Skip to content
2000
image of Molecular Mechanisms of Immune Resistance in Pancreatic Cancer: An Update

Abstract

Pancreatic cancer is an exceptionally aggressive form of cancer with a poor prognosis, primarily due to several factors, one of which is the significant development of immune resistance. Despite new medical perceptions of the interaction between the immune system and tumour, experts have continually explored the molecular mechanisms of immune resistance in pancreatic cancer over the years but have not yet reached a complete understanding. Studying immune resistance is also fundamental because it gives us a better understanding of how to develop highly effective, individualised immunotherapeutic approaches. However, various characteristics can be used to describe the degree of immunological resistance. In the case of pancreatic cancer, the Tumour Microenvironment (TME) is specially structured in a way that it consists of stroma abundantly. Concurrently, it can regulate the secretion and expression of various immunosuppressants, like programmed death-ligand 1 (PD-L1), indoleamine 2,3-dioxygenase (IDO), adenosine, and inosine that impairs the anti-tumour response attributed from the immune system, along with growth factors that contributes to the development of tumour growth. Besides, oncogenic pathways, such as TP53 and KRAS mutation and immunosuppressive cell populations, including T-regulating cells and myeloid-derived suppressor cells collaboratively suppress the immune activity, thereby inducing immune resistance. These complexities present significant challenges in designing effective treatments. Immune checkpoints and mechanisms such as PD-L1-mediated MHC-1 downregulation, galectins, autophagy, TP53, and P2RX1-negative neutrophils also contribute to immune resistance. Hence, this review summarises the current knowledge regarding the underlying molecular mechanisms of immune resistance in pancreatic cancer, along with several existing molecular therapeutics and approaches to overcome these barriers.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010365485250330110031
2025-04-15
2025-09-04
Loading full text...

Full text loading...

References

  1. McGuigan A. Kelly P. Turkington R.C. Jones C. Coleman H.G. McCain R.S. Pancreatic cancer: A review of clinical diagnosis, epidemiology, treatment and outcomes. World J. Gastroenterol. 2018 24 43 4846 4861 10.3748/wjg.v24.i43.4846 30487695
    [Google Scholar]
  2. Klein A.P. Pancreatic cancer epidemiology: Understanding the role of lifestyle and inherited risk factors. Nat. Rev. Gastroenterol. Hepatol. 2021 18 7 493 502 10.1038/s41575‑021‑00457‑x 34002083
    [Google Scholar]
  3. Gan L.L. Hii L.W. Wong S.F. Leong C.O. Mai C.W. Molecular mechanisms and potential therapeutic reversal of pancreatic cancer-induced immune evasion. Cancers (Basel) 2020 12 7 1872 10.3390/cancers12071872 32664564
    [Google Scholar]
  4. Kamisawa T. Wood L.D. Itoi T. Takaori K. Pancreatic cancer. Lancet 2016 388 10039 73 85 10.1016/S0140‑6736(16)00141‑0 26830752
    [Google Scholar]
  5. Rahib L. Smith B.D. Aizenberg R. Rosenzweig A.B. Fleshman J.M. Matrisian L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014 74 11 2913 2921 10.1158/0008‑5472.CAN‑14‑0155 24840647
    [Google Scholar]
  6. Chu L.C. Goggins M.G. Fishman E.K. Diagnosis and detection of pancreatic cancer. Cancer J. 2017 23 6 333 342 10.1097/PPO.0000000000000290 29189329
    [Google Scholar]
  7. De La Cruz M.S. Young A.P. Ruffin M.T. Diagnosis and management of pancreatic cancer. Am. Fam. Physician 2014 89 8 626 632 24784121
    [Google Scholar]
  8. Meira-Júnior J.D. Costa T.N. Montagnini A.L. Nahas S.C. Jukemura J. Elevated CA 19-9 in an asymptomatic patient: What does it mean? ABCD Arq Bras Cir Dig 2022 35 e1687
    [Google Scholar]
  9. Kim S. Park B.K. Seo J.H. Choi J. Choi J.W. Lee C.K. Chung J.B. Park Y. Kim D.W. Carbohydrate antigen 19-9 elevation without evidence of malignant or pancreatobiliary diseases. Sci. Rep. 2020 10 1 8820 10.1038/s41598‑020‑65720‑8 32483216
    [Google Scholar]
  10. Freelove R. Walling A.D. Pancreatic cancer: Diagnosis and management. Am. Fam. Physician 2006 73 3 485 492 16477897
    [Google Scholar]
  11. Louhimo J. Alfthan H. Stenman U.H. Haglund C. Serum HCG beta and CA 72-4 are stronger prognostic factors than CEA, CA 19-9 and CA 242 in pancreatic cancer. Oncology 2004 66 2 126 131 10.1159/000077438 15138364
    [Google Scholar]
  12. Miyamoto Y. Maitra A. Ghosh B. Zechner U. Argani P. Iacobuzio-Donahue C.A. Sriuranpong V. Iso T. Meszoely I.M. Wolfe M.S. Hruban R.H. Ball D.W. Schmid R.M. Leach S.D. Notch mediates TGFα-induced changes in epithelial differentiation during pancreatic tumorigenesis. Cancer Cell 2003 3 6 565 576 10.1016/S1535‑6108(03)00140‑5 12842085
    [Google Scholar]
  13. Stowers S.J. Maronpot R.R. Reynolds S.H. Anderson M.W. The role of oncogenes in chemical carcinogenesis. Environ. Health Perspect. 1987 75 81 86 10.1289/ehp.877581 3319570
    [Google Scholar]
  14. Balmain A. Brown K. Oncogene activation in chemical carcinogenesis. Adv. Cancer Res. 1988 51 147 182 10.1016/S0065‑230X(08)60222‑5 3066145
    [Google Scholar]
  15. Almoguera C. Shibata D. Forrester K. Martin J. Arnheim N. Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 1988 53 4 549 554 10.1016/0092‑8674(88)90571‑5 2453289
    [Google Scholar]
  16. Sarkar F. Banerjee S. Li Y. Pancreatic cancer: Pathogenesis, prevention and treatment. Toxicol. Appl. Pharmacol. 2007 224 3 326 336 10.1016/j.taap.2006.11.007 17174370
    [Google Scholar]
  17. Li Y. Bhuiyan M. Vaitkevicius V.K. Sarkar F.H. Molecular analysis of the p53 gene in pancreatic adenocarcinoma. Diagn. Mol. Pathol. 1998 7 1 4 9 10.1097/00019606‑199802000‑00002
    [Google Scholar]
  18. Ribas A. Adaptive immune resistance: How cancer protects from immune attack. Cancer Discov. 2015 5 9 915 919 10.1158/2159‑8290.CD‑15‑0563 26272491
    [Google Scholar]
  19. Rooney M.S. Shukla S.A. Wu C.J. Getz G. Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 2015 160 1-2 48 61 10.1016/j.cell.2014.12.033 25594174
    [Google Scholar]
  20. Chambers C.A. Kuhns M.S. Egen J.G. Allison J.P. CTLA-4-mediated inhibition in regulation of T cell responses: Mechanisms and manipulation in tumor immunotherapy. Annu. Rev. Immunol. 2001 19 1 565 594 10.1146/annurev.immunol.19.1.565 11244047
    [Google Scholar]
  21. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012 12 4 252 264 10.1038/nrc3239 22437870
    [Google Scholar]
  22. Li K. Tandurella J.A. Gai J. Zhu Q. Lim S.J. Thomas D.L. II Xia T. Mo G. Mitchell J.T. Montagne J. Lyman M. Danilova L.V. Zimmerman J.W. Kinny-Köster B. Zhang T. Chen L. Blair A.B. Heumann T. Parkinson R. Durham J.N. Narang A.K. Anders R.A. Wolfgang C.L. Laheru D.A. He J. Osipov A. Thompson E.D. Wang H. Fertig E.J. Jaffee E.M. Zheng L. Multi-omic analyses of changes in the tumor microenvironment of pancreatic adenocarcinoma following neoadjuvant treatment with anti-PD-1 therapy. Cancer Cell 2022 40 11 1374 1391.e7 10.1016/j.ccell.2022.10.001 36306792
    [Google Scholar]
  23. Swann J.B. Smyth M.J. Immune surveillance of tumors. J. Clin. Invest. 2007 117 5 1137 1146 10.1172/JCI31405 17476343
    [Google Scholar]
  24. Dunn G.P. Old L.J. Schreiber R.D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004 21 2 137 148 10.1016/j.immuni.2004.07.017 15308095
    [Google Scholar]
  25. Dunn G.P. Bruce A.T. Ikeda H. Old L.J. Schreiber R.D. Cancer immunoediting: From immunosurveillance to tumor escape. Nat. Immunol. 2002 3 11 991 998 10.1038/ni1102‑991 12407406
    [Google Scholar]
  26. Dunn G.P. Old L.J. Schreiber R.D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 2004 22 1 329 360 10.1146/annurev.immunol.22.012703.104803 15032581
    [Google Scholar]
  27. Deng Y. Xia X. Zhao Y. Zhao Z. Martinez C. Yin W. Yao J. Hang Q. Wu W. Zhang J. Yu Y. Xia W. Yao F. Zhao D. Sun Y. Ying H. Hung M.C. Ma L. Glucocorticoid receptor regulates PD-L1 and MHC-I in pancreatic cancer cells to promote immune evasion and immunotherapy resistance. Nat. Commun. 2021 12 1 7041 10.1038/s41467‑021‑27349‑7 34873175
    [Google Scholar]
  28. Garcia-Diaz A. Shin D.S. Moreno B.H. Saco J. Escuin-Ordinas H. Rodriguez G.A. Zaretsky J.M. Sun L. Hugo W. Wang X. Parisi G. Saus C.P. Torrejon D.Y. Graeber T.G. Comin-Anduix B. Hu-Lieskovan S. Damoiseaux R. Lo R.S. Ribas A. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017 19 6 1189 1201 10.1016/j.celrep.2017.04.031 28494868
    [Google Scholar]
  29. Liang S.C. Latchman Y.E. Buhlmann J.E. Tomczak M.F. Horwitz B.H. Freeman G.J. Sharpe A.H. Regulation of PD-1, PD-L1, and PD-L2 expression during normal and autoimmune responses. Eur. J. Immunol. 2003 33 10 2706 2716 10.1002/eji.200324228 14515254
    [Google Scholar]
  30. Blank C. Brown I. Peterson A.C. Spiotto M. Iwai Y. Honjo T. Gajewski T.F. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8+ T cells. Cancer Res. 2004 64 3 1140 1145 10.1158/0008‑5472.CAN‑03‑3259 14871849
    [Google Scholar]
  31. Loke P. Allison J.P. PD-L1 and PD-L2 are differentially regulated by Th1 and Th2 cells. Proc. Natl. Acad. Sci. USA 2003 100 9 5336 5341 10.1073/pnas.0931259100 12697896
    [Google Scholar]
  32. Lee S.J. Jang B.C. Lee S.W. Yang Y.I. Suh S.I. Park Y.M. Oh S. Shin J.G. Yao S. Chen L. Choi I.H. Interferon regulatory factor-1 is prerequisite to the constitutive expression and IFN-γ-induced upregulation of B7-H1 (CD274). FEBS Lett. 2006 580 3 755 762 10.1016/j.febslet.2005.12.093 16413538
    [Google Scholar]
  33. Obradović M.M.S. Hamelin B. Manevski N. Couto J.P. Sethi A. Coissieux M.M. Münst S. Okamoto R. Kohler H. Schmidt A. Bentires-Alj M. Glucocorticoids promote breast cancer metastasis. Nature 2019 567 7749 540 544 10.1038/s41586‑019‑1019‑4 30867597
    [Google Scholar]
  34. Cain D.W. Cidlowski J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 2017 17 4 233 247 10.1038/nri.2017.1 28192415
    [Google Scholar]
  35. Adcock I.M. Mumby S. Glucocorticoids. Pharmacology and Therapeutics of Asthma and COPD 2017 171 196
    [Google Scholar]
  36. Audrito V. Pancreatic cancer immune evasion mechanisms: The immunosuppressive role of P2RX1-negative neutrophils. Purinergic Signal. 2021 17 2 173 174 10.1007/s11302‑021‑09782‑x 33786722
    [Google Scholar]
  37. Wang X. Hu L.P. Qin W.T. Yang Q. Chen D.Y. Li Q. Zhou K.X. Huang P.Q. Xu C.J. Li J. Yao L.L. Wang Y.H. Tian G.A. Yang J.Y. Yang M.W. Liu D.J. Sun Y.W. Jiang S.H. Zhang X.L. Zhang Z.G. Identification of a subset of immunosuppressive P2RX1-negative neutrophils in pancreatic cancer liver metastasis. Nat. Commun. 2021 12 1 174 10.1038/s41467‑020‑20447‑y 33420030
    [Google Scholar]
  38. Di Virgilio F. Sarti A.C. Falzoni S. De Marchi E. Adinolfi E. Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat. Rev. Cancer 2018 18 10 601 618 10.1038/s41568‑018‑0037‑0 30006588
    [Google Scholar]
  39. Cekic C. Linden J. Purinergic regulation of the immune system. Nat. Rev. Immunol. 2016 16 3 177 192 10.1038/nri.2016.4 26922909
    [Google Scholar]
  40. Mizushima N. Autophagy: Process and function. Genes Dev. 2007 21 22 2861 2873 10.1101/gad.1599207 18006683
    [Google Scholar]
  41. Yamamoto K. Venida A. Yano J. Biancur D.E. Kakiuchi M. Gupta S. Sohn A.S.W. Mukhopadhyay S. Lin E.Y. Parker S.J. Banh R.S. Paulo J.A. Wen K.W. Debnath J. Kim G.E. Mancias J.D. Fearon D.T. Perera R.M. Kimmelman A.C. Autophagy promotes immune evasion of pancreatic cancer by degrading MHC-I. Nature 2020 581 7806 100 105 10.1038/s41586‑020‑2229‑5 32376951
    [Google Scholar]
  42. Ryschich E. Nötzel T. Hinz U. Autschbach F. Ferguson J. Simon I. Weitz J. Fröhlich B. Klar E. Büchler M.W. Schmidt J. Control of T-cell-mediated immune response by HLA class I in human pancreatic carcinoma. Clin. Cancer Res. 2005 11 2 498 504 10.1158/1078‑0432.498.11.2 15701833
    [Google Scholar]
  43. Pandha H. Rigg A. John J. Lemoine N. Loss of expression of antigen-presenting molecules in human pancreatic cancer and pancreatic cancer cell lines. Clin. Exp. Immunol. 2007 148 1 127 135 10.1111/j.1365‑2249.2006.03289.x 17302733
    [Google Scholar]
  44. Pommier A. Anaparthy N. Memos N. Kelley Z.L. Gouronnec A. Yan R. Auffray C. Albrengues J. Egeblad M. Iacobuzio-Donahue C.A. Lyons S.K. Fearon D.T. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases. Science 2018 360 6394 eaao4908 10.1126/science.aao4908 29773669
    [Google Scholar]
  45. Sundaram M.K. Silas S. Hussain A. Epigenetic aberrations in cervical cancer.In: Epigenetics and Reproductive Health; Academic Press, 2021; p. 343.370 10.1016/B978‑0‑12‑819753‑0.00017‑9
    [Google Scholar]
  46. Xue W. Zender L. Miething C. Dickins R.A. Hernando E. Krizhanovsky V. Cordon-Cardo C. Lowe S.W. Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 2007 445 7128 656 660 10.1038/nature05529 17251933
    [Google Scholar]
  47. Bayne L.J. Beatty G.L. Jhala N. Clark C.E. Rhim A.D. Stanger B.Z. Vonderheide R.H. Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell 2012 21 6 822 835 10.1016/j.ccr.2012.04.025 22698406
    [Google Scholar]
  48. Pylayeva-Gupta Y. Lee K.E. Hajdu C.H. Miller G. Bar-Sagi D. Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell 2012 21 6 836 847 10.1016/j.ccr.2012.04.024 22698407
    [Google Scholar]
  49. Blagih J. Zani F. Chakravarty P. Hennequart M. Pilley S. Hobor S. Hock A.K. Walton J.B. Morton J.P. Gronroos E. Mason S. Yang M. McNeish I. Swanton C. Blyth K. Vousden K.H. Cancer-specific loss of p53 leads to a modulation of myeloid and T cell responses. Cell Rep. 2020 30 2 481 496.e6 10.1016/j.celrep.2019.12.028 31940491
    [Google Scholar]
  50. Varki A. Kannagi R. Toole B.P. Glycosylation changes in cancer. Essentials of Glycobiology. Cold Spring Harbor, NY Cold Spring Harbor Laboratory Press 2009
    [Google Scholar]
  51. Martinez-Bosch N. Vinaixa J. Navarro P. Immune evasion in pancreatic cancer: From mechanisms to therapy. Cancers (Basel) 2018 10 1 6 10.3390/cancers10010006 29301364
    [Google Scholar]
  52. Tang D. Yuan Z. Xue X. Lu Z. Zhang Y. Wang H. Chen M. An Y. Wei J. Zhu Y. Miao Y. Jiang K. High expression of Galectin-1 in pancreatic stellate cells plays a role in the development and maintenance of an immunosuppressive microenvironment in pancreatic cancer. Int. J. Cancer 2012 130 10 2337 2348 10.1002/ijc.26290 21780106
    [Google Scholar]
  53. Martínez-Bosch N. Fernández-Barrena M.G. Moreno M. Ortiz-Zapater E. Munné-Collado J. Iglesias M. André S. Gabius H.J. Hwang R.F. Poirier F. Navas C. Guerra C. Fernández-Zapico M.E. Navarro P. Galectin-1 drives pancreatic carcinogenesis through stroma remodeling and Hedgehog signaling activation. Cancer Res. 2014 74 13 3512 3524 10.1158/0008‑5472.CAN‑13‑3013 24812270
    [Google Scholar]
  54. Daley D. Mani V.R. Mohan N. Akkad N. Ochi A. Heindel D.W. Lee K.B. Zambirinis C.P. Pandian G.S.D.B. Savadkar S. Torres-Hernandez A. Nayak S. Wang D. Hundeyin M. Diskin B. Aykut B. Werba G. Barilla R.M. Rodriguez R. Chang S. Gardner L. Mahal L.K. Ueberheide B. Miller G. Dectin 1 activation on macrophages by galectin 9 promotes pancreatic carcinoma and peritumoral immune tolerance. Nat. Med. 2017 23 5 556 567 10.1038/nm.4314 28394331
    [Google Scholar]
  55. Liu C. He D. Li L. Zhang S. Wang L. Fan Z. Wang Y. Extracellular vesicles in pancreatic cancer immune escape: Emerging roles and mechanisms. Pharmacol. Res. 2022 183 106364 10.1016/j.phrs.2022.106364 35901939
    [Google Scholar]
  56. Kumari P. Wright S.S. Rathinam V.A. Role of extracellular vesicles in immunity and host defense. Immunol. Invest. 2024 53 1 10 25 10.1080/08820139.2024.2312896 38348776
    [Google Scholar]
  57. Guo W. Li Y. Pang W. Shen H. Exosomes: A potential therapeutic tool targeting communications between tumor cells and macrophages. Mol. Ther. 2020 28 9 1953 1964 10.1016/j.ymthe.2020.06.003 32563274
    [Google Scholar]
  58. Nannan L. Oudart J.B. Monboisse J.C. Ramont L. Brassart-Pasco S. Brassart B. Extracellular vesicle-dependent cross-talk in cancer—focus on pancreatic cancer. Front. Oncol. 2020 10 1456 10.3389/fonc.2020.01456 32974169
    [Google Scholar]
  59. Bhatta B. Cooks T. Reshaping the tumor microenvironment: Extracellular vesicles as messengers of cancer cells. Carcinogenesis 2020 41 11 1461 1470 10.1093/carcin/bgaa107 33047121
    [Google Scholar]
  60. Jong A.Y. Wu C.H. Li J. Sun J. Fabbri M. Wayne A.S. Seeger R.C. Large-scale isolation and cytotoxicity of extracellular vesicles derived from activated human natural killer cells. J. Extracell. Vesicles 2017 6 1 1294368 10.1080/20013078.2017.1294368 28326171
    [Google Scholar]
  61. Sun H. Shi K. Qi K. Kong H. Zhang J. Dai S. Ye W. Deng T. He Q. Zhou M. Natural killer cell-derived exosomal miR-3607-3p inhibits pancreatic cancer progression by targeting IL-26. Front. Immunol. 2019 10 2819 10.3389/fimmu.2019.02819 31921112
    [Google Scholar]
  62. Wieckowski E.U. Visus C. Szajnik M. Szczepanski M.J. Storkus W.J. Whiteside T.L. Tumor-derived microvesicles promote regulatory T cell expansion and induce apoptosis in tumor-reactive activated CD8+ T lymphocytes. J. Immunol. 2009 183 6 3720 3730 10.4049/jimmunol.0900970 19692638
    [Google Scholar]
  63. Guan L. Wu B. Li T. Beer L.A. Sharma G. Li M. Lee C.N. Liu S. Yang C. Huang L. Frederick D.T. HRS phosphorylation drives immunosuppressive exosome secretion and restricts CD8+ T-cell infiltration into tumors. Nat. Commun. 2022 183 6 3720 3730
    [Google Scholar]
  64. Klibi J. Niki T. Riedel A. Pioche-Durieu C. Souquere S. Rubinstein E. Le Moulec S. Guigay J. Hirashima M. Guemira F. Adhikary D. Mautner J. Busson P. Blood diffusion and Th1-suppressive effects of galectin-9–containing exosomes released by Epstein-Barr virus–infected nasopharyngeal carcinoma cells. Blood 2009 113 9 1957 1966 10.1182/blood‑2008‑02‑142596 19005181
    [Google Scholar]
  65. Maybruck B.T. Pfannenstiel L.W. Diaz-Montero M. Gastman B.R. Tumor-derived exosomes induce CD8+ T cell suppressors. J. Immunother. Cancer 2017 5 1 65 10.1186/s40425‑017‑0269‑7 28806909
    [Google Scholar]
  66. Valenti R. Huber V. Filipazzi P. Pilla L. Sovena G. Villa A. Corbelli A. Fais S. Parmiani G. Rivoltini L. Human tumor-released microvesicles promote the differentiation of myeloid cells with transforming growth factor-β-mediated suppressive activity on T lymphocytes. Cancer Res. 2006 66 18 9290 9298 10.1158/0008‑5472.CAN‑06‑1819 16982774
    [Google Scholar]
  67. Gu X. Li J.Y. Guo J. Li P.S. Zhang W.H. Influence of MiR-451 on drug resistances of paclitaxel-resistant breast cancer cell line. Med. Sci. Monit. 2015 21 3291 3297 10.12659/MSM.894475 26516138
    [Google Scholar]
  68. Ali S. Suresh R. Banerjee S. Bao B. Xu Z. Wilson J. Philip P.A. Apte M. Sarkar F.H. Contribution of microRNAs in understanding the pancreatic tumor microenvironment involving cancer associated stellate and fibroblast cells. Am. J. Cancer Res. 2015 5 3 1251 1264
    [Google Scholar]
  69. Cao W. Zeng Z. He Z. Lei S. Hypoxic pancreatic stellate cell-derived exosomal mirnas promote proliferation and invasion of pancreatic cancer through the PTEN/AKT pathway. Aging (Albany NY) 2021 13 5 7120 7132 10.18632/aging.202569 33653966
    [Google Scholar]
  70. Daniel S.K. Seo Y.D. Pillarisetty V.G. The CXCL12- CXCR4/CXCR7 axis as a mechanism of immune resistance in gastrointestinal malignancies. In: Seminars in cancer biology; Academic Press, 2020 65 176 188
    [Google Scholar]
  71. Janowski M. Functional diversity of SDF-1 splicing variants. Cell Adhes. Migr. 2009 3 3 243 249 10.4161/cam.3.3.8260 19287206
    [Google Scholar]
  72. Loetscher M. Geiser T. O’Reilly T. Zwahlen R. Baggiolini M. Moser B. Cloning of a human seven-transmembrane domain receptor, LESTR, that is highly expressed in leukocytes. J. Biol. Chem. 1994 269 1 232 237 10.1016/S0021‑9258(17)42339‑8 8276799
    [Google Scholar]
  73. Maksym R.B. Tarnowski M. Grymula K. Tarnowska J. Wysoczynski M. Liu R. Czerny B. Ratajczak J. Kucia M. Ratajczak M.Z. The role of stromal-derived factor-1 — CXCR7 axis in development and cancer. Eur. J. Pharmacol. 2009 625 1-3 31 40 10.1016/j.ejphar.2009.04.071 19835865
    [Google Scholar]
  74. Rajagopal S. Kim J. Ahn S. Craig S. Lam C.M. Gerard N.P. Gerard C. Lefkowitz R.J. β-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc. Natl. Acad. Sci. USA 2010 107 2 628 632 10.1073/pnas.0912852107 20018651
    [Google Scholar]
  75. Gong J. Meng H.B. Hua J. Song Z.S. He Z.G. Zhou B. Qian M.P. The SDF-1/CXCR4 axis regulates migration of transplanted bone marrow mesenchymal stem cells towards the pancreas in rats with acute pancreatitis. Mol. Med. Rep. 2014 9 5 1575 1582 10.3892/mmr.2014.2053 24626964
    [Google Scholar]
  76. Wu Q. Tian Y. Zhang J. Zhang H. Gu F. Lu Y. Zou S. Chen Y. Sun P. Xu M. Sun X. Xia C. Chi H. Zhu Y. A.; Tang, D.; Wang, D. Functions of pancreatic stellate cell-derived soluble factors in the microenvironment of pancreatic ductal carcinoma. Oncotarget 2017 8 60 102721 102738 10.18632/oncotarget.21970 29254283
    [Google Scholar]
  77. Pokataev I. Kudaibergenova A. Artemyeva A. Popova A. Rumyantsev A. Podluzhny D. Kudashkin N. Fedyanin M. Tryakin A. Tjulandin S. Intratumoral heterogeneity of SMAD4 immunohistochemical expression and its role in prediction of recurrence pattern in patients with resectable pancreatic cancer. J. Gastrointest. Cancer 2019 50 3 478 484 10.1007/s12029‑018‑0103‑6 29675723
    [Google Scholar]
  78. Qian D. Lu Z. Xu Q. Wu P. Tian L. Zhao L. Cai B. Yin J. Wu Y. Staveley-O’Carroll K.F. Jiang K. Miao Y. Li G. Galectin-1-driven upregulation of SDF-1 in pancreatic stellate cells promotes pancreatic cancer metastasis. Cancer Lett. 2017 397 43 51 10.1016/j.canlet.2017.03.024 28336327
    [Google Scholar]
  79. Thomas R.M. Kim J. Revelo-Penafiel M.P. Angel R. Dawson D.W. Lowy A.M. The chemokine receptor CXCR4 is expressed in pancreatic intraepithelial neoplasia. Gut 2008 57 11 1555 1560 10.1136/gut.2007.143941 18664506
    [Google Scholar]
  80. Sato N. Fukushima N. Maitra A. Iacobuzio-Donahue C.A. van Heek N.T. Cameron J.L. Yeo C.J. Hruban R.H. Goggins M. Gene expression profiling identifies genes associated with invasive intraductal papillary mucinous neoplasms of the pancreas. Am. J. Pathol. 2004 164 3 903 914 10.1016/S0002‑9440(10)63178‑1 14982844
    [Google Scholar]
  81. Singh A.P. Arora S. Bhardwaj A. Srivastava S.K. Kadakia M.P. Wang B. Grizzle W.E. Owen L.B. Singh S. CXCL12/CXCR4 protein signaling axis induces sonic hedgehog expression in pancreatic cancer cells via extracellular regulated kinase- and Akt kinase-mediated activation of nuclear factor κB: Implications for bidirectional tumor-stromal interactions. J. Biol. Chem. 2012 287 46 39115 39124 10.1074/jbc.M112.409581 22995914
    [Google Scholar]
  82. Guo J.C. Li J. Zhou L. Yang J.Y. Zhang Z.G. Liang Z.Y. Zhou W.X. You L. Zhang T.P. Zhao Y.P. CXCL12-CXCR7 axis contributes to the invasive phenotype of pancreatic cancer. Oncotarget 2016 7 38 62006 62018 10.18632/oncotarget.11330 27542220
    [Google Scholar]
  83. Cui K. Zhao W. Wang C. Wang A. Zhang B. Zhou W. Yu J. Sun Z. Li S. The CXCR4-CXCL12 pathway facilitates the progression of pancreatic cancer via induction of angiogenesis and lymphangiogenesis. J. Surg. Res. 2011 171 1 143 150 10.1016/j.jss.2010.03.001 20462600
    [Google Scholar]
  84. Liao W.C. Wang H.P. Huang H.Y. Wu M.S. Chiang H. Tien Y.W. Lin Y.L. Lin J.T. CXCR4 expression predicts early liver recurrence and poor survival after resection of pancreatic adenocarcinoma. Clin. Transl. Gastroenterol. 2012 3 9 e22 10.1038/ctg.2012.18 23238349
    [Google Scholar]
  85. Xu Q. Wang Z. Chen X. Duan W. Lei J. Zong L. Li X. Sheng L. Ma J. Han L. Li W. Zhang L. Guo K. Ma Z. Wu Z. Wu E. Ma Q. Stromal-derived factor-1α/CXCL12-CXCR4 chemotactic pathway promotes perineural invasion in pancreatic cancer. Oncotarget 2015 6 7 4717 4732 10.18632/oncotarget.3069 25605248
    [Google Scholar]
  86. Kemp S.B. Pasca di Magliano M. Crawford H.C. Myeloid cell mediated immune suppression in pancreatic cancer. Cell. Mol. Gastroenterol. Hepatol. 2021 12 5 1531 1542 10.1016/j.jcmgh.2021.07.006 34303882
    [Google Scholar]
  87. Zhang Y. Yan W. Mathew E. Kane K.T. Brannon A. III Adoumie M. Vinta A. Crawford H.C. Pasca di Magliano M. Epithelial-Myeloid cell crosstalk regulates acinar cell plasticity and pancreatic remodeling in mice. eLife 2017 6 e27388 10.7554/eLife.27388 28980940
    [Google Scholar]
  88. Mitchem J.B. Brennan D.J. Knolhoff B.L. Belt B.A. Zhu Y. Sanford D.E. Belaygorod L. Carpenter D. Collins L. Piwnica-Worms D. Hewitt S. Udupi G.M. Gallagher W.M. Wegner C. West B.L. Wang-Gillam A. Goedegebuure P. Linehan D.C. DeNardo D.G. Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. Cancer Res. 2013 73 3 1128 1141 10.1158/0008‑5472.CAN‑12‑2731 23221383
    [Google Scholar]
  89. Sanford D.E. Belt B.A. Panni R.Z. Mayer A. Deshpande A.D. Carpenter D. Mitchem J.B. Plambeck-Suess S.M. Worley L.A. Goetz B.D. Wang-Gillam A. Eberlein T.J. Denardo D.G. Goedegebuure S.P. Linehan D.C. Inflammatory monocyte mobilization decreases patient survival in pancreatic cancer: A role for targeting the CCL2/CCR2 axis. Clin. Cancer Res. 2013 19 13 3404 3415 10.1158/1078‑0432.CCR‑13‑0525 23653148
    [Google Scholar]
  90. Tsujikawa T. Kumar S. Borkar R.N. Azimi V. Thibault G. Chang Y.H. Balter A. Kawashima R. Choe G. Sauer D. El Rassi E. Clayburgh D.R. Kulesz-Martin M.F. Lutz E.R. Zheng L. Jaffee E.M. Leyshock P. Margolin A.A. Mori M. Gray J.W. Flint P.W. Coussens L.M. Quantitative multiplex immunohistochemistry reveals myeloid-inflamed tumor-immune complexity associated with poor prognosis. Cell Rep. 2017 19 1 203 217 10.1016/j.celrep.2017.03.037 28380359
    [Google Scholar]
  91. Balachandran V.P. Łuksza M. Zhao J.N. Makarov V. Moral J.A. Remark R. Herbst B. Askan G. Bhanot U. Senbabaoglu Y. Wells D.K. Cary C.I.O. Grbovic-Huezo O. Attiyeh M. Medina B. Zhang J. Loo J. Saglimbeni J. Abu-Akeel M. Zappasodi R. Riaz N. Smoragiewicz M. Kelley Z.L. Basturk O. Gönen M. Levine A.J. Allen P.J. Fearon D.T. Merad M. Gnjatic S. Iacobuzio-Donahue C.A. Wolchok J.D. DeMatteo R.P. Chan T.A. Greenbaum B.D. Merghoub T. Leach S.D. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 2017 551 7681 512 516 10.1038/nature24462 29132146
    [Google Scholar]
  92. Sulzmaier F.J. Jean C. Schlaepfer D.D. FAK in cancer: Mechanistic findings and clinical applications. Nat. Rev. Cancer 2014 14 9 598 610 10.1038/nrc3792 25098269
    [Google Scholar]
  93. Canel M. Sławińska A.D. Lonergan D.W. Kallor A.A. Upstill-Goddard R. Davidson C. von Kriegsheim A. Biankin A.V. Byron A. Alfaro J. Serrels A. FAK suppresses antigen processing and presentation to promote immune evasion in pancreatic cancer. Gut 2024 73 1 131 155 10.1136/gutjnl‑2022‑327927 36977556
    [Google Scholar]
  94. Tripathi S.C. Peters H.L. Taguchi A. Katayama H. Wang H. Momin A. Jolly M.K. Celiktas M. Rodriguez-Canales J. Liu H. Behrens C. Wistuba I.I. Ben-Jacob E. Levine H. Molldrem J.J. Hanash S.M. Ostrin E.J. Immunoproteasome deficiency is a feature of non-small cell lung cancer with a mesenchymal phenotype and is associated with a poor outcome. Proc. Natl. Acad. Sci. USA 2016 113 11 E1555 E1564 10.1073/pnas.1521812113 26929325
    [Google Scholar]
  95. Derderian C. Orunmuyi A.T. Olapade-Olaopa E.O. Ogunwobi O.O. PVT1 signaling is a mediator of cancer progression. Front. Oncol. 2019 9 502 10.3389/fonc.2019.00502 31249809
    [Google Scholar]
  96. Sun C. Ye Y. Tan Z. Liu Y. Li Y. Hu W. Liang K. Egranov S.D. Huang L.A. Zhang Z. Zhang Y. Yao J. Nguyen T.K. Zhao Z. Wu A. Marks J.R. Caudle A.S. Sahin A.A. Gao J. Gammon S.T. Piwnica-Worms D. Hu J. Chiao P.J. Yu D. Hung M.C. Curran M.A. Calin G.A. Ying H. Han L. Lin C. Yang L. Tumor-associated nonmyelinating Schwann cell–expressed PVT1 promotes pancreatic cancer kynurenine pathway and tumor immune exclusion. Sci. Adv. 2023 9 5 eadd6995 10.1126/sciadv.add6995 36724291
    [Google Scholar]
  97. Rupert J.E. Narasimhan A. Jengelley D.H.A. Jiang Y. Liu J. Au E. Silverman L.M. Sandusky G. Bonetto A. Cao S. Lu X. O’Connell T.M. Liu Y. Koniaris L.G. Zimmers T.A. Tumor-derived IL-6 and trans-signaling among tumor, fat, and muscle mediate pancreatic cancer cachexia. J. Exp. Med. 2021 218 6 e20190450 10.1084/jem.20190450 33851955
    [Google Scholar]
  98. Fan K. Yang C. Fan Z. Huang Q. Zhang Y. Cheng H. Jin K. Lu Y. Wang Z. Luo G. Yu X. Liu C. MUC16 C terminal-induced secretion of tumor-derived IL-6 contributes to tumor-associated Treg enrichment in pancreatic cancer. Cancer Lett. 2018 418 167 175 10.1016/j.canlet.2018.01.017 29337110
    [Google Scholar]
  99. Bhatheja K. Field J. Schwann cells: Origins and role in axonal maintenance and regeneration. Int. J. Biochem. Cell Biol. 2006 38 12 1995 1999 10.1016/j.biocel.2006.05.007 16807057
    [Google Scholar]
  100. Swanson B.J. McDermott K.M. Singh P.K. Eggers J.P. Crocker P.R. Hollingsworth M.A. MUC1 is a counter-receptor for myelin-associated glycoprotein (Siglec-4a) and their interaction contributes to adhesion in pancreatic cancer perineural invasion. Cancer Res. 2007 67 21 10222 10229 10.1158/0008‑5472.CAN‑06‑2483 17974963
    [Google Scholar]
  101. Deborde S. Omelchenko T. Lyubchik A. Zhou Y. He S. McNamara W.F. Chernichenko N. Lee S.Y. Barajas F. Chen C.H. Bakst R.L. Vakiani E. He S. Hall A. Wong R.J. Schwann cells induce cancer cell dispersion and invasion. J. Clin. Invest. 2016 126 4 1538 1554 10.1172/JCI82658 26999607
    [Google Scholar]
  102. Huang J. Chen P. Liu K. Liu J. Zhou B. Wu R. Peng Q. Liu Z.X. Li C. Kroemer G. Lotze M. Zeh H. Kang R. Tang D. CDK1/2/5 inhibition overcomes IFNG-mediated adaptive immune resistance in pancreatic cancer. Gut 2021 70 5 890 899 10.1136/gutjnl‑2019‑320441 32816920
    [Google Scholar]
  103. Topalian S.L. Drake C.G. Pardoll D.M. Immune checkpoint blockade: A common denominator approach to cancer therapy. Cancer Cell 2015 27 4 450 461 10.1016/j.ccell.2015.03.001 25858804
    [Google Scholar]
  104. Galluzzi L. Vitale I. Warren S. Adjemian S. Agostinis P. Martinez A.B. Chan T.A. Coukos G. Demaria S. Deutsch E. Draganov D. Edelson R.L. Formenti S.C. Fucikova J. Gabriele L. Gaipl U.S. Gameiro S.R. Garg A.D. Golden E. Han J. Harrington K.J. Hemminki A. Hodge J.W. Hossain D.M.S. Illidge T. Karin M. Kaufman H.L. Kepp O. Kroemer G. Lasarte J.J. Loi S. Lotze M.T. Manic G. Merghoub T. Melcher A.A. Mossman K.L. Prosper F. Rekdal Ø. Rescigno M. Riganti C. Sistigu A. Smyth M.J. Spisek R. Stagg J. Strauss B.E. Tang D. Tatsuno K. van Gool S.W. Vandenabeele P. Yamazaki T. Zamarin D. Zitvogel L. Cesano A. Marincola F.M. Consensus guidelines for the definition, detection and interpretation of immunogenic cell death. J. Immunother. Cancer 2020 8 1 e000337 10.1136/jitc‑2019‑000337 32209603
    [Google Scholar]
  105. Tang D. Kang R. Berghe T.V. Vandenabeele P. Kroemer G. The molecular machinery of regulated cell death. Cell Res. 2019 29 5 347 364 10.1038/s41422‑019‑0164‑5 30948788
    [Google Scholar]
  106. Liu J. Kang R. Tang D. CDK1/2/5 blockade: Killing two birds with one stone. OncoImmunology 2021 10 1 1875612 10.1080/2162402X.2021.1875612 33537177
    [Google Scholar]
  107. Sim W. Lim W.M. Hii L.W. Leong C.O. Mai C.W. Targeting pancreatic cancer immune evasion by inhibiting histone deacetylases. World J. Gastroenterol. 2022 28 18 1934 1945 10.3748/wjg.v28.i18.1934 35664961
    [Google Scholar]
  108. Wang X. Zhao J. Targeted cancer therapy based on acetylation and deacetylation of key proteins involved in double-strand break repair. Cancer Manag. Res. 2022 14 259 271
    [Google Scholar]
  109. Lee J.H. Bollschweiler D. Schäfer T. Huber R. Structural basis for the regulation of nucleosome recognition and HDAC activity by histone deacetylase assemblies. Sci. Adv. 2021 7 2 eabd4413 10.1126/sciadv.abd4413 33523989
    [Google Scholar]
  110. Guo S.W. Epigenetics of endometriosis. Mol. Hum. Reprod. 2009 15 10 587 607 10.1093/molehr/gap064 19651637
    [Google Scholar]
  111. Hu G. He N. Cai C. Cai F. Fan P. Zheng Z. Jin X. HDAC3 modulates cancer immunity via increasing PD-L1 expression in pancreatic cancer. Pancreatology 2019 19 2 383 389 10.1016/j.pan.2019.01.011 30670333
    [Google Scholar]
  112. He X. Hui Z. Xu L. Bai R. Gao Y. Wang Z. Xie T. Ye X.Y. Medicinal chemistry updates of novel HDACs inhibitors (2020 to present). Eur. J. Med. Chem. 2022 227 113946 10.1016/j.ejmech.2021.113946 34775332
    [Google Scholar]
  113. Thomas D. Radhakrishnan P. Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol. Cancer 2019 18 1 14 10.1186/s12943‑018‑0927‑5 30665410
    [Google Scholar]
  114. Valkenburg KC De Groot AE Pienta KJ Targeting the tumour stroma to improve cancer therapy.Nat Rev Clin Oncol., 2018, 15(6), 366-381.2019,
  115. Banik D. Moufarrij S. Villagra A. Immunoepigenetics combination therapies: An overview of the role of HDACs in cancer immunotherapy. Int. J. Mol. Sci. 2019 20 9 2241 10.3390/ijms20092241 31067680
    [Google Scholar]
  116. Cao K. Wang G. Li W. Zhang L. Wang R. Huang Y. Du L. Jiang J. Wu C. He X. Roberts A.I. Li F. Rabson A.B. Wang Y. Shi Y. Histone deacetylase inhibitors prevent activation-induced cell death and promote anti-tumor immunity. Oncogene 2015 34 49 5960 5970 10.1038/onc.2015.46 25745993
    [Google Scholar]
  117. McCaw T.R. Goel N. Brooke D.J. Katre A.A. Londoño A.I. Smith H.J. Randall T.D. Arend R.C. Class I histone deacetylase inhibition promotes CD8 T cell activation in ovarian cancer. Cancer Med. 2021 10 2 709 717
    [Google Scholar]
  118. McCaw T.R. Li M. Starenki D. Liu M. Cooper S.J. Arend R.C. Forero A. Buchsbaum D.J. Randall T.D. Histone deacetylase inhibition promotes intratumoral CD8+ T-cell responses, sensitizing murine breast tumors to anti-PD1. Cancer Immunol. Immunother. 2019 68 12 2081 2094 10.1007/s00262‑019‑02430‑9 31720815
    [Google Scholar]
  119. Ni L. Wang L. Yao C. Ni Z. Liu F. Gong C. Zhu X. Yan X. Watowich S.S. Lee D.A. Zhu S. The histone deacetylase inhibitor valproic acid inhibits NKG2D expression in natural killer cells through suppression of STAT3 and HDAC3. Sci. Rep. 2017 7 1 45266 10.1038/srep45266 28338101
    [Google Scholar]
  120. Zhang Y. Ma J.A. Zhang H.X. Jiang Y.N. Luo W.H. Cancer vaccines: Targeting KRAS-driven cancers. Expert Rev. Vaccines 2020 19 2 163 173 10.1080/14760584.2020.1733420 32174221
    [Google Scholar]
  121. Huang R. Zhang X. Sophia S. Min Z. Liu X. Clinicopathological features and prediction values of HDAC1, HDAC2, HDAC3, and HDAC11 in classical Hodgkin lymphoma. Anticancer Drugs 2018 29 4 364 370 10.1097/CAD.0000000000000610 29481474
    [Google Scholar]
  122. Kim Y.D. Park S.M. Ha H.C. Lee A.R. Won H. Cha H. Cho S. Cho J.M. HDAC inhibitor, CG-745, enhances the anti-cancer effect of anti-PD-1 immune checkpoint inhibitor by modulation of the immune microenvironment. J. Cancer 2020 11 14 4059 4072 10.7150/jca.44622 32368288
    [Google Scholar]
  123. Orillion A. Hashimoto A. Damayanti N. Shen L. Adelaiye-Ogala R. Arisa S. Chintala S. Ordentlich P. Kao C. Elzey B. Gabrilovich D. Pili R. Entinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinoma. Clin. Cancer Res. 2017 23 17 5187 5201 10.1158/1078‑0432.CCR‑17‑0741 28698201
    [Google Scholar]
  124. Zheng H. Zhao W. Yan C. Watson C.C. Massengill M. Xie M. Massengill C. Noyes D.R. Martinez G.V. Afzal R. Chen Z. Ren X. Antonia S.J. Haura E.B. Ruffell B. Beg A.A. HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clin. Cancer Res. 2016 22 16 4119 4132 10.1158/1078‑0432.CCR‑15‑2584 26964571
    [Google Scholar]
  125. Zhao X. Dong Y. Zhang J. Chen C. Gao L. Shi C. Fu Z. Han M. Tang C. Sun P. Yang Z. Zhang C. Zhao K. Jiang X. Reversing immune evasion using a DNA nano-orchestrator for pancreatic cancer immunotherapy. Acta Biomater. 2023 166 512 523 10.1016/j.actbio.2023.05.001 37150276
    [Google Scholar]
  126. Brubaker S.W. Bonham K.S. Zanoni I. Kagan J.C. Innate immune pattern recognition: A cell biological perspective. Annu. Rev. Immunol. 2015 33 1 257 290 10.1146/annurev‑immunol‑032414‑112240 25581309
    [Google Scholar]
  127. Fitzgerald K.A. Kagan J.C. Toll-like receptors and the control of immunity. Cell 2020 180 6 1044 1066 10.1016/j.cell.2020.02.041 32164908
    [Google Scholar]
  128. Ribas A. Medina T. Kirkwood J.M. Zakharia Y. Gonzalez R. Davar D. Chmielowski B. Campbell K.M. Bao R. Kelley H. Morris A. Mauro D. Wooldridge J.E. Luke J.J. Weiner G.J. Krieg A.M. Milhem M.M. Overcoming PD-1 blockade resistance with CpG-A toll-like receptor 9 agonist vidutolimod in patients with metastatic melanoma. Cancer Discov. 2021 11 12 2998 3007 10.1158/2159‑8290.CD‑21‑0425 34326162
    [Google Scholar]
  129. Ribas A. Medina T. Kummar S. Amin A. Kalbasi A. Drabick J.J. Barve M. Daniels G.A. Wong D.J. Schmidt E.V. Candia A.F. Coffman R.L. Leung A.C.F. Janssen R.S. SD-101 in combination with pembrolizumab in advanced melanoma: Results of a phase Ib, multicenter study. Cancer Discov. 2018 8 10 1250 1257 10.1158/2159‑8290.CD‑18‑0280 30154193
    [Google Scholar]
  130. Zhang J. Cheng D. He J. Hong J. Yuan C. Liang M. Cargo loading within ferritin nanocages in preparation for tumor-targeted delivery. Nat. Protoc. 2021 16 10 4878 4896 10.1038/s41596‑021‑00602‑5 34497386
    [Google Scholar]
  131. Ma Y. Wang Z. Ma Y. Han Z. Zhang M. Chen H. Gu Y. A telomerase-responsive DNA icosahedron for precise delivery of platinum nanodrugs to cisplatin-resistant cancer. Angew. Chem. Int. Ed. 2018 57 19 5389 5393 10.1002/anie.201801195 29569826
    [Google Scholar]
  132. Bhatia D. Mehtab S. Krishnan R. Indi S.S. Basu A. Krishnan Y. Icosahedral DNA nanocapsules by modular assembly. Angew. Chem. Int. Ed. 2009 48 23 4134 4137 10.1002/anie.200806000 19222079
    [Google Scholar]
  133. Banerjee A. Bhatia D. Saminathan A. Chakraborty S. Kar S. Krishnan Y. Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. Angew. Chem. Int. Ed. 2013 52 27 6854 6857 10.1002/anie.201302759 23716499
    [Google Scholar]
  134. Bhatia D. Arumugam S. Nasilowski M. Joshi H. Wunder C. Chambon V. Prakash V. Grazon C. Nadal B. Maiti P.K. Johannes L. Dubertret B. Krishnan Y. Quantum dot-loaded monofunctionalized DNA icosahedra for single-particle tracking of endocytic pathways. Nat. Nanotechnol. 2016 11 12 1112 1119 10.1038/nnano.2016.150 27548358
    [Google Scholar]
  135. Lin L.S. Song J. Song L. Ke K. Liu Y. Zhou Z. Shen Z. Li J. Yang Z. Tang W. Niu G. Yang H-H. Chen X. Simultaneous Fenton-like ion delivery and glutathione depletion by MnO2-based nanoagent to enhance chemodynamic therapy. Angew. Chem. 2018 130 18 4996 5000 10.1002/ange.201712027
    [Google Scholar]
  136. Xu B. Cui Y. Wang W. Li S. Lyu C. Wang S. Bao W. Wang H. Qin M. Liu Z. Wei W. Liu H. Immunomodulation-enhanced nanozyme-based tumor catalytic therapy. Adv. Mater. 2020 32 33 2003563 10.1002/adma.202003563 32627937
    [Google Scholar]
  137. Peng F. Tu Y. van Hest J.C.M. Wilson D.A. Self-guided supramolecular cargo-loaded nanomotors with chemotactic behavior towards cells. Angew. Chem. Int. Ed. 2015 54 40 11662 11665 10.1002/anie.201504186 26277327
    [Google Scholar]
  138. Tetter S. Hilvert D. Enzyme encapsulation by a ferritin cage. Angew. Chem. Int. Ed. 2017 56 47 14933 14936 10.1002/anie.201708530 28902449
    [Google Scholar]
  139. Tan T. Wang H. Cao H. Zeng L. Wang Y. Wang Z. Wang J. Li J. Wang S. Zhang Z. Li Y. Deep tumor-penetrated nanocages improve accessibility to cancer stem cells for photothermal-chemotherapy of breast cancer metastasis. Adv. Sci. 2018 5 12 1801012 10.1002/advs.201801012 30581704
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010365485250330110031
Loading
/content/journals/cpb/10.2174/0113892010365485250330110031
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: molecular mechanism ; therapeutics ; cancer ; immune resistance ; Pancreatic cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test