Skip to content
2000
Volume 26, Issue 13
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

Background

Overdose involving opioids is the black heart of the addiction crisis. “Pre-addiction,” as an encouraging concept by NIDA and NIAAA, seems best captured with the construct of dopamine dysregulation. Referring to the abundant publications on “Reward Deficiency Syndrome” (RDS), Genetic Addiction Risk Score (GARS) test, RDSQ29, and KB220, Pre-addiction can be referred to as “reward dysregulation” as a suitable suggestion. The hypothesis is that the true phenotype is RDS, and other behavioral disorders are endophenotypes where the genetic variants play important roles, specifically in the Brain Reward Cascade (BRC).

Methods

This study tested the pharmacogenomics of the GARS panel by a multi-model investigation in four layers: 1) Protein-Protein Interactions (PPIs); 2) Gene Regulatory Networks (GRNs); 3) Disease, drugs and chemicals (DDCs); and 4) Gene Coexpression Networks (GCNs).

Results

All findings were combined in an Enrichment Analysis for 59 refined genes, which represented highly significant associations of dopamine pathways in the BRC and supported our hypothesis.

Conclusion

This paper provides scientific evidence for the importance of incorporating GARS as a predictive test to identify Pre-addiction, introduce unique therapeutic targets assisting in the treatment of pain, drug dosing of prescription pharmaceuticals, and identify the risk for subsequent addiction early in -life.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010353450250408114725
2025-04-16
2025-12-14
Loading full text...

Full text loading...

References

  1. MattsonC.L. TanzL.J. QuinnK. KariisaM. PatelP. DavisN.L. Trends and geographic patterns in drug and synthetic opioid overdose deaths—United States, 2013–2019.MMWR Morb. Mortal. Wkly. Rep.202170620220710.15585/mmwr.mm7006a433571180
    [Google Scholar]
  2. FriedmanJ. GodvinM. ShoverC.L. GoneJ.P. HansenH. SchrigerD.L. Trends in drug overdose deaths among US adolescents, January 2010 to June 2021.JAMA2022327141398140010.1001/jama.2022.284735412573
    [Google Scholar]
  3. SinghG.K. KimI.E.Jr GirmayM. PerryC. DausG.P. VedamuthuI.P. De Los ReyesA.A. RameyC.T. MartinE.K.Jr AllenderM. Opioid epidemic in the United States: empirical trends, and a literature review of social determinants and epidemiological, pain management, and treatment patterns.Int. J. MCH AIDS2019828910010.21106/ijma.28431723479
    [Google Scholar]
  4. PaulozziL.J. JonesM.J. MackK.A RuddR.A. Vital signs: Overdoses of prescription opioid pain relievers - United States, 1999-2008.MMWR Morb. Mortal. Wkly. Rep.201160431487149222048730
    [Google Scholar]
  5. GladdenR.M. MartinezP. SethP. Fentanyl law enforcement submissions and increases in synthetic opioid–involved overdose deaths—27 states, 2013–2014.MMWR Morb. Mortal. Wkly. Rep.2016653383784310.15585/mmwr.mm6533a227560775
    [Google Scholar]
  6. O’DonnellJ.K. GladdenR.M. SethP. Trends in deaths involving heroin and synthetic opioids excluding methadone, and law enforcement drug product reports, by census region—United States, 2006–2015.MMWR Morb. Mortal. Wkly. Rep.2017663489790310.15585/mmwr.mm6634a2
    [Google Scholar]
  7. O’DonnellJ.K. HalpinJ. MattsonC.L. GoldbergerB.A. GladdenR.M. Deaths involving fentanyl, fentanyl analogs, and U-47700—10 states, July–December 2016.MMWR Morb. Mortal. Wkly. Rep.201766431197120210.15585/mmwr.mm6643e1
    [Google Scholar]
  8. US Department of Justice Drug Enforcement Administration Strategic Intelligence Section.US Department of Justice.2020https://www.dea.gov/sites/default/files/2025-02/508_5.23.2024%20NDTA-updated.pdf
    [Google Scholar]
  9. GladdenR.M. O’DonnellJ. MattsonC.L. SethP. Changes in opioid-involved overdose deaths by opioid type and presence of benzodiazepines, cocaine, and methamphetamine—25 states, July–December 2017 to January–June 2018.MMWR Morb. Mortal. Wkly. Rep.2019683473774410.15585/mmwr.mm6834a231465320
    [Google Scholar]
  10. KariisaM. SchollL. WilsonN. SethP. HootsB. Drug overdose deaths involving cocaine and psychostimulants with abuse potential—United States, 2003–2017.MMWR Morb. Mortal. Wkly. Rep.2019681738839510.15585/mmwr.mm6817a331048676
    [Google Scholar]
  11. McLellanA.T. KoobG.F. VolkowN.D. Preaddiction—a missing concept for treating substance use disorders.JAMA Psychiatry202279874975110.1001/jamapsychiatry.2022.165235793096
    [Google Scholar]
  12. DayE. Facing addiction in America: The surgeon general's report on alcohol, drugs, and health U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES, OFFICE OF THE SURGEON GENERAL Washington, DC, USA: U.S. Department of Health and Human Services, 2016 382 pp. Online (grey literature): https://addiction.Surgeongeneral.Gov/.Drug Alcohol Rev.37228328410.1111/dar.1258029388331
    [Google Scholar]
  13. KnowlerW.C. FowlerS.E. HammanR.F. ChristophiC.A. HoffmanH.J. BrennemanA.T. Brown-FridayJ.O. GoldbergR. VendittiE. NathanD.M. Diabetes Prevention Program Research Group 10-year follow-up of diabetes incidence and weight loss in the diabetes prevention program outcomes study.Lancet200937497021677168610.1016/S0140‑6736(09)61457‑419878986
    [Google Scholar]
  14. GlechnerA. KeuchelL. AffengruberL. TitscherV. SommerI. MatyasN. WagnerG. KienC. KleringsI. GartlehnerG. Effects of lifestyle changes on adults with prediabetes: A systematic review and meta-analysis.Prim. Care Diabetes201812539340810.1016/j.pcd.2018.07.00330076075
    [Google Scholar]
  15. BlumK. SheridanP.J. WoodR.C. BravermanE.R. ChenT.J.H. CullJ.G. ComingsD.E. The D2 dopamine receptor gene as a determinant of reward deficiency syndrome.J. R. Soc. Med.199689739640010.1177/0141076896089007118774539
    [Google Scholar]
  16. RenardJ. RosenL.G. LoureiroM. De OliveiraC. SchmidS. RushlowW.J. LavioletteS.R. Adolescent cannabinoid exposure induces a persistent sub-cortical hyper-dopaminergic state and associated molecular adaptations in the prefrontal cortex.Cereb. Cortex2016272bhv33510.1093/cercor/bhv33526733534
    [Google Scholar]
  17. EdwardsD. Boyett B. Badgaiyan R.D. Thanos P.K. Baron D. Hauser M. Badgaiyan S. Addiction by any other name is still addiction: Embracing molecular neurogenetic/epigenetic basis of reward deficiency.J. Addict Sci.20206114
    [Google Scholar]
  18. BlumK. ChenA.L.C. ThanosP.K. FeboM. DemetrovicsZ. DushajK. KovoorA. BaronD. SmithD.E. RoyA.K.III FriedL. ChenT.J.H. ChapmanE.Sr ModestinoE.J. SteinbergB. BadgaiyanR.D. Genetic addiction risk score GARS trade a predictor of vulnerability to opioid dependence.Front. Biosci. (Elite Ed.)201810117519610.2741/e81628930612
    [Google Scholar]
  19. KótyukE. UrbánR. HendeB. RichmanM. MagiA. KirályO. BartaC. GriffithsM.D. PotenzaM.N. BadgaiyanR.D. BlumK. DemetrovicsZ. Development and validation of the Reward Deficiency Syndrome Questionnaire (RDSQ-29).J. Psychopharmacol.202236340942210.1177/0269881121106910235102768
    [Google Scholar]
  20. NoviM. ParaskevopoulouM. Van RooijD. ScheneA.H. BuitelaarJ.K. SchellekensA.F.A. Effects of substance misuse and current family history of substance use disorder on brain structure in adolescents and young adults with attention-deficit/hyperactivity disorder.Drug Alcohol Depend.202122810903210.1016/j.drugalcdep.2021.10903234555690
    [Google Scholar]
  21. BlumK. McLaughlinT. BowirratA. ModestinoE.J. BaronD. GomezL.L. CeccantiM. BravermanE.R. ThanosP.K. CadetJ.L. ElmanI. BadgaiyanR.D. JalaliR. GreenR. SimpaticoT.A. GuptaA. GoldM.S. Reward deficiency syndrome (RDS) surprisingly is evolutionary and found everywhere: Is it “blowin’in the wind”?J. Pers. Med.202212232110.3390/jpm1202032135207809
    [Google Scholar]
  22. Gondré-LewisM.C. BasseyR. BlumK. Pre-clinical models of reward deficiency syndrome: A behavioral octopus.Neurosci. Biobehav. Rev.202011516418810.1016/j.neubiorev.2020.04.02132360413
    [Google Scholar]
  23. LeveyD.F. SteinM.B. WendtF.R. PathakG.A. ZhouH. AslanM. QuadenR. HarringtonK.M. NuñezY.Z. OverstreetC. RadhakrishnanK. SanacoraG. McIntoshA.M. ShiJ. ShringarpureS.S. ConcatoJ. PolimantiR. GelernterJ. 23andMe Research Team Million Veteran Program Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions.Nat. Neurosci.202124795496310.1038/s41593‑021‑00860‑234045744
    [Google Scholar]
  24. CohenM.R. PickarD. ExteinI. GoldM.S. SweeneyD.R. Plasma cortisol and beta-endorphin immunoreactivity in nonmajor and major depression.Am. J. Psychiatry1984141562863210.1176/ajp.141.5.6286324598
    [Google Scholar]
  25. MadiganM. GuptaA. BowirratA. BaronD. BadgaiyanR. ElmanI. DennenC. BravermanE. GoldM. BlumK. Precision behavioral management (PBM) and cognitive control as a potential therapeutic and prophylactic modality for reward deficiency syndrome (RDS): Is there enough evidence?Int. J. Environ. Res. Public Health20221911639510.3390/ijerph1911639535681980
    [Google Scholar]
  26. FischerK.D. KnackstedtL.A. RosenbergP.A. Glutamate homeostasis and dopamine signaling: Implications for psychostimulant addiction behavior.Neurochem. Int.202114410489610.1016/j.neuint.2020.10489633159978
    [Google Scholar]
  27. KoobG.F. Le MoalM. Addiction and the brain antireward system.Annu. Rev. Psychol.2008591295310.1146/annurev.psych.59.103006.09354818154498
    [Google Scholar]
  28. ZunhammerM. SchweizerL.M. WitteV. HarrisR.E. BingelU. Schmidt-WilckeT. Combined glutamate and glutamine levels in pain-processing brain regions are associated with individual pain sensitivity.Pain2016157102248225610.1097/j.pain.000000000000063427649042
    [Google Scholar]
  29. ChenZ. MuscoliC. DoyleT. BryantL. CuzzocreaS. MollaceV. MastroianniR. MasiniE. SalveminiD. NMDA-receptor activation and nitroxidative regulation of the glutamatergic pathway during nociceptive processing.Pain2010149110010610.1016/j.pain.2010.01.01520167432
    [Google Scholar]
  30. KamburO. MännistöP.T. Catechol-O-methyltransferase and pain.Int. Rev. Neurobiol.20109522727910.1016/B978‑0‑12‑381326‑8.00010‑721095465
    [Google Scholar]
  31. SmithM.T. MuralidharanA. Pharmacogenetics of pain and analgesia.Clin. Genet.201282432133010.1111/j.1399‑0004.2012.01936.x22779698
    [Google Scholar]
  32. DingW. Yang L. Shi E. KimB. LowS. HuK. GaoL. ChenP. Author correction: The endocannabinoid N-arachidonoyl dopamine is critical for hyperalgesia induced by chronic sleep disruption.Nat Commun.2023141669610.1038/s41467‑023‑42283‑6
    [Google Scholar]
  33. BlumK. KazmiS. ModestinoE.J. DownsB.W. BagchiD. BaronD. McLaughlinT. GreenR. JalaliR. ThanosP.K. ElmanI. BadgaiyanR.D. BowirratA. GoldM.S. A novel precision approach to overcome the “addiction pandemic” by incorporating genetic addiction risk severity (GARS) and dopamine homeostasis restoration.J. Pers. Med.202111321210.3390/jpm1103021233809702
    [Google Scholar]
  34. BlumK. Oscar-BermanM. DemetrovicsZ. BarhD. GoldM.S. Genetic addiction risk score (GARS): Molecular neurogenetic evidence for predisposition to reward deficiency syndrome (RDS).Mol. Neurobiol.201450376579610.1007/s12035‑014‑8726‑524878765
    [Google Scholar]
  35. BlumK. BlumK. BlumK. BlumK. BlumK. Biotechnical development of genetic addiction risk score (GARS) and selective evidence for inclusion of polymorphic allelic risk in substance use disorder (SUD).J. Syst Integr Neurosci201962
    [Google Scholar]
  36. BlumK. BrodieM. PandeyS. CadetJ. GuptaA. ElmanI. ThanosP. Gondre-LewisM. BaronD. KazmiS. BowirratA. FeboM. BadgaiyanR. BravermanE. DennenC. GoldM. Researching mitigation of alcohol binge drinking in polydrug abuse: KCNK13 and RASGRF2 gene (s) risk polymorphisms coupled with genetic addiction risk severity (GARS) guiding precision pro-dopamine regulation.J. Pers. Med.2022126100910.3390/jpm1206100935743793
    [Google Scholar]
  37. VereczkeiA. BartaC. MagiA. FarkasJ. EisingerA. KirályO. BelikA. GriffithsM.D. SzekelyA. Sasvári-SzékelyM. UrbánR. PotenzaM.N. BadgaiyanR.D. BlumK. DemetrovicsZ. KotyukE. FOXN3 and GDNF polymorphisms as common genetic factors of substance use and addictive behaviors.J. Pers. Med.202212569010.3390/jpm1205069035629112
    [Google Scholar]
  38. MoranM. BlumK. PonceJ.V. LottL. Gondré-LewisM.C. BadgaiyanS. BrewerR. DownsB.W. FynmanP. WeingartenA. CadetJ.L. SmithD.E. BaronD. ThanosP.K. ModestinoE.J. BadgaiyanR.D. ElmanI. GoldM.S. High genetic addiction risk score (GARS) in chronically prescribed severe chronic opioid probands attending multi-pain clinics: an open clinical pilot trial.Mol. Neurobiol.20215873335334610.1007/s12035‑021‑02312‑133683627
    [Google Scholar]
  39. FriedL. ModestinoE.J. SiwickiD. LottL. ThanosP.K. BaronD. BadgaiyanR.D. PonceJ.V. GiordanoJ. DownsW.B. Gondré-LewisM.C. BruceS. BravermanE.R. BoyettB. BlumK. Hypodopaminergia and “Precision Behavioral Management”(PBM): It is a generational family affair.Curr. Pharm. Biotechnol.202021652854110.2174/138920102166619121011210831820688
    [Google Scholar]
  40. ThanosP.K. HannaC. MihalkovicA. HoffmanA.B. PosnerA.R. BuschJ. SmithC. BadgaiyanR.D. BlumK. BaronD. MastrandreaL.D. QuattrinT. The first exploratory personalized medicine approach to improve bariatric surgery outcomes utilizing psychosocial and genetic risk assessments: Encouraging clinical research.J. Pers. Med.2023137116410.3390/jpm1307116437511777
    [Google Scholar]
  41. ThanosP.K. HannaC. MihalkovicA. HoffmanA. PosnerA. ButschJ. BlumK. GeorgerL. MastrandreaL.D. QuattrinT. Genetic correlates as a predictor of bariatric surgery outcomes after 1 year.Biomedicines20231110264410.3390/biomedicines1110264437893019
    [Google Scholar]
  42. ThanosP.K. GoldM.S. BlumK. BadgaiyanR.D. AvenaN.M. Bariatric surgery: Potential post-operative heightened sensitivity to substances or behaviors.J. Syst. Integr. Neurosci.20218135965990
    [Google Scholar]
  43. SteffenK.J. EngelS.G. WonderlichJ.A. PollertG.A. SondagC. Alcohol and other addictive disorders following bariatric surgery: prevalence, risk factors and possible etiologies.Eur. Eat. Disord. Rev.201523644245010.1002/erv.239926449524
    [Google Scholar]
  44. BlumK. BowirratA. LewisM.C.G. SimpaticoT.A. CeccantiM. SteinbergB. ModestinoE.J. ThanosP.K. BaronD. McLaughlinT. BrewerR. BadgaiyanR.D. PonceJ.V. LottL. GoldM.S. Exploration of epigenetic state hyperdopaminergia (Surfeit) and genetic trait hypodopaminergia (Deficit) during adolescent brain development.Curr. Psychopharmacol.202110318119610.2174/221155601066621021515550934707969
    [Google Scholar]
  45. DennenC.A. BlumK. BowirratA. ThanosP.K. ElmanI. CeccantiM. BadgaiyanR.D. McLaughlinT. GuptaA. BajajA. BaronD. DownsB.W. BagchiD. GoldM.S. Genetic addiction risk severity assessment identifies polymorphic reward genes as antecedents to reward deficiency syndrome (RDS) hypodopaminergia’s effect on addictive and non-addictive behaviors in a nuclear family.J. Pers. Med.20221211186410.3390/jpm1211186436579592
    [Google Scholar]
  46. PalmourR.M. ErvinF.R. BakerG.B. YoungS.N. An amino acid mixture deficient in phenylalanine and tyrosine reduces cerebrospinal fluid catecholamine metabolites and alcohol consumption in vervet monkeys.Psychopharmacology (Berl.)199813611710.1007/s0021300505329537676
    [Google Scholar]
  47. Gondré-LewisM.C. ElmanI. AlimT. ChapmanE. Settles-ReavesB. GalvaoC. GoldM.S. BaronD. KazmiS. GardnerE. GuptaA. DennenC. BlumK. Frequency of the dopamine receptor D3 (rs6280) vs. opioid receptor µ1 (rs1799971) polymorphic risk alleles in patients with opioid use disorder: A preponderance of dopaminergic mechanisms?Biomedicines202210487010.3390/biomedicines1004087035453620
    [Google Scholar]
  48. BlumK. SiwickiD. BaronD. J ModestinoE. D BadgaiyanR. The benefits of genetic addiction risk score (GARS®) and pro-dopamine regulation in combating suicide in the American Indian population.J. Syst. Integr. Neurosci.201842410.15761/JSIN.100019531660252
    [Google Scholar]
  49. BlumK. GreenR. MullenP. HanD. BowirratA. ElmanI. FloydJ.B. ThanosP.K. BaronD. GoldM.S. BadgaiyanR.D. Reward Deficiency Syndrome Solution System (RDSSS) A genetically driven putative inducer of “Dopamine Homeostasis” as a futuristic alternative to enhance rehabilitation instead of incarceration.Asian J. Complement. Altern. Med2023111111410.53043/2347‑3894.acam1100336865662
    [Google Scholar]
  50. BlumK. BaronD. HauserM. HenriksenS. ThanosP.K. BlackC. SiwickiD. ModestinoE.J. DownsB.W. BadgaiyanS. SimpaticoT.A. BoyettB. BadgaiyanR.D. Americas’ opioid/psychostimulant epidemic would benefit from general population early identification of genetic addiction risk especially in children of alcoholics (COAs).J. Syst. Integr. Neurosci.2019521332082617
    [Google Scholar]
  51. BlumK. DennenC.A. BravermanE.R. GuptaA. BaronD. DownsB.W. BagchiD. ThanosP. PollockM. KhalsaJ. ElmanI. BowirratA. BadgaiyanR.D. Hypothesizing that Pediatric Autoimmune Neuropsychiatric Associated Streptococcal (PANDAS) causes rapid onset of Reward Deficiency Syndrome (RDS) behaviors and may require induction of “Dopamine Homeostasis”.Open J. Immunol.2022123657510.4236/oji.2022.12300436407790
    [Google Scholar]
  52. BlumK. WhitneyD. FriedL. FeboM. WaiteR.L. BravermanE.R. DushajK. LiM. GiordanoJ. DemetrovicsZ. BadgaiyanR.D. Hypothesizing that a pro-dopaminergic regulator (KB220z™ liquid variant) can induce “dopamine homeostasis” and provide adjunctive detoxification benefits in opiate/opioid dependence.Clin. Med. Rev. Case Rep.20163812510.23937/2378‑3656/141012529034323
    [Google Scholar]
  53. BajajA. BlumK. BowirratA. GuptaA. BaronD. FugelD. NicholsonA. FitchT. DownsB.W. BagchiD. DennenC.A. BadgaiyanR.D. DNA directed pro-dopamine regulation coupling subluxation repair, H-Wave® and other neurobiologically based modalities to address complexities of chronic pain in a female diagnosed with reward deficiency syndrome (RDS): Emergence of Induction of “Dopamine Homeostasis” in the face of the opioid crisis.J. Pers. Med.2022129141610.3390/jpm1209141636143203
    [Google Scholar]
  54. KnopfA. SAMHSA: Substance use by teens across sexual identities.Alcohol. Drug Abuse Wkly.202436444510.1002/adaw.34327
    [Google Scholar]
  55. LeeY.K. GoldM.S. BlumK. ThanosP.K. HannaC. FuehrleinB.S. Opioid use disorder: Current trends and potential treatments.Front. Public Health202411127471910.3389/fpubh.2023.127471938332941
    [Google Scholar]
  56. Morazán-FernándezD. MoraJ. Molina-MoraJ.A. In silico pipeline to identify tumor-specific antigens for cancer immunotherapy using exome sequencing data.Phenomics20233213013710.1007/s43657‑022‑00084‑937197645
    [Google Scholar]
  57. DilokthornsakulW. KosiyapornR. WuttipongwaragonR. DilokthornsakulP. Potential effects of propolis and honey in COVID-19 prevention and treatment: A systematic review of in silico and clinical studies.J. Integr. Med.202220211412510.1016/j.joim.2022.01.00835144898
    [Google Scholar]
  58. LewandrowskiK.U. SharafshahA. ElfarJ. SchmidtS.L. BlumK. WetzelF.T. A pharmacogenomics-based in silico investigation of opioid prescribing in post-operative spine pain management and personalized therapy.Cell. Mol. Neurobiol.20244414710.1007/s10571‑024‑01466‑538801645
    [Google Scholar]
  59. LewandrowskiK.-U. Genetic and regulatory mechanisms of comorbidity of anxiety, depression and ADHD: A GWAS meta-meta-analysis through the lens of a system biological and pharmacogenomic perspective in 18.5 M subjects.J. Personalized Med.2025153103
    [Google Scholar]
  60. BlumK. Genes and Genetic Testing in Addiction Medicine.2024
    [Google Scholar]
  61. AssefiM. LewandrowskiK.U. LorioM. FiorelliR.K.A. LandgraeberS. SharafshahA. Network-based in silico analysis of new combinations of modern drug targets with methotrexate for response-Based treatment of rheumatoid arthritis.J. Pers. Med.20231311155010.3390/jpm1311155038003865
    [Google Scholar]
  62. RaadM. LópezW.O.C. SharafshahA. AssefiM. LewandrowskiK.U. Personalized medicine in cancer pain management.J. Pers. Med.2023138120110.3390/jpm1308120137623452
    [Google Scholar]
  63. SabaieH. Khorami RouzS. KouchakaliG. HeydarzadehS. AsadiM.R. Sharifi-BonabM. HussenB.M. TaheriM. AyatollahiS.A. RezazadehM. Identification of potential regulatory long non-coding RNA-associated competing endogenous RNA axes in periplaque regions in multiple sclerosis.Front. Genet.202213101135010.3389/fgene.2022.101135036324503
    [Google Scholar]
  64. LiuZ.P. WuC. MiaoH. WuH. RegNetwork: An integrated database of transcriptional and post-transcriptional regulatory networks in human and mouse.Database (Oxford)20152015bav09510.1093/database/bav09526424082
    [Google Scholar]
  65. AtreyaR.V. SunJ. ZhaoZ. Exploring drug-target interaction networks of illicit drugs.BMC Genomics201314 Suppl 4Suppl 4S110.1186/1471‑2164‑14‑S4‑S124268016
    [Google Scholar]
  66. WangX. ShiZ. ZhaoZ. ChenH. LangY. KongL. LinX. DuQ. WangJ. ZhouH. The causal relationship between neuromyelitis optica spectrum disorder and other autoimmune diseases.Front. Immunol.20221395946910.3389/fimmu.2022.95946936248893
    [Google Scholar]
  67. MarballiK.K. AlganemK. BrunwasserS.J. BarkatullahA. MeyersK.T. CampbellJ.M. OzolsA.B. MccullumsmithR.E. GallitanoA.L. Identification of activity-induced Egr3-dependent genes reveals genes associated with DNA damage response and schizophrenia.Transl. Psychiatry202212132010.1038/s41398‑022‑02069‑835941129
    [Google Scholar]
  68. FanX. ChenH. JiangF. XuC. WangY. WangH. LiM. WeiW. SongJ. ZhongD. LiG. Comprehensive analysis of cuproptosis-related genes in immune infiltration in ischemic stroke.Front. Neurol.202313107717810.3389/fneur.2022.107717836818726
    [Google Scholar]
  69. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑630944313
    [Google Scholar]
  70. BreuerK. ForoushaniA.K. LairdM.R. ChenC. SribnaiaA. LoR. WinsorG.L. HancockR.E.W. BrinkmanF.S.L. LynnD.J. InnateDB: Systems biology of innate immunity and beyond—recent updates and continuing curation.Nucleic Acids Res.201341D1D1228D123310.1093/nar/gks114723180781
    [Google Scholar]
  71. BlumK. NobleE.P. SheridanP.J. MontgomeryA. RitchieT. JagadeeswaranP. NogamiH. BriggsA.H. CohnJ.B. Allelic association of human dopamine D2 receptor gene in alcoholism.JAMA1990263152055206010.1001/jama.1990.034401500630271969501
    [Google Scholar]
  72. GordisE. TabakoffB. GoldmanD. BergK. Finding the gene(s) for alcoholism.JAMA1990263152094209510.1001/jama.1990.034401501020342157075
    [Google Scholar]
  73. EdenbergH.J. ForoudT. KollerD.L. GoateA. RiceJ. Van EerdeweghP. ReichT. CloningerC.R. NurnbergerJ.I.Jr KowalczukM. WuB. LiT.K. ConneallyP.M. TischfieldJ.A. WuW. ShearsS. CroweR. HesselbrockV. SchuckitM. PorjeszB. BegleiterH. A family-based analysis of the association of the dopamine D2 receptor (DRD2) with alcoholism.Alcohol. Clin. Exp. Res.199822250551210.1111/j.1530‑0277.1998.tb03680.x9581660
    [Google Scholar]
  74. NevilleM.J. JohnstoneE.C. WaltonR.T. Identification and characterization of ANKK1: A novel kinase gene closely linked to DRD2 on chromosome band 11q23.1.Hum. Mutat.200423654054510.1002/humu.2003915146457
    [Google Scholar]
  75. VolkowN.D. FowlerJ.S. WolfA.P. SchlyerD. ShiueC.Y. AlpertR. DeweyS.L. LoganJ. BendriemB. ChristmanD. Effects of chronic cocaine abuse on postsynaptic dopamine receptors.Am. J. Psychiatry1990147671972410.1176/ajp.147.6.7192343913
    [Google Scholar]
  76. NobleE.P. BlumK. RitchieT. MontgomeryA. SheridanP.J. Allelic association of the D2 dopamine receptor gene with receptor-binding characteristics in alcoholism.Arch. Gen. Psychiatry199148764865410.1001/archpsyc.1991.018103100660122069496
    [Google Scholar]
  77. JungY. MontelR.A. ShenP.H. MashD.C. GoldmanD. Assessment of the association of D2 dopamine receptor gene and reported allele frequencies with alcohol use disorders: a systematic review and meta-analysis.JAMA Netw. Open2019211e1914940e191494010.1001/jamanetworkopen.2019.1494031702801
    [Google Scholar]
  78. BlumK. ThompsonB. DemotrovicsZ. FeminoJ. GiordanoJ. Oscar-BermanM. TeitelbaumS. SmithD.E. RoyA.K. AganG. FratantonioJ. BadgaiyanR.D. GoldM.S. The molecular neurobiology of twelve steps program & fellowship: Connecting the dots for recovery.J. Reward Defic. Syndr.201511466410.17756/jrds.2015‑00826306329
    [Google Scholar]
  79. BrowningB.D. KirklandA.E. GreenR. EngevikM. AlekseyenkoA.V. LeggioL. TomkoR.L. SquegliaL.M. The adolescent and young adult microbiome and its association with substance use: A scoping review.Alcohol Alcohol.2024591agad05510.1093/alcalc/agad05537665023
    [Google Scholar]
  80. WangD. FengY. YangM. SunH. ZhangQ. WangR. TongS. SuR. JinY. WangY. LuZ. HanL. SunY. Variations in the oral microbiome and metabolome of methamphetamine users.mSystems202491e00991-2310.1128/msystems.00991‑2338112416
    [Google Scholar]
  81. ChoiH.J. Cutting-edge research on eating disorders beyond eating: Comprehensive understanding linking autism, gut-brain axis, gut microbiota, digital tools, and food addiction.J. Korean Acad. Child Adolesc. Psychiatry20243512310.5765/jkacap.23007538204749
    [Google Scholar]
  82. MeckelK.R. SimpsonS.S. GodinoA. PeckE.G. SensJ.P. LeonardM.Z. GeorgeO. CalipariE.S. HoffordR.S. KiralyD.D. Microbial short-chain fatty acids regulate drug seeking and transcriptional control in a model of cocaine seeking.Neuropsychopharmacology202449238639510.1038/s41386‑023‑01661‑w37528220
    [Google Scholar]
  83. BiK. LeiY. KongD. LiY. FanX. LuoX. YangJ. WangG. LiX. XuY. LuoH. Progress in the study of intestinal microbiota involved in morphine tolerance.Heliyon2024106e2718710.1016/j.heliyon.2024.e2718738533077
    [Google Scholar]
  84. AcuñaA.M. OliveM.F. Influence of gut microbiome metabolites on cocaine demand and cocaine-seeking behavior.Neuropsychopharmacology202449235735810.1038/s41386‑023‑01743‑937740056
    [Google Scholar]
  85. LiuW. LiuL. DengZ. LiuR. MaT. XinY. XieY. ZhouY. TangY. Associations between impulsivity and fecal microbiota in individuals abstaining from methamphetamine.CNS Neurosci. Ther.2024302e1458010.1111/cns.1458038421126
    [Google Scholar]
  86. WorthT. Could the gut give rise to alcohol addiction?Nature202410.1038/d41586‑024‑00667‑838454030
    [Google Scholar]
  87. GongZ. XueQ. LuoY. YuB. HuaB. LiuZ. The interplay between the microbiota and opioid in the treatment of neuropathic pain.Front. Microbiol.202415139004610.3389/fmicb.2024.139004638919504
    [Google Scholar]
  88. HeL. ZhouJ.H. Li H. Zhang W.L. Liu T.Q. Jiang H.F. Zhai R.W. Characterization of Gut Microbiota in rats and rhesus monkeys after methamphetamine self-administration.Mol. Neurobiol.202462186187038922485
    [Google Scholar]
  89. DouraM.B. UnterwaldE.M. MicroRNAs modulate interactions between stress and risk for cocaine addiction.Front. Cell. Neurosci.20161012510.3389/fncel.2016.0012527303265
    [Google Scholar]
  90. MostD. WorkmanE. HarrisR.A. Synaptic adaptations by alcohol and drugs of abuse: Changes in microRNA expression and mRNA regulation.Front. Mol. Neurosci.201478510.3389/fnmol.2014.0008525565954
    [Google Scholar]
  91. GyollaiÁ.Z. Griffiths M.D. Barta C. Vereczkei Á. Urbán R. Kun B. Kökönyei G. Székely Á. The genetics of problem and pathological gambling.J Gambl Stud. 2003191112210.2174/13816128113199990626.
    [Google Scholar]
  92. StromN.I GerringZ.F. BartaC. GalimbertiM. YuD. Halvorsen M.W.. AbdellaouiA. Rodriguez-FontenlaC. Genome-wide association study identifies 30 obsessive-compulsive disorder associated loci.medRxiv202410.1101/2024.03.13.24304161
    [Google Scholar]
  93. BravermanE. DennenC. GoldM. BowirratA. GuptaA. BaronD. RoyA. SmithD. CadetJ. BlumK. Proposing a “brain health checkup (BHC)” as a global potential “standard of care” to overcome reward dysregulation in primary care medicine: Coupling genetic risk testing and induction of “dopamine homeostasis”.Int. J. Environ. Res. Public Health2022199548010.3390/ijerph1909548035564876
    [Google Scholar]
  94. MashD.C. StaleyJ.K. D3 dopamine and kappa opioid receptor alterations in human brain of cocaine-overdose victims.Ann. N. Y. Acad. Sci.1999877150752210.1111/j.1749‑6632.1999.tb09286.x10415668
    [Google Scholar]
  95. WarlowS.M. Singhal S.M. Hollon N.G.. Faget L. Dowlat D.S. Zell V. Hunker A.C Hnasko T.S. Mesoaccumbal glutamate neurons drive reward via glutamate release but aversion via dopamine co-release.Neuron2024112348810.1016/j.neuron.2023.11.002
    [Google Scholar]
  96. LauretaniF. GiallauriaF. TestaC. ZinniC. LorenziB. ZucchiniI. SalviM. NapoliR. MaggioM.G. Dopamine pharmacodynamics: New insights.Int. J. Mol. Sci.20242510529310.3390/ijms2510529338791331
    [Google Scholar]
  97. SöderpalmB. EricsonM. Alcohol and the dopamine system.Int. Rev. Neurobiol.2024175217310.1016/bs.irn.2024.02.00338555117
    [Google Scholar]
  98. VaughanR.A. HenryL.K. FosterJ.D. BrownC.R. Post-translational mechanisms in psychostimulant-induced neurotransmitter efflux.Adv. Pharmacol.20249913310.1016/bs.apha.2023.10.00338467478
    [Google Scholar]
  99. FordM.M. GeorgeB.E. Van LaarV.S. HolleranK.M. NaidooJ. HadaczekP. VanderhooftL.E. PeckE.G. DawesM.H. OhnoK. BringasJ. McBrideJ.L. SamaranchL. ForsayethJ.R. JonesS.R. GrantK.A. BankiewiczK.S. GDNF gene therapy for alcohol use disorder in male non-human primates.Nat. Med.20232982030204010.1038/s41591‑023‑02463‑937580533
    [Google Scholar]
  100. ZhangH. YinY.L. DaiA. ZhangT. ZhangC. WuC. HuW. HeX. PanB. JinS. YuanQ. WangM.W. YangD. XuH.E. JiangY. Dimerization and antidepressant recognition at noradrenaline transporter.Nature2024630801524725410.1038/s41586‑024‑07437‑638750358
    [Google Scholar]
  101. NunesE.J. AddyN.A. ConnP.J. FosterD.J. Targeting the actions of muscarinic receptors on dopamine systems: New strategies for treating neuropsychiatric disorders.Annu. Rev. Pharmacol. Toxicol.202464127728910.1146/annurev‑pharmtox‑051921‑02385837552895
    [Google Scholar]
  102. KimA.J. SeniorJ. ChenK. Catecholamines: Influence on healthy aging and the progression of neurodegenerative diseases.Neurosci. Biobehav. Rev.202416210573310.1016/j.neubiorev.2024.10573338789019
    [Google Scholar]
  103. ZhangQ. XueY. WeiK. WangH. MaY. WeiY. FanY. GaoL. YaoH. WuF. DingX. ZhangQ. DingJ. FanY. LuM. HuG. Locus Coeruleus‐dorsolateral septum projections modulate depression‐like behaviors via BDNF but not norepinephrine.Adv. Sci. (Weinh.)20241110230350310.1002/advs.20230350338155473
    [Google Scholar]
  104. RappeneauV. Castillo DíazF. Convergence of oxytocin and dopamine signalling in neuronal circuits: Insights into the neurobiology of social interactions across species.Neurosci. Biobehav. Rev.202416110567510.1016/j.neubiorev.2024.10567538608828
    [Google Scholar]
  105. MinnesG.L. WienerA.J. LileyA.E. SimonN.W. Dopaminergic modulation of sensitivity to immediate and delayed punishment during decision-making.Cogn. Affect. Behav. Neurosci.202424230432110.3758/s13415‑023‑01139‑838052746
    [Google Scholar]
  106. SmithJ.S. HilibrandA.S. SkibaM.A. DatesA.N. Calvillo-MirandaV.G. KruseA.C. The M3 muscarinic acetylcholine receptor can signal through multiple G protein families.Mol. Pharmacol.2024105638639410.1124/molpharm.123.00081838641412
    [Google Scholar]
  107. JiangY. YeasminM. GondinA.B. ChristopoulosA. ValantC. BurgerW.A.C. ThalD.M. Importance of receptor expression in the classification of novel ligands at the M 2 muscarinic acetylcholine receptor.Br. J. Pharmacol.2024181142338235010.1111/bph.1602136550621
    [Google Scholar]
  108. FarkasI. SkrapitsK. SárváriM. GöczB. TakácsS. RumplerÉ. HrabovszkyE. Functional GnRH receptor signaling regulates striatal cholinergic neurons in neonatal but not in adult mice.Front. Endocrinol. (Lausanne)202415135315110.3389/fendo.2024.135315138348415
    [Google Scholar]
  109. Carlson A.B. Kraus G.P. Physiology, Cholinergic Receptors.StatPearlsTreasure IslandStatPearls Publishing2023
    [Google Scholar]
  110. QiuS. HuY. HuangY. GaoT. WangX. WangD. RenB. ShiX. ChenY. WangX. WangD. HanL. LiangY. LiuD. LiuQ. DengL. ChenZ. ZhanL. ChenT. HuangY. WuQ. XieT. QianL. JinC. HuangJ. DengW. JiangT. LiX. JiaX. YuanJ. LiA. YanJ. XuN. XuL. LuoQ. PooM.M. SunY. LiC.T. YaoH. GongH. SunY.G. XuC. Whole-brain spatial organization of hippocampal single-neuron projectomes.Science20243836682eadj919810.1126/science.adj919838300992
    [Google Scholar]
  111. ChopraA. OuteiroT.F. Aggregation and beyond: Alpha-synuclein-based biomarkers in synucleinopathies.Brain20241471819010.1093/brain/awad26037526295
    [Google Scholar]
  112. YanY. LiX. Luo Y.J GaoY. MathivananS. Kong L. TaoY. 3D bioprinting of human neural tissues with functional connectivity.Cell Stem Cell.202431226027410.1016/j.stem.2023.12.009
    [Google Scholar]
  113. LiY.-D. Luo Y.J Su W.K Crowther A Chen Z.K. Anterior cingulate cortex projections to the dorsal medial striatum underlie insomnia associated with chronic pain.Neuron202411281328134110.1016/j.neuron.2024.01.014
    [Google Scholar]
  114. KimchiE.Y. Burgos-RoblesA. MatthewsG.A. ChakomaT. PatarinoM. WeddingtonJ.C. SicilianoC. YangW. FoutchS. SimonsR. FongM. JingM. LiY. PolleyD.B. TyeK.M. Reward contingency gates selective cholinergic suppression of amygdala neurons.eLife202412RP8909310.7554/eLife.89093.238376907
    [Google Scholar]
  115. LiangQ. ChiG. CirqueiraL. ZhiL. MarascoA. PilatiN. GunthorpeM.J. AlvaroG. LargeC.H. SauerD.B. TreptowW. CovarrubiasM. The binding and mechanism of a positive allosteric modulator of Kv3 channels.Nat. Commun.2024151253310.1038/s41467‑024‑46813‑838514618
    [Google Scholar]
  116. NakajoK. KasuyaG. Modulation of potassium channels by transmembrane auxiliary subunits via voltage‐sensing domains.Physiol. Rep.2024126e1598010.14814/phy2.1598038503563
    [Google Scholar]
  117. MeshkatS. KwanA.T.H. LeG.H. WongS. RheeT.G. HoR. TeopizK.M. CaoB. McIntyreR.S. The role of KCNQ channel activators in management of major depressive disorder.J. Affect. Disord.202435936437210.1016/j.jad.2024.05.06738772507
    [Google Scholar]
  118. IftimoviciA. CharmetA. DesnousB. OryA. DelormeR. CouttonC. DevillardF. MilhM. MaruaniA. Familial KCNQ2 mutation: A psychiatric perspective.Psychiatr. Genet.2024341242710.1097/YPG.000000000000036038108335
    [Google Scholar]
  119. BelghaziM. IborraC. ToutendjiO. LasserreM. DebanneD. GoaillardJ.M. Marquèze-PoueyB. High-resolution proteomics unravel a native functional complex of Cav1.3, SK3, and hyperpolarization-activated cyclic nucleotide-gated channels in midbrain dopaminergic neurons.Cells2024131194410.3390/cells1311094438891076
    [Google Scholar]
  120. Borroto-EscuelaD.O. Gonzalez-CristoE. Ochoa-TorresV. Serra-RojasE.M. AmbroginiP. Arroyo-GarcíaL.E. FuxeK. Understanding electrical and chemical transmission in the brain.Front. Cell. Neurosci.202418139886210.3389/fncel.2024.139886238988663
    [Google Scholar]
  121. ChenY. XiaoL. QiuJ. Neuronomodulation of excitable neurons.Neurosci. Bull.202440110311210.1007/s12264‑023‑01095‑w37584858
    [Google Scholar]
  122. HansonJ.E. YuanH. PerszykR.E. BankeT.G. XingH. TsaiM.C. MennitiF.S. TraynelisS.F. Therapeutic potential of N-methyl-D-aspartate receptor modulators in psychiatry.Neuropsychopharmacology2024491516610.1038/s41386‑023‑01614‑337369776
    [Google Scholar]
  123. Gonzalez-HernandezA.J. MungubaH. LevitzJ. Emerging modes of regulation of neuromodulatory G protein-coupled receptors.Trends Neurosci.202447863565010.1016/j.tins.2024.05.00838862331
    [Google Scholar]
  124. PasslickS. UllahG. HennebergerC. Bidirectional dysregulation of synaptic glutamate signaling after transient metabolic failure.bioRxiv2024
    [Google Scholar]
  125. GuoJ. WangY. ShiC. ZhangD. ZhangQ. WangL. GongZ. Mitochondrial calcium uniporter complex: Unveiling the interplay between its regulators and calcium homeostasis.Cell. Signal.202412111128410.1016/j.cellsig.2024.11128438964444
    [Google Scholar]
  126. SzymanowiczO. DrużdżA. SłowikowskiB. PawlakS. PotockaE. GoutorU. KoniecznyM. CiastońM. LewandowskaA. JagodzińskiP.P. KozubskiW. DorszewskaJ. A review of the CACNA gene family: Its role in neurological disorders.Diseases20241259010.3390/diseases1205009038785745
    [Google Scholar]
  127. García-NavarreteC. KretschmarC. ToledoJ. GutiérrezK. Hernández-CáceresM.P. BudiniM. ParraV. BurgosP.V. LavanderoS. MorselliE. Peña-OyarzúnD. CriolloA. PKD2 regulates autophagy and forms a protein complex with BECN1 at the primary cilium of hypothalamic neuronal cells.Biochim. Biophys. Acta Mol. Basis Dis.20241870616725610.1016/j.bbadis.2024.16725638782303
    [Google Scholar]
  128. NiM. DadonZ. OrmerodJ.O.M. SaenenJ. HoeksemaW.F. AntiperovitchP. TadrosR. ChristiansenM.K. SteinbergC. ArnaudM. TianS. SunB. EstilloreJ.P. WangR. KhanH.R. RostonT.M. MazzantiA. GiudicessiJ.R. SiontisK.C. AlakA. AcostaJ.G. Divakara MenonS.M. TanN.S. van der WerfC. NazerB. VivekananthamH. PandyaT. CunninghamJ. GulaL.J. WongJ.A. AmitG. ScheinmanM.M. KrahnA.D. AckermanM.J. PrioriS.G. GollobM.H. HealeyJ.S. SacherF. NofE. GliksonM. WildeA.A.M. WatkinsH. JensenH.K. PostemaP.G. BelhassenB. ChenS.R.W. RobertsJ.D. A clinical diagnostic test for calcium release deficiency syndrome.JAMA2024332320421310.1001/jama.2024.859938900490
    [Google Scholar]
  129. Perez-MillerS. GomezK. KhannaR. Peptide and peptidomimetic inhibitors targeting the interaction of collapsin response mediator protein 2 with the N-type calcium channel for pain relief.ACS Pharmacol. Transl. Sci.2024771916193610.1021/acsptsci.4c0018139022365
    [Google Scholar]
  130. CameronE.G. NahmouM. TothA.B. HeoL. TanasaB. DalalR. YanW. NallagatlaP. XiaX. HayS. KnaselC. StilesT.L. DouglasC. AtkinsM. SunC. AshouriM. BianM. ChangK.C. RussanoK. ShahS. WoodworthM.B. GalvaoJ. NairR.V. KapiloffM.S. GoldbergJ.L. A molecular switch for neuroprotective astrocyte reactivity.Nature2024626799957458210.1038/s41586‑023‑06935‑338086421
    [Google Scholar]
  131. PizzoniA. ZhangX. AltschulerD.L. From membrane to nucleus: A three-wave hypothesis of cAMP signaling.J. Biol. Chem.2024300110549710.1016/j.jbc.2023.10549738016514
    [Google Scholar]
  132. El AtiallahI. PonterioG. MeringoloM. MartellaG. SciamannaG. TassoneA. MontanariM. ManciniM. CastagnoA.N. Yu-TaegerL. NguyenH.H.P. BonsiP. PisaniA. Loss-of-function of GNAL dystonia gene impairs striatal dopamine receptors-mediated adenylyl cyclase/ cyclic AMP signaling pathway.Neurobiol. Dis.202419110640310.1016/j.nbd.2024.10640338182074
    [Google Scholar]
  133. KimY.D. ParkH.G. SongS. KimJ. LeeB.J. BroadieK. LeeS. Presynaptic structural and functional plasticity are coupled by convergent Rap1 signaling.J. Cell Biol.20242237e20230909510.1083/jcb.20230909538748250
    [Google Scholar]
  134. ZhangH.L. SunY. WuZ.J. YinY. LiuR.Y. ZhangJ.C. ZhangZ.J. YauS.Y. WuH.X. YuanT.F. ZhangL. AdzicM. ChenG. Hippocampal PACAP signaling activation triggers a rapid antidepressant response.Mil. Med. Res.20241114910.1186/s40779‑024‑00548‑139044298
    [Google Scholar]
  135. KiseR. InoueA. GPCR signaling bias: An emerging framework for opioid drug development.J. Biochem.2024175436737610.1093/jb/mvae01338308136
    [Google Scholar]
  136. LangM. ColbyS. Ashby-PadialC. BapnaM. JaimesC. RinconS.P. BuchK. An imaging review of the hippocampus and its common pathologies.J. Neuroimaging202434152510.1111/jon.1316537872430
    [Google Scholar]
  137. SmithA.C.W. GhoshalS. CentanniS.W. HeyerM.P. CoronaA. WillsL. AndrakaE. LeiY. O’ConnorR.M. CaligiuriS.P.B. KhanS. BeaumontK. SebraR.P. KiefferB.L. WinderD.G. IshikawaM. KennyP.J. A master regulator of opioid reward in the ventral prefrontal cortex.Science20243846700eadn088610.1126/science.adn088638843332
    [Google Scholar]
  138. ColeR.H. MoussawiK. JoffeM.E. Opioid modulation of prefrontal cortex cells and circuits.Neuropharmacology202424810989110.1016/j.neuropharm.2024.10989138417545
    [Google Scholar]
  139. O’BrienE.S. RangariV.A. El DaibaniA. EansS.O. HammondH.R. WhiteE. WangH. ShiimuraY. Krishna KumarK. JiangQ. AppourchauxK. HuangW. ZhangC. KennedyB.J. MathiesenJ.M. CheT. McLaughlinJ.P. MajumdarS. KobilkaB.K. A µ-opioid receptor modulator that works cooperatively with naloxone.Nature2024631802168669310.1038/s41586‑024‑07587‑738961287
    [Google Scholar]
  140. ZhengX. FangY. LinJ. LuoJ. LiS. AschnerM. JiangY. Signal transduction associated with Mn-induced neurological dysfunction.Biol. Trace Elem. Res.202420294158416910.1007/s12011‑023‑03999‑038155332
    [Google Scholar]
  141. Goldschen-OhmM.P. ChandaB. Bioelectricity and molecular signalingBiophys J.202412314E1E210.1016/j.bpj.2024.06.018
    [Google Scholar]
  142. TanB. BrowneC.J. NöbauerT. VaziriA. FriedmanJ.M. NestlerE.J. Drugs of abuse hijack a mesolimbic pathway that processes homeostatic need.Science20243846693eadk674210.1126/science.adk674238669575
    [Google Scholar]
  143. BandarabadiM. LiS. AeschlimannL. ColomboG. TzanoulinouS. TaftiM. BecchettiA. BoutrelB. VassalliA. Inactivation of hypocretin receptor-2 signaling in dopaminergic neurons induces hyperarousal and enhanced cognition but impaired inhibitory control.Mol. Psychiatry202429232734110.1038/s41380‑023‑02329‑z38123729
    [Google Scholar]
  144. YangJ. QiuZ. Swell1 channel-mediated tonic GABA release from astrocytes modulates cocaine reward.Neuropsychopharmacology.202449132732810.1038/s41386‑023‑01691‑4
    [Google Scholar]
  145. GodavarthiS.K. HiramotoM. IgnatyevY. LevinJ.B. LiH. PratelliM. BorchardtJ. CzajkowskiC. BorodinskyL.N. SweeneyL. ClineH.T. SpitzerN.C. Postsynaptic receptors regulate presynaptic transmitter stability through transsynaptic bridges.Proc. Natl. Acad. Sci. USA202412115e231804112110.1073/pnas.231804112138568976
    [Google Scholar]
  146. CarricaburuE. BennerO. BurlinghamS.R. Dos Santos PassosC. HobaughN. KarrC.H. ChandaS. Gephyrin promotes autonomous assembly and synaptic localization of GABAergic postsynaptic components without presynaptic GABA release.Proc. Natl. Acad. Sci. USA202412126e231510012110.1073/pnas.231510012138889143
    [Google Scholar]
  147. StepanJ. HeinzD.E. DethloffF. WiechmannS. MartinelliS. HafnerK. EbertT. JunglasE. HäuslA.S. PöhlmannM.L. JakovcevskiM. PapeJ.C. ZannasA.S. BajajT. HermannA. MaX. PavenstädtH. SchmidtM.V. PhilipsenA. TurckC.W. DeussingJ.M. RammesG. RobinsonA.C. PaytonA. WehrM.C. SteinV. MurgatroydC. KremerskothenJ. KusterB. WotjakC.T. GassenN.C. Inhibiting Hippo pathway kinases releases WWC1 to promote AMPAR-dependent synaptic plasticity and long-term memory in mice.Sci. Signal.202417834eadj660310.1126/scisignal.adj660338687825
    [Google Scholar]
  148. AnvariS. JavanM. Mirnajafi-ZadehJ. FathollahiY. Repeated morphine exposure alters temporoamonic-CA1 synaptic plasticity in male rat hippocampus.Neuroscience202454514815710.1016/j.neuroscience.2024.03.01538513764
    [Google Scholar]
  149. NonakaK. NakamuraM. NodaM. YamagaT. JangI.S. AkaikeN. Synaptic effects of xenon on NMDA receptor-mediated response in rat spinal neuron.Neurosci. Lett.202483613788510.1016/j.neulet.2024.13788538914276
    [Google Scholar]
  150. PokhrelR. MorganA.L. RobinsonH.R. StoneM.J. FosterS.R. Unravelling G protein‐coupled receptor signalling networks using global phosphoproteomics.Br. J. Pharmacol.2024181142359237010.1111/bph.1605236772927
    [Google Scholar]
  151. BauerM.B. CurrieK.P. Serotonin and the serotonin transporter in the adrenal gland.Vitam. Horm.2024124397810.1016/bs.vh.2023.06.00238408804
    [Google Scholar]
  152. SaklothF. Sanchez-ReyesO.B. RuizA. NicolaisA. SerafiniR.A. PryceK.D. BertheratF. Torres-BerríoA. GomesI. DeviL.A. WackerD. ZachariouV. A regional and projection-specific role of RGSz1 in the ventrolateral periaqueductal grey in the modulation of morphine reward.Mol. Pharmacol.202310311810.1124/molpharm.122.00052836310031
    [Google Scholar]
  153. HouG. HaoM. DuanJ. HanM.H. The formation and function of the VTA dopamine system.Int. J. Mol. Sci.2024257387510.3390/ijms2507387538612683
    [Google Scholar]
  154. XiZ.X. BocarslyM.E. GalajE. HempelB. TeresiC. ShawM. BiG.H. JordanC. LinzE. AltonH. TandaG. FreybergZ. AlvarezV.A. NewmanA.H. Presynaptic and postsynaptic mesolimbic dopamine D3 receptors play distinct roles in cocaine versus opioid reward in mice.Biol. Psychiatry202496975276510.1016/j.biopsych.2024.05.02038838841
    [Google Scholar]
  155. PetrellaM. BorrutoA.M. CurtiL. DomiA. DomiE. XuL. BarbierE. IlariA. HeiligM. WeissF. MannaioniG. MasiA. CiccocioppoR. Pharmacological blockage of NOP receptors decreases ventral tegmental area dopamine neuronal activity through GABAB receptor-mediated mechanism.Neuropharmacology202424810986610.1016/j.neuropharm.2024.10986638364970
    [Google Scholar]
  156. HaradaM. CapdevilaL.S. WilhelmM. BurdakovD. PatriarchiT. Stimulation of VTA dopamine inputs to LH upregulates orexin neuronal activity in a DRD2-dependent manner.eLife202412RP9015810.7554/eLife.9015838567902
    [Google Scholar]
  157. MontalbanE. GiraltA. TaingL. NakamuraY. PelosiA. BrownM. de PinsB. ValjentE. MartinM. NairnA.C. GreengardP. FlajoletM. HervéD. GambardellaN. RoussarieJ.P. GiraultJ.A. Operant training for highly palatable food alters translating messenger RNA in nucleus accumbens D2 neurons and reveals a modulatory role of Ncdn.Biol. Psychiatry2024951092693710.1016/j.biopsych.2023.08.00637579933
    [Google Scholar]
  158. BernsteinD.L. LewandowskiS.I. BesadaC. PlaceD. EspañaR.A. MortensenO.V. Inactivation of ERK1/2 signaling in dopaminergic neurons by map kinase phosphatase MKP3 regulates dopamine signaling and motivation for cocaine.J. Neurosci.2024445e072723202310.1523/JNEUROSCI.0727‑23.202338296649
    [Google Scholar]
  159. LiuT.C. LiH.X. WanY.X. ShiG. ZhaoY.P. LiuY.F. FanX.Y. METTL14-mediated upregulation of lncRNA HOTAIR represses PP1α expression by promoting H3K4me1 demethylation in oxycodone-treated mice.CNS Neurosci. Ther.2024307e1483010.1111/cns.1483039046182
    [Google Scholar]
  160. SimmonsS. Flerlage W.J. Langlois L.D. Shepard R.D. Bouslog C. Thomas E.H. AKAP150-anchored PKA regulation of synaptic transmission and plasticity, neuronal excitability and CRF neuromodulation in the lateral habenula.bioRxiv2023
    [Google Scholar]
  161. QiaoX. ZhuY. DangW. WangR. SunM. ChenY. ShiY. ZhangL. Dual‐specificity phosphatase 15 (DUSP15) in the nucleus accumbens is a novel negative regulator of morphine‐associated contextual memory.Addict. Biol.2021261e1288410.1111/adb.1288432043707
    [Google Scholar]
  162. PytkaK. DawsonN. TossellK. UnglessM.A. PlevinR. BrettR.R. BushellT.J. Mitogen‐activated protein kinase phosphatase‐2 deletion modifies ventral tegmental area function and connectivity and alters reward processing.Eur. J. Neurosci.20205222838285210.1111/ejn.1468831989721
    [Google Scholar]
  163. HermanT.F. Cascella M. Muzio M.R. Mu Receptors.StatPearlsTreasure Island (FL)StatPearls Publishing2024
    [Google Scholar]
  164. FaganR.R. LeeD.F. GeronM. ScherrerG. von ZastrowM. EhrlichA.T. Selective targeting of mu opioid receptors to primary cilia.Cell Rep.202443511416410.1016/j.celrep.2024.11416438678559
    [Google Scholar]
  165. CuiD. ZhangY. ZhangM. The effect of cannabinoid type 2 receptor agonist on morphine tolerance.IBRO Neuroscience Reports202416435010.1016/j.ibneur.2023.11.00538145173
    [Google Scholar]
  166. KanekoS. ImaiS. Uchikubo-KamoT. HisanoT. AsaoN. ShirouzuM. ShimadaI. Structural and dynamic insights into the activation of the μ-opioid receptor by an allosteric modulator.Nat. Commun.2024151354410.1038/s41467‑024‑47792‑638740791
    [Google Scholar]
  167. HuangY.-H. Lin S.Y. OuL.C. Huang W.C. Chao P.K. Chang Y.C. Chang H.F. Lee P.T. Yeh T.K. Kuo Y.H Discovery of a mu-opioid receptor modulator that in combination with morphinan antagonists induces analgesia.Cell Chem Biol.20243111188510.1016/j.chembiol.2024.06.013
    [Google Scholar]
  168. Sánchez-SotoM. BoldizsarN.M. SchardienK.A. MadarasN.S. WilletteB.K.A. InbodyL.R. DasaroC. MoritzA.E. DrubeJ. HaiderR.S. FreeR.B. HoffmanC. SibleyD.R. G protein-coupled receptor kinase 2 selectively enhances β-Arrestin recruitment to the D2 dopamine receptor through mechanisms that are independent of receptor phosphorylation.Biomolecules20231310155210.3390/biom1310155237892234
    [Google Scholar]
  169. CoutensB. IngramS.L. Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: Relevance for novel therapeutics.Neuropharmacology202322610940810.1016/j.neuropharm.2022.10940836584882
    [Google Scholar]
  170. AguinagaD. CasanovasM. Rivas-SantistebanR. Reyes-ResinaI. NavarroG. FrancoR. The sigma-1 receptor as key common factor in cocaine and food-seeking behaviors.J. Mol. Endocrinol.2019634R81R9210.1530/JME‑19‑013831539876
    [Google Scholar]
  171. ArealL.B. HamiltonA. Martins-SilvaC. PiresR.G.W. FergusonS.S.G. Neuronal scaffolding protein spinophilin is integral for cocaine-induced behavioral sensitization and ERK1/2 activation.Mol. Brain20191211510.1186/s13041‑019‑0434‑730803445
    [Google Scholar]
  172. Lao-PeregrinC. XiangG. KimJ. SrivastavaI. FallA.B. GerhardD.M. KohtalaP. KimD. SongM. Garcia-MarcosM. LevitzJ. LeeF.S. Synaptic plasticity via receptor tyrosine kinase/G-protein-coupled receptor crosstalk.Cell Rep.202443111359510.1016/j.celrep.2023.11359538117654
    [Google Scholar]
  173. McMahonK.L. VetterI. SchroederC.I. Voltage-gated sodium channel inhibition by µ-conotoxins.Toxins20241615510.3390/toxins1601005538251271
    [Google Scholar]
  174. SagarkarS. BhatN. RottiD. SubhedarN.K. AMPA and NMDA receptors in dentate gyrus mediate memory for sucrose in two port discrimination task.Hippocampus202434734235610.1002/hipo.2360938780087
    [Google Scholar]
  175. Martínez-RiveraA. HaoJ. RiceR. InturrisiC.E. RajadhyakshaA.M. Cav1.3 L-type Ca2+ channel-activated CaMKII/ERK2 pathway in the ventral tegmental area is required for cocaine conditioned place preference.Neuropharmacology202322410936810.1016/j.neuropharm.2022.10936836481277
    [Google Scholar]
  176. BaileyA.M. BarrettA. HavensL. LeyderE. MerchantT. StarnesH. ThompsonS.M. Changes in social, sexual, and hedonic behaviors in rats in response to stress and restoration by a negative allosteric modulator of α5-subunit containing GABA receptor.Behav. Brain Res.202345211455410.1016/j.bbr.2023.11455437356670
    [Google Scholar]
  177. BauerM.R. McVeyM.M. GermanoD.M. ZhangY. BoehmS.L.II Intra-dorsolateral striatal AMPA receptor antagonism reduces binge-like alcohol drinking in male and female C57BL/6J mice.Behav. Brain Res.202241811363110.1016/j.bbr.2021.11363134715146
    [Google Scholar]
  178. TábaraL.C. BurrS.P. FrisonM. ChowdhuryS.R. PaupeV. NieY. JohnsonM. Villar-AzpillagaJ. ViegasF. SegawaM. AnandH. PetkeviciusK. ChinneryP.F. PrudentJ. MTFP1 controls mitochondrial fusion to regulate inner membrane quality control and maintain mtDNA levels.Cell20241871436193637.e2710.1016/j.cell.2024.05.01738851188
    [Google Scholar]
  179. LiL.Y. ImaiA. IzumiH. InoueR. KoshidakaY. TakaoK. MoriH. YoshidaT. Differential contribution of canonical and noncanonical NLGN3 pathways to early social development and memory performance.Mol. Brain20241711610.1186/s13041‑024‑01087‑538475840
    [Google Scholar]
  180. IyerV. SaberiS.A. PachecoR. SizemoreE.F. StockmanS. KulkarniA. CantwellL. ThakurG.A. HohmannA.G. Negative allosteric modulation of CB1 cannabinoid receptor signaling suppresses opioid-mediated tolerance and withdrawal without blocking opioid antinociception.Neuropharmacology202425711005210.1016/j.neuropharm.2024.11005238936657
    [Google Scholar]
  181. Abdel-HayN. KabirovaM. YakaR. A discrete subpopulation of PFC-LHb neurons govern cocaine place preference.Transl. Psychiatry202414126910.1038/s41398‑024‑02988‑838956048
    [Google Scholar]
  182. ZhaoJ. ElgetiM. O’BrienE.S. SárC.P. EI DaibaniA. HengJ. SunX. WhiteE. CheT. HubbellW.L. KobilkaB.K. ChenC. Ligand efficacy modulates conformational dynamics of the µ-opioid receptor.Nature2024629801147448010.1038/s41586‑024‑07295‑238600384
    [Google Scholar]
  183. KossatzE. Diez-AlarciaR. GaitondeS.A. Ramon-DuasoC. StepniewskiT.M. Aranda-GarciaD. Muneta-ArrateI. TepazE. Saen-OonS. SolivaR. ShahrakiA. MoreiraD. BreaJ. LozaM.I. de la TorreR. KolbP. BouvierM. MeanaJ.J. RobledoP. SelentJ. G protein-specific mechanisms in the serotonin 5-HT2A receptor regulate psychosis-related effects and memory deficits.Nat. Commun.2024151430710.1038/s41467‑024‑48196‑238811567
    [Google Scholar]
  184. AbbasA. HammadA.S. Al-ShafaiM. The role of genetic and epigenetic GNAS alterations in the development of early-onset obesity.Mutat. Res. Rev. Mutat. Res.202479310848710.1016/j.mrrev.2023.10848738103632
    [Google Scholar]
  185. MukhalevaE. MaN. van der VeldenW.J.C. GogoshinG. BranciamoreS. BhattacharyaS. RodinA.S. VaidehiN. Bayesian network models identify cooperative GPCR:G protein interactions that contribute to G protein coupling.J. Biol. Chem.2024300610736210.1016/j.jbc.2024.10736238735478
    [Google Scholar]
  186. Rodriguez-ContrerasD. García-NafríaJ. ChanA.E. ShindeU. NeveK.A. Comparison of the function of two novel human dopamine D2 receptor variants identifies a likely mechanism for their pathogenicity.Biochem. Pharmacol.202422811622810.1016/j.bcp.2024.11622838643909
    [Google Scholar]
  187. BucherM.L. DicentJ. Duarte HospitalC. MillerG.W. Neurotoxicology of dopamine: Victim or assailant?Neurotoxicology202410317518810.1016/j.neuro.2024.06.00138857676
    [Google Scholar]
  188. GalleseV. ArdizziM. FerroniF. Schizophrenia and the bodily self.Schizophr. Res.202426915216210.1016/j.schres.2024.05.01438815468
    [Google Scholar]
  189. KhosroshahiP.A. GhanbariM. MicroRNA dysregulation in glutamate and dopamine pathways of schizophrenia: From molecular pathways to diagnostic and therapeutic approaches.Prog. Neuropsychopharmacol. Biol. Psychiatry202413511108110.1016/j.pnpbp.2024.11108139002925
    [Google Scholar]
  190. GrunzeH. The role of the D3 dopamine receptor and its partial agonist cariprazine in patients with schizophrenia and substance use disorder.Expert Opin. Pharmacother.202324181985199210.1080/14656566.2023.226635937817489
    [Google Scholar]
  191. PredescuE. VaideanT. RapciucA.M. SiposR. Metabolomic markers in Attention-Deficit/Hyperactivity Disorder (ADHD) among children and adolescents: A systematic review.Int. J. Mol. Sci.2024258438510.3390/ijms2508438538673970
    [Google Scholar]
  192. NobleE.P. BlumK. KhalsaM.E. RitchieT. MontgomeryA. WoodR.C. FitchR.J. OzkaragozT. SheridanP.J. AnglinM.D. ParedesA. TreimanL.J. SparkesR.S. Allelic association of the D2 dopamine receptor gene with cocaine dependence.Drug Alcohol Depend.199333327128510.1016/0376‑8716(93)90113‑58261891
    [Google Scholar]
  193. MillerD.K. BowirratA. MankaM. MillerM. StokesS. MankaD. AllenC. GantC. DownsB.W. SmolenA. StevensE. YeldandiS. BlumK. Acute intravenous synaptamine complex variant KB220™ “normalizes” neurological dysregulation in patients during protracted abstinence from alcohol and opiates as observed using quantitative electroencephalographic and genetic analysis for reward polymorphisms: Part 1, pilot study with 2 case reports.Postgrad. Med.2010122618821310.3810/pgm.2010.11.223621084795
    [Google Scholar]
  194. BlumK. HanD. GuptaA. BaronD. BravermanE.R. DennenC.A. KazmiS. Llanos-GomezL. BadgaiyanR.D. ElmanI. ThanosP.K. DownsB.W. BagchiD. Gondre-LewisM.C. GoldM.S. BowirratA. Statistical validation of risk alleles in genetic addiction risk severity (GARS) test: Early identification of risk for alcohol use disorder (AUD) in 74,566 case–control subjects.J. Pers. Med.2022129138510.3390/jpm1209138536143170
    [Google Scholar]
  195. BorderR. JohnsonE.C. EvansL.M. SmolenA. BerleyN. SullivanP.F. KellerM.C. No support for historical candidate gene or candidate gene-by-interaction hypotheses for major depression across multiple large samples.Am. J. Psychiatry2019176537638710.1176/appi.ajp.2018.1807088130845820
    [Google Scholar]
  196. DuncanL.E. KellerM.C. A critical review of the first 10 years of candidate gene-by-environment interaction research in psychiatry.Am. J. Psychiatry2011168101041104910.1176/appi.ajp.2011.1102019121890791
    [Google Scholar]
  197. HatoumA.S. WendtF.R. GalimbertiM. PolimantiR. NealeB. KranzlerH.R. GelernterJ. EdenbergH.J. AgrawalA. Ancestry may confound genetic machine learning: Candidate-gene prediction of opioid use disorder as an example.Drug Alcohol Depend.2021229Pt B10911510.1016/j.drugalcdep.2021.10911534710714
    [Google Scholar]
  198. JohnsonE.C. BorderR. Melroy-GreifW.E. de LeeuwC.A. EhringerM.A. KellerM.C. No evidence that schizophrenia candidate genes are more associated with schizophrenia than noncandidate genes.Biol. Psychiatry2017821070270810.1016/j.biopsych.2017.06.03328823710
    [Google Scholar]
  199. ZhouH. SealockJ.M. Sanchez-RoigeS. ClarkeT.K. LeveyD.F. ChengZ. LiB. PolimantiR. KemberR.L. SmithR.V. ThygesenJ.H. MorganM.Y. AtkinsonS.R. ThurszM.R. NyegaardM. MattheisenM. BørglumA.D. JohnsonE.C. JusticeA.C. PalmerA.A. McQuillinA. DavisL.K. EdenbergH.J. AgrawalA. KranzlerH.R. GelernterJ. Genome-wide meta-analysis of problematic alcohol use in 435,563 individuals yields insights into biology and relationships with other traits.Nat. Neurosci.202023780981810.1038/s41593‑020‑0643‑532451486
    [Google Scholar]
  200. Rataj-BaniowskaM. Niewiadomska-CimickaA. PaschakiM. Szyszka-NiagolovM. CarramolinoL. TorresM. DolléP. KrężelW. Retinoic acid receptor β controls development of striatonigral projection neurons through FGF-dependent and Meis1-dependent mechanisms.J. Neurosci.20153543144671447510.1523/JNEUROSCI.1278‑15.201526511239
    [Google Scholar]
  201. HallikainenT. HietalaJ. KauhanenJ. PohjalainenT. SyvälahtiE. SalonenJ.T. TiihonenJ. Ethanol consumption and DRD2 gene TaqI a polymorphism among socially drinking males.Am. J. Med. Genet. A.2003119A215215510.1002/ajmg.a.2013912749054
    [Google Scholar]
  202. EastonA.C. RotterA. LourdusamyA. DesrivièresS. Fernández-MedardeA. BiermannT. FernandesC. SantosE. KornhuberJ. SchumannG. MüllerC.P. Rasgrf2 controls dopaminergic adaptations to alcohol in mice.Brain Res. Bull.201410914315010.1016/j.brainresbull.2014.10.00825454123
    [Google Scholar]
  203. SahlholmK. Valle-LeónM. Sahlholm K. Watanabe M. Watanabe C.P. Van CraenenbroeckK. Fernández-DueñasV. FerréS. Ciruela F. Behavioral control by striatal adenosine A 2A‐dopamine D 2 receptor heteromers.Genes Brain Behav.2017144e1243229053217
    [Google Scholar]
  204. SongX. ChenH. ShangZ. DuH. LiZ. WenY. LiuG. QiD. YouY. YangZ. ZhangZ. XuZ. Homeobox gene Six3 is required for the differentiation of D2-type medium spiny neurons.Neurosci. Bull.202137798599810.1007/s12264‑021‑00698‑534014554
    [Google Scholar]
  205. D’AgataV. TiralongoA. CastorinaA. LeggioG.M. MicaleV. CarnazzaM.L. DragoF. Parkin expression profile in dopamine d3 receptor knock-out mice brains.Neurochem. Res.200934232733210.1007/s11064‑008‑9781‑y18612813
    [Google Scholar]
  206. DulawaS.C. GrandyD.K. LowM.J. PaulusM.P. GeyerM.A. Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli.J. Neurosci.199919219550955610.1523/JNEUROSCI.19‑21‑09550.199910531457
    [Google Scholar]
  207. LeoD. GainetdinovR.R. Transgenic mouse models for ADHD.Cell Tissue Res.2013354125927110.1007/s00441‑013‑1639‑123681253
    [Google Scholar]
  208. KamburO. MännistöP.T. ViljakkaK. ReeniläI. LembergK. KontinenV.K. KarayiorgouM. GogosJ.A. KalsoE. Stress-induced analgesia and morphine responses are changed in catechol-O-methyltransferase-deficient male mice.Basic Clin. Pharmacol. Toxicol.2008103436737310.1111/j.1742‑7843.2008.00289.x18834357
    [Google Scholar]
  209. García-SevillaJ.A. Ferrer-AlcónM. MartínM. KiefferB.L. MaldonadoR. Neurofilament proteins and cAMP pathway in brains of μ-, δ- or κ-opioid receptor gene knock-out mice: Effects of chronic morphine administration.Neuropharmacology200446451953010.1016/j.neuropharm.2003.10.00614975676
    [Google Scholar]
  210. ConductierG. DusticierN. LucasG. CôtéF. DebonnelG. DaszutaA. DumuisA. NieoullonA. HenR. BockaertJ. CompanV. Adaptive changes in serotonin neurons of the raphe nuclei in 5‐HT4 receptor knock‐out mouse.Eur. J. Neurosci.20062441053106210.1111/j.1460‑9568.2006.04943.x16930432
    [Google Scholar]
  211. AdrienJ. The involvement of serotonin in the control of states of vigilance revisited by the study of disabled mice.J. Soc. Biol.20041981303610.1051/jbio/200419801003015146953
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010353450250408114725
Loading
/content/journals/cpb/10.2174/0113892010353450250408114725
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test