D. Cadet J. Blum K. Proposing a “brain health checkup (BHC)” as a global potential “standard of care” to overcome reward dysregulation in primary care medicine: Coupling genetic risk testing and induction of “dopamine homeostasis”. Int. J. Environ. Res. Public Health 2022 19 9 5480 10.3390/ijerph19095480 35564876
    [Google Scholar]
  94. Mash D.C. Staley J.K. D3 dopamine and kappa opioid receptor alterations in human brain of cocaine-overdose victims. Ann. N. Y. Acad. Sci. 1999 877 1 507 522 10.1111/j.1749‑6632.1999.tb09286.x 10415668
    [Google Scholar]
  95. Warlow S.M. Singhal S.M. Hollon N.G. Faget L. Dowlat D.S. Zell V. Hunker A.C. Hnasko T.S. Mesoaccumbal glutamate neurons drive reward via glutamate release but aversion via dopamine co-release. Neuron 2024 112 3 488 10.1016/j.neuron.2023.11.002
    [Google Scholar]
  96. Lauretani F. Giallauria F. Testa C. Zinni C. Lorenzi B. Zucchini I. Salvi M. Napoli R. Maggio M.G. Dopamine pharmacodynamics: New insights. Int. J. Mol. Sci. 2024 25 10 5293 10.3390/ijms25105293 38791331
    [Google Scholar]
  97. Söderpalm B. Ericson M. Alcohol and the dopamine system. Int. Rev. Neurobiol. 2024 175 21 73 10.1016/bs.irn.2024.02.003 38555117
    [Google Scholar]
  98. Vaughan R.A. Henry L.K. Foster J.D. Brown C.R. Post-translational mechanisms in psychostimulant-induced neurotransmitter efflux. Adv. Pharmacol. 2024 99 1 33 10.1016/bs.apha.2023.10.003 38467478
    [Google Scholar]
  99. Ford M.M. George B.E. Van Laar V.S. Holleran K.M. Naidoo J. Hadaczek P. Vanderhooft L.E. Peck E.G. Dawes M.H. Ohno K. Bringas J. McBride J.L. Samaranch L. Forsayeth J.R. Jones S.R. Grant K.A. Bankiewicz K.S. GDNF gene therapy for alcohol use disorder in male non-human primates. Nat. Med. 2023 29 8 2030 2040 10.1038/s41591‑023‑02463‑9 37580533
    [Google Scholar]
  100. Zhang H. Yin Y.L. Dai A. Zhang T. Zhang C. Wu C. Hu W. He X. Pan B. Jin S. Yuan Q. Wang M.W. Yang D. Xu H.E. Jiang Y. Dimerization and antidepressant recognition at noradrenaline transporter. Nature 2024 630 8015 247 254 10.1038/s41586‑024‑07437‑6 38750358
    [Google Scholar]
  101. Nunes E.J. Addy N.A. Conn P.J. Foster D.J. Targeting the actions of muscarinic receptors on dopamine systems: New strategies for treating neuropsychiatric disorders. Annu. Rev. Pharmacol. Toxicol. 2024 64 1 277 289 10.1146/annurev‑pharmtox‑051921‑023858 37552895
    [Google Scholar]
  102. Kim A.J. Senior J. Chen K. Catecholamines: Influence on healthy aging and the progression of neurodegenerative diseases. Neurosci. Biobehav. Rev. 2024 162 105733 10.1016/j.neubiorev.2024.105733 38789019
    [Google Scholar]
  103. Zhang Q. Xue Y. Wei K. Wang H. Ma Y. Wei Y. Fan Y. Gao L. Yao H. Wu F. Ding X. Zhang Q. Ding J. Fan Y. Lu M. Hu G. Locus Coeruleus-dorsolateral septum projections modulate depression-like behaviors via BDNF but not norepinephrine. Adv. Sci. (Weinh.) 2024 11 10 2303503 10.1002/advs.202303503 38155473
    [Google Scholar]
  104. Rappeneau V. Castillo Díaz F. Convergence of oxytocin and dopamine signalling in neuronal circuits: Insights into the neurobiology of social interactions across species. Neurosci. Biobehav. Rev. 2024 161 105675 10.1016/j.neubiorev.2024.105675 38608828
    [Google Scholar]
  105. Minnes G.L. Wiener A.J. Liley A.E. Simon N.W. Dopaminergic modulation of sensitivity to immediate and delayed punishment during decision-making. Cogn. Affect. Behav. Neurosci. 2024 24 2 304 321 10.3758/s13415‑023‑01139‑8 38052746
    [Google Scholar]
  106. Smith J.S. Hilibrand A.S. Skiba M.A. Dates A.N. Calvillo-Miranda V.G. Kruse A.C. The M3 muscarinic acetylcholine receptor can signal through multiple G protein families. Mol. Pharmacol. 2024 105 6 386 394 10.1124/molpharm.123.000818 38641412
    [Google Scholar]
  107. Jiang Y. Yeasmin M. Gondin A.B. Christopoulos A. Valant C. Burger W.A.C. Thal D.M. Importance of receptor expression in the classification of novel ligands at the M 2 muscarinic acetylcholine receptor. Br. J. Pharmacol. 2024 181 14 2338 2350 10.1111/bph.16021 36550621
    [Google Scholar]
  108. Farkas I. Skrapits K. Sárvári M. Göcz B. Takács S. Rumpler É. Hrabovszky E. Functional GnRH receptor signaling regulates striatal cholinergic neurons in neonatal but not in adult mice. Front. Endocrinol. (Lausanne) 2024 15 1353151 10.3389/fendo.2024.1353151 38348415
    [Google Scholar]
  109. Carlson A.B. Kraus G.P. Physiology, Cholinergic Receptors. StatPearls. Treasure Island StatPearls Publishing 2023
    [Google Scholar]
  110. Qiu S. Hu Y. Huang Y. Gao T. Wang X. Wang D. Ren B. Shi X. Chen Y. Wang X. Wang D. Han L. Liang Y. Liu D. Liu Q. Deng L. Chen Z. Zhan L. Chen T. Huang Y. Wu Q. Xie T. Qian L. Jin C. Huang J. Deng W. Jiang T. Li X. Jia X. Yuan J. Li A. Yan J. Xu N. Xu L. Luo Q. Poo M.M. Sun Y. Li C.T. Yao H. Gong H. Sun Y.G. Xu C. Whole-brain spatial organization of hippocampal single-neuron projectomes. Science 2024 383 6682 eadj9198 10.1126/science.adj9198 38300992
    [Google Scholar]
  111. Chopra A. Outeiro T.F. Aggregation and beyond: Alpha-synuclein-based biomarkers in synucleinopathies. Brain 2024 147 1 81 90 10.1093/brain/awad260 37526295
    [Google Scholar]
  112. Yan Y. Li X. Luo Y.J. Gao Y. Mathivanan S. Kong L. Tao Y. 3D bioprinting of human neural tissues with functional connectivity. Cell Stem Cell 2024 31 260 274 10.1016/j.stem.2023.12.009
    [Google Scholar]
  113. Li Y-D. Luo Y.J. Su W.K. Crowther A. Chen Z.K. Anterior cingulate cortex projections to the dorsal medial striatum underlie insomnia associated with chronic pain. Neuron 2024 112 8 1328 1341 10.1016/j.neuron.2024.01.014
    [Google Scholar]
  114. Kimchi E.Y. Burgos-Robles A. Matthews G.A. Chakoma T. Patarino M. Weddington J.C. Siciliano C. Yang W. Foutch S. Simons R. Fong M. Jing M. Li Y. Polley D.B. Tye K.M. Reward contingency gates selective cholinergic suppression of amygdala neurons. eLife 2024 12 RP89093 10.7554/eLife.89093.2 38376907
    [Google Scholar]
  115. Liang Q. Chi G. Cirqueira L. Zhi L. Marasco A. Pilati N. Gunthorpe M.J. Alvaro G. Large C.H. Sauer D.B. Treptow W. Covarrubias M. The binding and mechanism of a positive allosteric modulator of Kv3 channels. Nat. Commun. 2024 15 1 2533 10.1038/s41467‑024‑46813‑8 38514618
    [Google Scholar]
  116. Nakajo K. Kasuya G. Modulation of potassium channels by transmembrane auxiliary subunits via voltage-sensing domains. Physiol. Rep. 2024 12 6 e15980 10.14814/phy2.15980 38503563
    [Google Scholar]
  117. Meshkat S. Kwan A.T.H. Le G.H. Wong S. Rhee T.G. Ho R. Teopiz K.M. Cao B. McIntyre R.S. The role of KCNQ channel activators in management of major depressive disorder. J. Affect. Disord. 2024 359 364 372 10.1016/j.jad.2024.05.067 38772507
    [Google Scholar]
  118. Iftimovici A. Charmet A. Desnous B. Ory A. Delorme R. Coutton C. Devillard F. Milh M. Maruani A. Familial KCNQ2 mutation: A psychiatric perspective. Psychiatr. Genet. 2024 34 1 24 27 10.1097/YPG.0000000000000360 38108335
    [Google Scholar]
  119. Belghazi M. Iborra C. Toutendji O. Lasserre M. Debanne D. Goaillard J.M. Marquèze-Pouey B. High-resolution proteomics unravel a native functional complex of Cav1.3, SK3, and hyperpolarization-activated cyclic nucleotide-gated channels in midbrain dopaminergic neurons. Cells 2024 13 11 944 10.3390/cells13110944 38891076
    [Google Scholar]
  120. Borroto-Escuela D.O. Gonzalez-Cristo E. Ochoa-Torres V. Serra-Rojas E.M. Ambrogini P. Arroyo-García L.E. Fuxe K. Understanding electrical and chemical transmission in the brain. Front. Cell. Neurosci. 2024 18 1398862 10.3389/fncel.2024.1398862 38988663
    [Google Scholar]
  121. Chen Y. Xiao L. Qiu J. Neuronomodulation of excitable neurons. Neurosci. Bull. 2024 40 1 103 112 10.1007/s12264‑023‑01095‑w 37584858
    [Google Scholar]
  122. Hanson J.E. Yuan H. Perszyk R.E. Banke T.G. Xing H. Tsai M.C. Menniti F.S. Traynelis S.F. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry. Neuropsychopharmacology 2024 49 1 51 66 10.1038/s41386‑023‑01614‑3 37369776
    [Google Scholar]
  123. Gonzalez-Hernandez A.J. Munguba H. Levitz J. Emerging modes of regulation of neuromodulatory G protein-coupled receptors. Trends Neurosci. 2024 47 8 635 650 10.1016/j.tins.2024.05.008 38862331
    [Google Scholar]
  124. Passlick S. Ullah G. Henneberger C. Bidirectional dysregulation of synaptic glutamate signaling after transient metabolic failure. bioRxiv 2024
    [Google Scholar]
  125. Guo J. Wang Y. Shi C. Zhang D. Zhang Q. Wang L. Gong Z. Mitochondrial calcium uniporter complex: Unveiling the interplay between its regulators and calcium homeostasis. Cell. Signal. 2024 121 111284 10.1016/j.cellsig.2024.111284 38964444
    [Google Scholar]
  126. Szymanowicz O. Drużdż A. Słowikowski B. Pawlak S. Potocka E. Goutor U. Konieczny M. Ciastoń M. Lewandowska A. Jagodziński P.P. Kozubski W. Dorszewska J. A review of the CACNA gene family: Its role in neurological disorders. Diseases 2024 12 5 90 10.3390/diseases12050090 38785745
    [Google Scholar]
  127. García-Navarrete C. Kretschmar C. Toledo J. Gutiérrez K. Hernández-Cáceres M.P. Budini M. Parra V. Burgos P.V. Lavandero S. Morselli E. Peña-Oyarzún D. Criollo A. PKD2 regulates autophagy and forms a protein complex with BECN1 at the primary cilium of hypothalamic neuronal cells. Biochim. Biophys. Acta Mol. Basis Dis. 2024 1870 6 167256 10.1016/j.bbadis.2024.167256 38782303
    [Google Scholar]
  128. Ni M. Dadon Z. Ormerod J.O.M. Saenen J. Hoeksema W.F. Antiperovitch P. Tadros R. Christiansen M.K. Steinberg C. Arnaud M. Tian S. Sun B. Estillore J.P. Wang R. Khan H.R. Roston T.M. Mazzanti A. Giudicessi J.R. Siontis K.C. Alak A. Acosta J.G. Divakara Menon S.M. Tan N.S. van der Werf C. Nazer B. Vivekanantham H. Pandya T. Cunningham J. Gula L.J. Wong J.A. Amit G. Scheinman M.M. Krahn A.D. Ackerman M.J. Priori S.G. Gollob M.H. Healey J.S. Sacher F. Nof E. Glikson M. Wilde A.A.M. Watkins H. Jensen H.K. Postema P.G. Belhassen B. Chen S.R.W. Roberts J.D. A clinical diagnostic test for calcium release deficiency syndrome. JAMA 2024 332 3 204 213 10.1001/jama.2024.8599 38900490
    [Google Scholar]
  129. Perez-Miller S. Gomez K. Khanna R. Peptide and peptidomimetic inhibitors targeting the interaction of collapsin response mediator protein 2 with the N-type calcium channel for pain relief. ACS Pharmacol. Transl. Sci. 2024 7 7 1916 1936 10.1021/acsptsci.4c00181 39022365
    [Google Scholar]
  130. Cameron E.G. Nahmou M. Toth A.B. Heo L. Tanasa B. Dalal R. Yan W. Nallagatla P. Xia X. Hay S. Knasel C. Stiles T.L. Douglas C. Atkins M. Sun C. Ashouri M. Bian M. Chang K.C. Russano K. Shah S. Woodworth M.B. Galvao J. Nair R.V. Kapiloff M.S. Goldberg J.L. A molecular switch for neuroprotective astrocyte reactivity. Nature 2024 626 7999 574 582 10.1038/s41586‑023‑06935‑3 38086421
    [Google Scholar]
  131. Pizzoni A. Zhang X. Altschuler D.L. From membrane to nucleus: A three-wave hypothesis of cAMP signaling. J. Biol. Chem. 2024 300 1 105497 10.1016/j.jbc.2023.105497 38016514
    [Google Scholar]
  132. El Atiallah I. Ponterio G. Meringolo M. Martella G. Sciamanna G. Tassone A. Montanari M. Mancini M. Castagno A.N. Yu-Taeger L. Nguyen H.H.P. Bonsi P. Pisani A. Loss-of-function of GNAL dystonia gene impairs striatal dopamine receptors-mediated adenylyl cyclase/cyclic AMP signaling pathway. Neurobiol. Dis. 2024 191 106403 10.1016/j.nbd.2024.106403 38182074
    [Google Scholar]
  133. Kim Y.D. Park H.G. Song S. Kim J. Lee B.J. Broadie K. Lee S. Presynaptic structural and functional plasticity are coupled by convergent Rap1 signaling. J. Cell Biol. 2024 223 7 e202309095 10.1083/jcb.202309095 38748250
    [Google Scholar]
  134. Zhang H.L. Sun Y. Wu Z.J. Yin Y. Liu R.Y. Zhang J.C. Zhang Z.J. Yau S.Y. Wu H.X. Yuan T.F. Zhang L. Adzic M. Chen G. Hippocampal PACAP signaling activation triggers a rapid antidepressant response. Mil. Med. Res. 2024 11 1 49 10.1186/s40779‑024‑00548‑1 39044298
    [Google Scholar]
  135. Kise R. Inoue A. GPCR signaling bias: An emerging framework for opioid drug development. J. Biochem. 2024 175 4 367 376 10.1093/jb/mvae013 38308136
    [Google Scholar]
  136. Lang M. Colby S. Ashby-Padial C. Bapna M. Jaimes C. Rincon S.P. Buch K. An imaging review of the hippocampus and its common pathologies. J. Neuroimaging 2024 34 1 5 25 10.1111/jon.13165 37872430
    [Google Scholar]
  137. Smith A.C.W. Ghoshal S. Centanni S.W. Heyer M.P. Corona A. Wills L. Andraka E. Lei Y. O’Connor R.M. Caligiuri S.P.B. Khan S. Beaumont K. Sebra R.P. Kieffer B.L. Winder D.G. Ishikawa M. Kenny P.J. A master regulator of opioid reward in the ventral prefrontal cortex. Science 2024 384 6700 eadn0886 10.1126/science.adn0886 38843332
    [Google Scholar]
  138. Cole R.H. Moussawi K. Joffe M.E. Opioid modulation of prefrontal cortex cells and circuits. Neuropharmacology 2024 248 109891 10.1016/j.neuropharm.2024.109891 38417545
    [Google Scholar]
  139. O’Brien E.S. Rangari V.A. El Daibani A. Eans S.O. Hammond H.R. White E. Wang H. Shiimura Y. Krishna Kumar K. Jiang Q. Appourchaux K. Huang W. Zhang C. Kennedy B.J. Mathiesen J.M. Che T. McLaughlin J.P. Majumdar S. Kobilka B.K. A µ-opioid receptor modulator that works cooperatively with naloxone. Nature 2024 631 8021 686 693 10.1038/s41586‑024‑07587‑7 38961287
    [Google Scholar]
  140. Zheng X. Fang Y. Lin J. Luo J. Li S. Aschner M. Jiang Y. Signal transduction associated with Mn-induced neurological dysfunction. Biol. Trace Elem. Res. 2024 202 9 4158 4169 10.1007/s12011‑023‑03999‑0 38155332
    [Google Scholar]
  141. Goldschen-Ohm M.P. Chanda B. Bioelectricity and molecular signaling. Biophys. J. 2024 123 14 E1 E2 10.1016/j.bpj.2024.06.018
    [Google Scholar]
  142. Tan B. Browne C.J. Nöbauer T. Vaziri A. Friedman J.M. Nestler E.J. Drugs of abuse hijack a mesolimbic pathway that processes homeostatic need. Science 2024 384 6693 eadk6742 10.1126/science.adk6742 38669575
    [Google Scholar]
  143. Bandarabadi M. Li S. Aeschlimann L. Colombo G. Tzanoulinou S. Tafti M. Becchetti A. Boutrel B. Vassalli A. Inactivation of hypocretin receptor-2 signaling in dopaminergic neurons induces hyperarousal and enhanced cognition but impaired inhibitory control. Mol. Psychiatry 2024 29 2 327 341 10.1038/s41380‑023‑02329‑z 38123729
    [Google Scholar]
  144. Yang J. Qiu Z. Swell1 channel-mediated tonic GABA release from astrocytes modulates cocaine reward. Neuropsychopharmacology 2024 49 1 327 328 10.1038/s41386‑023‑01691‑4
    [Google Scholar]
  145. Godavarthi S.K. Hiramoto M. Ignatyev Y. Levin J.B. Li H. Pratelli M. Borchardt J. Czajkowski C. Borodinsky L.N. Sweeney L. Cline H.T. Spitzer N.C. Postsynaptic receptors regulate presynaptic transmitter stability through transsynaptic bridges. Proc. Natl. Acad. Sci. USA 2024 121 15 e2318041121 10.1073/pnas.2318041121 38568976
    [Google Scholar]
  146. Carricaburu E. Benner O. Burlingham S.R. Dos Santos Passos C. Hobaugh N. Karr C.H. Chanda S. Gephyrin promotes autonomous assembly and synaptic localization of GABAergic postsynaptic components without presynaptic GABA release. Proc. Natl. Acad. Sci. USA 2024 121 26 e2315100121 10.1073/pnas.2315100121 38889143
    [Google Scholar]
  147. Stepan J. Heinz D.E. Dethloff F. Wiechmann S. Martinelli S. Hafner K. Ebert T. Junglas E. Häusl A.S. Pöhlmann M.L. Jakovcevski M. Pape J.C. Zannas A.S. Bajaj T. Hermann A. Ma X. Pavenstädt H. Schmidt M.V. Philipsen A. Turck C.W. Deussing J.M. Rammes G. Robinson A.C. Payton A. Wehr M.C. Stein V. Murgatroyd C. Kremerskothen J. Kuster B. Wotjak C.T. Gassen N.C. Inhibiting Hippo pathway kinases releases WWC1 to promote AMPAR-dependent synaptic plasticity and long-term memory in mice. Sci. Signal. 2024 17 834 eadj6603 10.1126/scisignal.adj6603 38687825
    [Google Scholar]
  148. Anvari S. Javan M. Mirnajafi-Zadeh J. Fathollahi Y. Repeated morphine exposure alters temporoamonic-CA1 synaptic plasticity in male rat hippocampus. Neuroscience 2024 545 148 157 10.1016/j.neuroscience.2024.03.015 38513764
    [Google Scholar]
  149. Nonaka K. Nakamura M. Noda M. Yamaga T. Jang I.S. Akaike N. Synaptic effects of xenon on NMDA receptor-mediated response in rat spinal neuron. Neurosci. Lett. 2024 836 137885 10.1016/j.neulet.2024.137885 38914276
    [Google Scholar]
  150. Pokhrel R. Morgan A.L. Robinson H.R. Stone M.J. Foster S.R. Unravelling G protein-coupled receptor signalling networks using global phosphoproteomics. Br. J. Pharmacol. 2024 181 14 2359 2370 10.1111/bph.16052 36772927
    [Google Scholar]
  151. Bauer M.B. Currie K.P. Serotonin and the serotonin transporter in the adrenal gland. Vitam. Horm. 2024 124 39 78 10.1016/bs.vh.2023.06.002 38408804
    [Google Scholar]
  152. Sakloth F. Sanchez-Reyes O.B. Ruiz A. Nicolais A. Serafini R.A. Pryce K.D. Bertherat F. Torres-Berrío A. Gomes I. Devi L.A. Wacker D. Zachariou V. A regional and projection-specific role of RGSz1 in the ventrolateral periaqueductal grey in the modulation of morphine reward. Mol. Pharmacol. 2023 103 1 1 8 10.1124/molpharm.122.000528 36310031
    [Google Scholar]
  153. Hou G. Hao M. Duan J. Han M.H. The formation and function of the VTA dopamine system. Int. J. Mol. Sci. 2024 25 7 3875 10.3390/ijms25073875 38612683
    [Google Scholar]
  154. Xi Z.X. Bocarsly M.E. Galaj E. Hempel B. Teresi C. Shaw M. Bi G.H. Jordan C. Linz E. Alton H. Tanda G. Freyberg Z. Alvarez V.A. Newman A.H. Presynaptic and postsynaptic mesolimbic dopamine D3 receptors play distinct roles in cocaine versus opioid reward in mice. Biol. Psychiatry 2024 96 9 752 765 10.1016/j.biopsych.2024.05.020 38838841
    [Google Scholar]
  155. Petrella M. Borruto A.M. Curti L. Domi A. Domi E. Xu L. Barbier E. Ilari A. Heilig M. Weiss F. Mannaioni G. Masi A. Ciccocioppo R. Pharmacological blockage of NOP receptors decreases ventral tegmental area dopamine neuronal activity through GABAB receptor-mediated mechanism. Neuropharmacology 2024 248 109866 10.1016/j.neuropharm.2024.109866 38364970
    [Google Scholar]
  156. Harada M. Capdevila L.S. Wilhelm M. Burdakov D. Patriarchi T. Stimulation of VTA dopamine inputs to LH upregulates orexin neuronal activity in a DRD2-dependent manner. eLife 2024 12 RP90158 10.7554/eLife.90158 38567902
    [Google Scholar]
  157. Montalban E. Giralt A. Taing L. Nakamura Y. Pelosi A. Brown M. de Pins B. Valjent E. Martin M. Nairn A.C. Greengard P. Flajolet M. Hervé D. Gambardella N. Roussarie J.P. Girault J.A. Operant training for highly palatable food alters translating messenger RNA in nucleus accumbens D2 neurons and reveals a modulatory role of Ncdn. Biol. Psychiatry 2024 95 10 926 937 10.1016/j.biopsych.2023.08.006 37579933
    [Google Scholar]
  158. Bernstein D.L. Lewandowski S.I. Besada C. Place D. España R.A. Mortensen O.V. Inactivation of ERK1/2 signaling in dopaminergic neurons by map kinase phosphatase MKP3 regulates dopamine signaling and motivation for cocaine. J. Neurosci. 2024 44 5 e0727232023 10.1523/JNEUROSCI.0727‑23.2023 38296649
    [Google Scholar]
  159. Liu T.C. Li H.X. Wan Y.X. Shi G. Zhao Y.P. Liu Y.F. Fan X.Y. METTL14-mediated upregulation of lncRNA HOTAIR represses PP1α expression by promoting H3K4me1 demethylation in oxycodone-treated mice. CNS Neurosci. Ther. 2024 30 7 e14830 10.1111/cns.14830 39046182
    [Google Scholar]
  160. Simmons S. Flerlage W.J. Langlois L.D. Shepard R.D. Bouslog C. Thomas E.H. AKAP150-anchored PKA regulation of synaptic transmission and plasticity, neuronal excitability and CRF neuromodulation in the lateral habenula. bioRxiv 2023
    [Google Scholar]
  161. Qiao X. Zhu Y. Dang W. Wang R. Sun M. Chen Y. Shi Y. Zhang L. Dual-specificity phosphatase 15 (DUSP15) in the nucleus accumbens is a novel negative regulator of morphine-associated contextual memory. Addict. Biol. 2021 26 1 e12884 10.1111/adb.12884 32043707
    [Google Scholar]
  162. Pytka K. Dawson N. Tossell K. Ungless M.A. Plevin R. Brett R.R. Bushell T.J. Mitogen-activated protein kinase phosphatase-2 deletion modifies ventral tegmental area function and connectivity and alters reward processing. Eur. J. Neurosci. 2020 52 2 2838 2852 10.1111/ejn.14688 31989721
    [Google Scholar]
  163. Herman T.F. Cascella M. Muzio M.R. Mu Receptors. StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  164. Fagan R.R. Lee D.F. Geron M. Scherrer G. von Zastrow M. Ehrlich A.T. Selective targeting of mu opioid receptors to primary cilia. Cell Rep. 2024 43 5 114164 10.1016/j.celrep.2024.114164 38678559
    [Google Scholar]
  165. Cui D. Zhang Y. Zhang M. The effect of cannabinoid type 2 receptor agonist on morphine tolerance. IBRO Neuroscience Reports 2024 16 43 50 10.1016/j.ibneur.2023.11.005 38145173
    [Google Scholar]
  166. Kaneko S. Imai S. Uchikubo-Kamo T. Hisano T. Asao N. Shirouzu M. Shimada I. Structural and dynamic insights into the activation of the μ-opioid receptor by an allosteric modulator. Nat. Commun. 2024 15 1 3544 10.1038/s41467‑024‑47792‑6 38740791
    [Google Scholar]
  167. Huang Y-H. Lin S.Y. Ou L.C. Huang W.C. Chao P.K. Chang Y.C. Chang H.F. Lee P.T. Yeh T.K. Kuo Y. H Discovery of a mu-opioid receptor modulator that in combination with morphinan antagonists induces analgesia. Cell Chem. Biol. 2024 31 11 1885 10.1016/j.chembiol.2024.06.013
    [Google Scholar]
  168. Sánchez-Soto M. Boldizsar N.M. Schardien K.A. Madaras N.S. Willette B.K.A. Inbody L.R. Dasaro C. Moritz A.E. Drube J. Haider R.S. Free R.B. Hoffman C. Sibley D.R. G protein-coupled receptor kinase 2 selectively enhances β-Arrestin recruitment to the D2 dopamine receptor through mechanisms that are independent of receptor phosphorylation. Biomolecules 2023 13 10 1552 10.3390/biom13101552 37892234
    [Google Scholar]
  169. Coutens B. Ingram S.L. Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: Relevance for novel therapeutics. Neuropharmacology 2023 226 109408 10.1016/j.neuropharm.2022.109408 36584882
    [Google Scholar]
  170. Aguinaga D. Casanovas M. Rivas-Santisteban R. Reyes-Resina I. Navarro G. Franco R. The sigma-1 receptor as key common factor in cocaine and food-seeking behaviors. J. Mol. Endocrinol. 2019 63 4 R81 R92 10.1530/JME‑19‑0138 31539876
    [Google Scholar]
  171. Areal L.B. Hamilton A. Martins-Silva C. Pires R.G.W. Ferguson S.S.G. Neuronal scaffolding protein spinophilin is integral for cocaine-induced behavioral sensitization and ERK1/2 activation. Mol. Brain 2019 12 1 15 10.1186/s13041‑019‑0434‑7 30803445
    [Google Scholar]
  172. Lao-Peregrin C. Xiang G. Kim J. Srivastava I. Fall A.B. Gerhard D.M. Kohtala P. Kim D. Song M. Garcia-Marcos M. Levitz J. Lee F.S. Synaptic plasticity via receptor tyrosine kinase/G-protein-coupled receptor crosstalk. Cell Rep. 2024 43 1 113595 10.1016/j.celrep.2023.113595 38117654
    [Google Scholar]
  173. McMahon K.L. Vetter I. Schroeder C.I. Voltage-gated sodium channel inhibition by µ-conotoxins. Toxins (Basel) 2024 16 1 55 10.3390/toxins16010055 38251271
    [Google Scholar]
  174. Sagarkar S. Bhat N. Rotti D. Subhedar N.K. AMPA and NMDA receptors in dentate gyrus mediate memory for sucrose in two port discrimination task. Hippocampus 2024 34 7 342 356 10.1002/hipo.23609 38780087
    [Google Scholar]
  175. Martínez-Rivera A. Hao J. Rice R. Inturrisi C.E. Rajadhyaksha A.M. Cav1.3 L-type Ca2+ channel-activated CaMKII/ERK2 pathway in the ventral tegmental area is required for cocaine conditioned place preference. Neuropharmacology 2023 224 109368 10.1016/j.neuropharm.2022.109368 36481277
    [Google Scholar]
  176. Bailey A.M. Barrett A. Havens L. Leyder E. Merchant T. Starnes H. Thompson S.M. Changes in social, sexual, and hedonic behaviors in rats in response to stress and restoration by a negative allosteric modulator of α5-subunit containing GABA receptor. Behav. Brain Res. 2023 452 114554 10.1016/j.bbr.2023.114554 37356670
    [Google Scholar]
  177. Bauer M.R. McVey M.M. Germano D.M. Zhang Y. Boehm S.L. II Intra-dorsolateral striatal AMPA receptor antagonism reduces binge-like alcohol drinking in male and female C57BL/6J mice. Behav. Brain Res. 2022 418 113631 10.1016/j.bbr.2021.113631 34715146
    [Google Scholar]
  178. Tábara L.C. Burr S.P. Frison M. Chowdhury S.R. Paupe V. Nie Y. Johnson M. Villar-Azpillaga J. Viegas F. Segawa M. Anand H. Petkevicius K. Chinnery P.F. Prudent J. MTFP1 controls mitochondrial fusion to regulate inner membrane quality control and maintain mtDNA levels. Cell 2024 187 14 3619 3637.e27 10.1016/j.cell.2024.05.017 38851188
    [Google Scholar]
  179. Li L.Y. Imai A. Izumi H. Inoue R. Koshidaka Y. Takao K. Mori H. Yoshida T. Differential contribution of canonical and noncanonical NLGN3 pathways to early social development and memory performance. Mol. Brain 2024 17 1 16 10.1186/s13041‑024‑01087‑5 38475840
    [Google Scholar]
  180. Iyer V. Saberi S.A. Pacheco R. Sizemore E.F. Stockman S. Kulkarni A. Cantwell L. Thakur G.A. Hohmann A.G. Negative allosteric modulation of CB1 cannabinoid receptor signaling suppresses opioid-mediated tolerance and withdrawal without blocking opioid antinociception. Neuropharmacology 2024 257 110052 10.1016/j.neuropharm.2024.110052 38936657
    [Google Scholar]
  181. Abdel-Hay N. Kabirova M. Yaka R. A discrete subpopulation of PFC-LHb neurons govern cocaine place preference. Transl. Psychiatry 2024 14 1 269 10.1038/s41398‑024‑02988‑8 38956048
    [Google Scholar]
  182. Zhao J. Elgeti M. O’Brien E.S. Sár C.P. Daibani E.I. A.; Heng, J.; Sun, X.; White, E.; Che, T.; Hubbell, W.L.; Kobilka, B.K.; Chen, C. Ligand efficacy modulates conformational dynamics of the µ-opioid receptor. Nature 2024 629 8011 474 480 10.1038/s41586‑024‑07295‑2 38600384
    [Google Scholar]
  183. Kossatz E. Diez-Alarcia R. Gaitonde S.A. Ramon-Duaso C. Stepniewski T.M. Aranda-Garcia D. Muneta-Arrate I. Tepaz E. Saen-Oon S. Soliva R. Shahraki A. Moreira D. Brea J. Loza M.I. de la Torre R. Kolb P. Bouvier M. Meana J.J. Robledo P. Selent J. G protein-specific mechanisms in the serotonin 5-HT2A receptor regulate psychosis-related effects and memory deficits. Nat. Commun. 2024 15 1 4307 10.1038/s41467‑024‑48196‑2 38811567
    [Google Scholar]
  184. Abbas A. Hammad A.S. Al-Shafai M. The role of genetic and epigenetic GNAS alterations in the development of early-onset obesity. Mutat. Res. Rev. Mutat. Res. 2024 793 108487 10.1016/j.mrrev.2023.108487 38103632
    [Google Scholar]
  185. Mukhaleva E. Ma N. van der Velden W.J.C. Gogoshin G. Branciamore S. Bhattacharya S. Rodin A.S. Vaidehi N. Bayesian network models identify cooperative GPCR:G protein interactions that contribute to G protein coupling. J. Biol. Chem. 2024 300 6 107362 10.1016/j.jbc.2024.107362 38735478
    [Google Scholar]
  186. Rodriguez-Contreras D. García-Nafría J. Chan A.E. Shinde U. Neve K.A. Comparison of the function of two novel human dopamine D2 receptor variants identifies a likely mechanism for their pathogenicity. Biochem. Pharmacol. 2024 228 116228 10.1016/j.bcp.2024.116228 38643909
    [Google Scholar]
  187. Bucher M.L. Dicent J. Duarte Hospital, C.; Miller, G.W. Neurotoxicology of dopamine: Victim or assailant? Neurotoxicology 2024 103 175 188 10.1016/j.neuro.2024.06.001 38857676
    [Google Scholar]
  188. Gallese V. Ardizzi M. Ferroni F. Schizophrenia and the bodily self. Schizophr. Res. 2024 269 152 162 10.1016/j.schres.2024.05.014 38815468
    [Google Scholar]
  189. Khosroshahi P.A. Ghanbari M. MicroRNA dysregulation in glutamate and dopamine pathways of schizophrenia: From molecular pathways to diagnostic and therapeutic approaches. Prog. Neuropsychopharmacol. Biol. Psychiatry 2024 135 111081 10.1016/j.pnpbp.2024.111081 39002925
    [Google Scholar]
  190. Grunze H. The role of the D3 dopamine receptor and its partial agonist cariprazine in patients with schizophrenia and substance use disorder. Expert Opin. Pharmacother. 2023 24 18 1985 1992 10.1080/14656566.2023.2266359 37817489
    [Google Scholar]
  191. Predescu E. Vaidean T. Rapciuc A.M. Sipos R. Metabolomic markers in Attention-Deficit/Hyperactivity Disorder (ADHD) among children and adolescents: A systematic review. Int. J. Mol. Sci. 2024 25 8 4385 10.3390/ijms25084385 38673970
    [Google Scholar]
  192. Noble E.P. Blum K. Khalsa M.E. Ritchie T. Montgomery A. Wood R.C. Fitch R.J. Ozkaragoz T. Sheridan P.J. Anglin M.D. Paredes A. Treiman L.J. Sparkes R.S. Allelic association of the D2 dopamine receptor gene with cocaine dependence. Drug Alcohol Depend. 1993 33 3 271 285 10.1016/0376‑8716(93)90113‑5 8261891
    [Google Scholar]
  193. Miller D.K. Bowirrat A. Manka M. Miller M. Stokes S. Manka D. Allen C. Gant C. Downs B.W. Smolen A. Stevens E. Yeldandi S. Blum K. Acute intravenous synaptamine complex variant KB220™ “normalizes” neurological dysregulation in patients during protracted abstinence from alcohol and opiates as observed using quantitative electroencephalographic and genetic analysis for reward polymorphisms: Part 1, pilot study with 2 case reports. Postgrad. Med. 2010 122 6 188 213 10.3810/pgm.2010.11.2236 21084795
    [Google Scholar]
  194. Blum K. Han D. Gupta A. Baron D. Braverman E.R. Dennen C.A. Kazmi S. Llanos-Gomez L. Badgaiyan R.D. Elman I. Thanos P.K. Downs B.W. Bagchi D. Gondre-Lewis M.C. Gold M.S. Bowirrat A. Statistical validation of risk alleles in genetic addiction risk severity (GARS) test: Early identification of risk for alcohol use disorder (AUD) in 74,566 case–control subjects. J. Pers. Med. 2022 12 9 1385 10.3390/jpm12091385 36143170
    [Google Scholar]
  195. Border R. Johnson E.C. Evans L.M. Smolen A. Berley N. Sullivan P.F. Keller M.C. No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples. Am. J. Psychiatry 2019 176 5 376 387 10.1176/appi.ajp.2018.18070881 30845820
    [Google Scholar]
  196. Duncan L.E. Keller M.C. A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry. Am. J. Psychiatry 2011 168 10 1041 1049 10.1176/appi.ajp.2011.11020191 21890791
    [Google Scholar]
  197. Hatoum A.S. Wendt F.R. Galimberti M. Polimanti R. Neale B. Kranzler H.R. Gelernter J. Edenberg H.J. Agrawal A. Ancestry may confound genetic machine learning: Candidate-gene prediction of opioid use disorder as an example. Drug Alcohol Depend., 2021 229 Pt B 109115 10.1016/j.drugalcdep.2021.109115 34710714
  198. Johnson E.C. Border R. Melroy-Greif W.E. de Leeuw C.A. Ehringer M.A. Keller M.C. No evidence that schizophrenia candidate genes are more associated with schizophrenia than noncandidate genes. Biol. Psychiatry 2017 82 10 702 708 10.1016/j.biopsych.2017.06.033 28823710
    [Google Scholar]
  199. Zhou H. Sealock J.M. Sanchez-Roige S. Clarke T.K. Levey D.F. Cheng Z. Li B. Polimanti R. Kember R.L. Smith R.V. Thygesen J.H. Morgan M.Y. Atkinson S.R. Thursz M.R. Nyegaard M. Mattheisen M. Børglum A.D. Johnson E.C. Justice A.C. Palmer A.A. McQuillin A. Davis L.K. Edenberg H.J. Agrawal A. Kranzler H.R. Gelernter J. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits. Nat. Neurosci. 2020 23 7 809 818 10.1038/s41593‑020‑0643‑5 32451486
    [Google Scholar]
  200. Rataj-Baniowska M. Niewiadomska-Cimicka A. Paschaki M. Szyszka-Niagolov M. Carramolino L. Torres M. Dollé P. Krężel W. Retinoic acid receptor β controls development of striatonigral projection neurons through FGF-dependent and Meis1-dependent mechanisms. J. Neurosci. 2015 35 43 14467 14475 10.1523/JNEUROSCI.1278‑15.2015 26511239
    [Google Scholar]
  201. Hallikainen T. Hietala J. Kauhanen J. Pohjalainen T. Syvälahti E. Salonen J.T. Tiihonen J. Ethanol consumption and DRD2 gene TaqI a polymorphism among socially drinking males. Am. J. Med. Genet. A. 2003 119A 2 152 155 10.1002/ajmg.a.20139 12749054
    [Google Scholar]
  202. Easton A.C. Rotter A. Lourdusamy A. Desrivières S. Fernández-Medarde A. Biermann T. Fernandes C. Santos E. Kornhuber J. Schumann G. Müller C.P. Rasgrf2 controls dopaminergic adaptations to alcohol in mice. Brain Res. Bull. 2014 109 143 150 10.1016/j.brainresbull.2014.10.008 25454123
    [Google Scholar]
  203. Sahlholm K. Valle-León M. Sahlholm K. Watanabe M. Watanabe C.P. Van Craenenbroeck K. Fernández-Dueñas V. Ferré S. Ciruela F. Behavioral control by striatal adenosine A 2A-dopamine D 2 receptor heteromers. Genes Brain Behav. 2017 14 4 e12432 29053217
    [Google Scholar]
  204. Song X. Chen H. Shang Z. Du H. Li Z. Wen Y. Liu G. Qi D. You Y. Yang Z. Zhang Z. Xu Z. Homeobox gene Six3 is required for the differentiation of D2-type medium spiny neurons. Neurosci. Bull. 2021 37 7 985 998 10.1007/s12264‑021‑00698‑5 34014554
    [Google Scholar]
  205. D’Agata V. Tiralongo A. Castorina A. Leggio G.M. Micale V. Carnazza M.L. Drago F. Parkin expression profile in dopamine d3 receptor knock-out mice brains. Neurochem. Res. 2009 34 2 327 332 10.1007/s11064‑008‑9781‑y 18612813
    [Google Scholar]
  206. Dulawa S.C. Grandy D.K. Low M.J. Paulus M.P. Geyer M.A. Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli. J. Neurosci. 1999 19 21 9550 9556 10.1523/JNEUROSCI.19‑21‑09550.1999 10531457
    [Google Scholar]
  207. Leo D. Gainetdinov R.R. Transgenic mouse models for ADHD. Cell Tissue Res. 2013 354 1 259 271 10.1007/s00441‑013‑1639‑1 23681253
    [Google Scholar]
  208. Kambur O. Männistö P.T. Viljakka K. Reenilä I. Lemberg K. Kontinen V.K. Karayiorgou M. Gogos J.A. Kalso E. Stress-induced analgesia and morphine responses are changed in catechol-O-methyltransferase-deficient male mice. Basic Clin. Pharmacol. Toxicol. 2008 103 4 367 373 10.1111/j.1742‑7843.2008.00289.x 18834357
    [Google Scholar]
  209. García-Sevilla J.A. Ferrer-Alcón M. Martín M. Kieffer B.L. Maldonado R. Neurofilament proteins and cAMP pathway in brains of μ-, δ- or κ-opioid receptor gene knock-out mice: Effects of chronic morphine administration. Neuropharmacology 2004 46 4 519 530 10.1016/j.neuropharm.2003.10.006 14975676
    [Google Scholar]
  210. Conductier G. Dusticier N. Lucas G. Côté F. Debonnel G. Daszuta A. Dumuis A. Nieoullon A. Hen R. Bockaert J. Compan V. Adaptive changes in serotonin neurons of the raphe nuclei in 5-HT4 receptor knock-out mouse. Eur. J. Neurosci. 2006 24 4 1053 1062 10.1111/j.1460‑9568.2006.04943.x 16930432
    [Google Scholar]
  211. Adrien J. The involvement of serotonin in the control of states of vigilance revisited by the study of disabled mice. J. Soc. Biol. 2004 198 1 30 36 10.1051/jbio/2004198010030 15146953
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010353450250408114725
Loading
/content/journals/cpb/10.2174/0113892010353450250408114725
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test