Skip to content
2000
image of A Baicalin-targeted ZHX2/MMP14 Axis Attenuates Cirrhotic Portal

Abstract

Background

Given the high mortality associated with Cirrhotic Portal Hypertension (CPH) worldwide, this study investigates the mechanism by which baicalin (BA), known for its beneficial effects on cirrhosis, alleviates CPH.

Methods

The CPH model was established in Sprague-Dawley (SD) rats, followed by 4-week oral administration of 30 and 60 mg/kg/day BA. SD rats were randomly assigned to four groups (n=6/group): Con, Model, BA-30, and BA-60. Portal vein smooth muscle cells (PVSMCs, extracted from SD rats, n=6) were incubated with 5, 10 and 20 μmol/L BA. The levels of liver function indicators and von Willebrand factor (vWF) were determined by biochemical and immunohistochemical analyses, respectively. The portal pressure (PP) was examined. The liver fibrosis was detected by Sirius red staining. The levels of fibrosis-, angiogenesis- and proliferation-related indicators, zinc fingers and homeoboxes 2 (ZHX2), and matrix metallopeptidase 14 (MMP14) were quantified by Western blot. The levels of and interaction between ZHX2 and MMP14 were separately measured by quantitative real-time polymerase chain reaction (qRT-PCR) and luciferase reporter assay. The proliferation and migration of PVSMCs were assessed by EdU staining and scratch test, respectively.

Results

BA up-regulated ZHX2 and down-regulated MMP14 (<0.001). BA concentration-dependently suppressed liver fibrosis, PP, and angiogenesis in the liver tissue, as well as PVSMC proliferation and migration, while enhancing liver function (<0.05). Further, according to the GRNdb database and luciferase reporter assay, ZHX2 is bound with the promoter of MMP14. ZHX2 could suppress the MMP14 level (<0.001). ZHX2 silencing reversed the effects of BA treatment on the proliferation and migration of PVSMCs, whereas MMP14 silencing could further offset the role of ZHX2 silencing in the BA-treated PVSMCs (<0.05).

Conclusion

BA up-regulates ZHX2 to reduce the level of MMP14 and alleviate CPH. Understanding the mechanisms of BA in CPH may provide a foundation for novel interventions to attenuate CPH.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010349745250416105433
2025-04-24
2025-09-20
Loading full text...

Full text loading...

References

  1. Kennedy P. Bane O. Hectors S.J. Fischman A. Schiano T. Lewis S. Taouli B. Noninvasive imaging assessment of portal hypertension. Abdom. Radiol. (N.Y.) 2020 45 11 3473 3495 10.1007/s00261‑020‑02729‑7 32926209
    [Google Scholar]
  2. Allaire M. Rudler M. Thabut D. Portal hypertension and hepatocellular carcinoma: Des liaisons dangereuses…. Liver Int. 2021 41 8 1734 1743 10.1111/liv.14977 34051060
    [Google Scholar]
  3. Simonetto D.A. Liu M. Kamath P.S. Portal hypertension and related complications: Diagnosis and management. Mayo Clin. Proc. 2019 94 4 714 726 10.1016/j.mayocp.2018.12.020 30947834
    [Google Scholar]
  4. Saab S. Portal hypertension. Clin. Liver Dis. 2019 23 4 xiii xiv 10.1016/j.cld.2019.08.001 31563223
    [Google Scholar]
  5. Selicean S. Wang C. Guixé-Muntet S. Stefanescu H. Kawada N. Gracia-Sancho J. Regression of portal hypertension: Underlying mechanisms and therapeutic strategies. Hepatol. Int. 2021 15 1 36 50 10.1007/s12072‑021‑10135‑4 33544313
    [Google Scholar]
  6. Gunarathne L.S. Rajapaksha H. Shackel N. Angus P.W. Herath C.B. Cirrhotic portal hypertension: From pathophysiology to novel therapeutics. World J. Gastroenterol. 2020 26 40 6111 6140 10.3748/wjg.v26.i40.6111 33177789
    [Google Scholar]
  7. Ganguly R. Gupta A. Pandey A.K. Role of baicalin as a potential therapeutic agent in hepatobiliary and gastrointestinal disorders: A review. World J. Gastroenterol. 2022 28 26 3047 3062 10.3748/wjg.v28.i26.3047 36051349
    [Google Scholar]
  8. Wang D. Li Y. Pharmacological effects of baicalin in lung diseases. Front. Pharmacol. 2023 14 1188202 10.3389/fphar.2023.1188202 37168996
    [Google Scholar]
  9. Zaghloul R.A. Zaghloul A.M. El-Kashef D.H. Hepatoprotective effect of Baicalin against thioacetamide-induced cirrhosis in rats: Targeting NOX4/NF-κB/NLRP3 inflammasome signaling pathways. Life Sci. 2022 295 120410 10.1016/j.lfs.2022.120410 35182557
    [Google Scholar]
  10. Wang H. Chang Y. Liu X. Liu L. Hua M. Li A. Protective effects of baicalin on diethyl nitrosamine‐induced liver cirrhosis by suppressing oxidative stress and inflammation. Chem. Biol. Drug Des. 2024 103 1 e14386 10.1111/cbdd.14386 37923393
    [Google Scholar]
  11. Jiang J. Turpin C. Qiu G.S. Xu M. Lee E. Hinds T.D. Jr Peterson M.L. Spear B.T. Zinc fingers and homeoboxes 2 is required for diethylnitrosamine‐induced liver tumor formation in C57BL/6 mice. Hepatol. Commun. 2022 6 12 3550 3562 10.1002/hep4.2106 36194180
    [Google Scholar]
  12. Zhao Y. Gao L. Jiang C. Chen J. Qin Z. Zhong F. Yan Y. Tong R. Zhou M. Yuan A. Pu J. The transcription factor zinc fingers and homeoboxes 2 alleviates NASH by transcriptional activation of phosphatase and tensin homolog. Hepatology 2022 75 4 939 954 10.1002/hep.32165 34545586
    [Google Scholar]
  13. Li M. Li S. Zhou L. Yang L. Wu X. Tang B. Xie S. Fang L. Zheng S. Hong T. Immune infiltration of MMP14 in pan cancer and its prognostic effect on tumors. Front. Oncol. 2021 11 717606 10.3389/fonc.2021.717606 34604053
    [Google Scholar]
  14. Han K.Y. Chang J.H. Azar D.T. MMP14-containing exosomes cleave VEGFR1 and promote VEGFA-induced migration and proliferation of vascular endothelial cells. Invest. Ophthalmol. Vis. Sci. 2019 60 6 2321 2329 10.1167/iovs.18‑26277 31117124
    [Google Scholar]
  15. Wei M. Liu Y. Zheng M. Wang L. Ma F. Qi Y. Liu G. Upregulation of protease-activated receptor 2 promotes proliferation and migration of human vascular smooth muscle cells (VSMCs). Med. Sci. Monit. 2019 25 8854 8862 10.12659/MSM.917865 31756174
    [Google Scholar]
  16. Ling L. Li G. Meng D. Wang S. Zhang C. Carvedilol ameliorates intrahepatic angiogenesis, sinusoidal remodeling and portal pressure in cirrhotic rats. Med. Sci. Monit. 2018 24 8290 8297 10.12659/MSM.913118 30448852
    [Google Scholar]
  17. Wang L. Feng Y. Xie X. Wu H. Su X.N. Qi J. Xin W. Gao L. Zhang Y. Shah V.H. Zhu Q. Neuropilin-1 aggravates liver cirrhosis by promoting angiogenesis via VEGFR2-dependent PI3K/Akt pathway in hepatic sinusoidal endothelial cells. EBioMedicine 2019 43 525 536 10.1016/j.ebiom.2019.04.050 31060904
    [Google Scholar]
  18. Schwabl P. Hambruch E. Seeland B.A. Hayden H. Wagner M. Garnys L. Strobel B. Schubert T.L. Riedl F. Mitteregger D. Burnet M. Starlinger P. Oberhuber G. Deuschle U. Rohr-Udilova N. Podesser B.K. Peck-Radosavljevic M. Reiberger T. Kremoser C. Trauner M. The FXR agonist PX20606 ameliorates portal hypertension by targeting vascular remodelling and sinusoidal dysfunction. J. Hepatol. 2017 66 4 724 733 10.1016/j.jhep.2016.12.005 27993716
    [Google Scholar]
  19. Zeng X. Huang P. Chen M. Liu S. Wu N. Wang F. Zhang J. TMEM16A regulates portal vein smooth muscle cell proliferation in portal hypertension. Exp. Ther. Med. 2018 15 1 1062 1068 29434696
    [Google Scholar]
  20. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)). Method. Methods 2001 25 4 402 408 10.1006/meth.2001.1262 11846609
    [Google Scholar]
  21. Terbah R. Testro A. Gow P. Majumdar A. Sinclair M. Portal hypertension in malnutrition and sarcopenia in decompensated cirrhosis—pathogenesis, implications and therapeutic opportunities. Nutrients 2023 16 1 35 10.3390/nu16010035 38201864
    [Google Scholar]
  22. Lin Q. Wu Z. Yue X. Yu X. Wang Z. Song X. Xu L. He Y. Ge Y. Tan S. Wang T. Song H. Yuan D. Gong Y. Gao L. Liang X. Ma C. ZHX2 restricts hepatocellular carcinoma by suppressing stem cell-like traits through KDM2A-mediated H3K36 demethylation. EBioMedicine 2020 53 102676 10.1016/j.ebiom.2020.102676 32114388
    [Google Scholar]
  23. Fiola-Masson E. Artigalas J. Campbell S. Claing A. Activation of the GTPase ARF6 regulates invasion of human vascular smooth muscle cells by stimulating MMP14 activity. Sci. Rep. 2022 12 1 9532 10.1038/s41598‑022‑13574‑7 35680971
    [Google Scholar]
  24. Boyer-Diaz Z. Aristu-Zabalza P. Andrés-Rozas M. Robert C. Ortega-Ribera M. Fernández-Iglesias A. Broqua P. Junien J.L. Wettstein G. Bosch J. Gracia-Sancho J. Pan-PPAR agonist lanifibranor improves portal hypertension and hepatic fibrosis in experimental advanced chronic liver disease. J. Hepatol. 2021 74 5 1188 1199 10.1016/j.jhep.2020.11.045 33278455
    [Google Scholar]
  25. Jones A.K. Chen H. Ng K.J. Villalona J. McHugh M. Zeveleva S. Wilks J. Brilisauer K. Bretschneider T. Qian H.S. Fryer R.M. Soluble guanylyl cyclase activator BI 685509 reduces portal hypertension and portosystemic shunting in a rat thioacetamide-induced cirrhosis model. J. Pharmacol. Exp. Ther. 2023 386 1 70 79 10.1124/jpet.122.001532 37230799
    [Google Scholar]
  26. Kondo R. Furukawa N. Deguchi A. Kawata N. Suzuki Y. Imaizumi Y. Yamamura H. Downregulation of Ca2+-activated Cl− channel TMEM16A mediated by angiotensin II in cirrhotic portal hypertensive mice. Front. Pharmacol. 2022 13 831311 10.3389/fphar.2022.831311 35370660
    [Google Scholar]
  27. Hsu S.J. Tsai M.H. Chang C.C. Hsieh Y.H. Huang H.C. Lee F.Y. Chuang C.L. Hou M.C. Lee S.D. Extrahepatic angiogenesis hinders recovery of portal hypertension and collaterals in rats with cirrhosis resolution. Clin. Sci. (Lond.) 2018 132 6 669 683 10.1042/CS20171370 29449343
    [Google Scholar]
  28. Zhao H. Li C. Li L. Liu J. Gao Y. Mu K. Chen D. Lu A. Ren Y. Li Z. Baicalin alleviates bleomycin induced pulmonary fibrosis and fibroblast proliferation in rats via the PI3K/AKT signaling pathway. Mol. Med. Rep. 2020 21 6 2321 2334 10.3892/mmr.2020.11046 32323806
    [Google Scholar]
  29. Yang J. Li M. Zhang C. Liu D. Pharmacological properties of baicalin on liver diseases: A narrative review. Pharmacol. Rep. 2021 73 5 1230 1239 10.1007/s43440‑021‑00227‑1 33595821
    [Google Scholar]
  30. Wu X. Zhi F. Lun W. Deng Q. Zhang W. Baicalin inhibits PDGF-BB-induced hepatic stellate cell proliferation, apoptosis, invasion, migration and activation via the miR-3595/ACSL4 axis. Int. J. Mol. Med. 2018 41 4 1992 2002 10.3892/ijmm.2018.3427 29393361
    [Google Scholar]
  31. Sharma P. Value of liver function tests in cirrhosis. J. Clin. Exp. Hepatol. 2022 12 3 948 964 10.1016/j.jceh.2021.11.004 35677506
    [Google Scholar]
  32. Zheng L. Zhao Z. Lin J. Li H. Wu G. Qi X. Lou X. Bao Y. Huo H. Luo M. Telmisartan relieves liver fibrosis and portal hypertension by improving vascular remodeling and sinusoidal dysfunction. Eur. J. Pharmacol. 2022 915 174713 10.1016/j.ejphar.2021.174713 34942161
    [Google Scholar]
  33. Bauer D. Kozbial K. Schwabl P. Chromy D. Simbrunner B. Stättermayer A.F. Pinter M. Steindl-Munda P. Trauner M. Ferenci P. Reiberger T. Mandorfer M. Angiopoietin 2 levels decrease after HCV-cure and reflect the evolution of portal hypertension. Dig. Liver Dis. 2022 54 9 1222 1229 10.1016/j.dld.2022.02.013 35382974
    [Google Scholar]
  34. Iwakiri Y. Trebicka J. Portal hypertension in cirrhosis: Pathophysiological mechanisms and therapy. JHEP Rep. Innov. Hepatol. 2021 3 4 100316 10.1016/j.jhepr.2021.100316 34337369
    [Google Scholar]
  35. Elhence A. Shalimar V. Von willebrand factor as a biomarker for liver disease – an update. J. Clin. Exp. Hepatol. 2023 13 6 1047 1060 10.1016/j.jceh.2023.05.016 37975050
    [Google Scholar]
  36. Yu S. Ruan X. Liu X. Zhang F. Wang D. Liu Y. Yang C. Shao L. Liu Q. Zhu L. Lin Y. Xue Y. HNRNPD interacts with ZHX2 regulating the vasculogenic mimicry formation of glioma cells via linc00707/miR-651-3p/SP2 axis. Cell Death Dis. 2021 12 2 153 10.1038/s41419‑021‑03432‑1 33542193
    [Google Scholar]
  37. Creasy K.T. Ren H. Jiang J. Peterson M.L. Spear B.T. Elongation of very long chain fatty acids-3 (Elovl3) is activated by ZHX2 and is a regulator of cell cycle progression. Am. J. Physiol. Gastrointest. Liver Physiol. 2023 325 6 G582 G592 10.1152/ajpgi.00235.2022 37847682
    [Google Scholar]
  38. Zhang Y. Fan Y. Hu H. Zhang X. Wang Z. Wu Z. Wang L. Yu X. Song X. Xiang P. Zhang X. Wang T. Tan S. Li C. Gao L. Liang X. Li S. Li N. Yue X. Ma C. ZHX2 emerges as a negative regulator of mitochondrial oxidative phosphorylation during acute liver injury. Nat. Commun. 2023 14 1 7527 10.1038/s41467‑023‑43439‑0 37980429
    [Google Scholar]
  39. Yu X. Lin Q. Wu Z. Zhang Y. Wang T. Zhao S. Song X. Chen C. Wang Z. Xu L. Li C. Gao L. Liang X. Yue X. Ma C. ZHX2 inhibits SREBP1c‐mediated de novo lipogenesis in hepatocellular carcinoma via miR‐24‐3p. J. Pathol. 2020 252 4 358 370 10.1002/path.5530 32770671
    [Google Scholar]
  40. Scheau C. Badarau I.A. Costache R. Caruntu C. Mihai G.L. Didilescu A.C. Constantin C. Neagu M. The role of matrix metalloproteinases in the epithelial-mesenchymal transition of hepatocellular carcinoma. Anal. Cell. Pathol. (Amst.) 2019 2019 1 10 10.1155/2019/9423907 31886121
    [Google Scholar]
  41. Su H. Shu S. Tang W. Zheng C. Zhao L. Fan H. ETV4 facilitates angiogenesis in hepatocellular carcinoma by upregulating MMP14 expression. Biochem. Biophys. Res. Commun. 2023 684 149137 10.1016/j.bbrc.2023.149137 37897911
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010349745250416105433
Loading
/content/journals/cpb/10.2174/0113892010349745250416105433
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test