Current Pharmaceutical Biotechnology - Online First
Description text for Online First listing goes here...
21 - 40 of 92 results
-
-
A Review on the Detection Methods of the Resistant Gene in Acinetobacter baumannii
Available online: 17 October 2025More LessThe rising prevalence of Multidrug-Resistant (MDR) Acinetobacter baumannii, particularly in hospital environments, has become a global health concern due to its capacity to cause severe infections and its resistance to conventional antibiotics. This article reviews the detection methods for the resistant genes, focusing on carbapenem-resistant A. baumannii (CRAB), where various phenotypic, molecular, and advanced diagnostic technologies, with particular attention to Fluorescence Resonance Energy Transfer (FRET) assays based on Quantum Dots (QDs) and Graphene Oxide (GO), are reviewed. These nanoparticle-based FRET assays show promising potential for rapid, sensitive, and multiplex detection of antibiotic resistance genes, offering significant improvements over traditional methods. In particular, integrating QDs and GO as donor-acceptor pairs in FRET allows real-time detection and high specificity of a key determinant of carbapenem resistance in A. baumannii. Adopting these advanced diagnostic tools could revolutionise infection control and management, providing timely and accurate diagnostics that are crucial in clinical settings.
-
-
-
Lactate as a Metabolic Regulator in the Tumor Microenvironment: Linking Immunosuppression to Epigenetic Reprogramming
Authors: Weiwen Cheng, Pengwei Lai, Xinyuan Liu, Yihan Wang and Xiaohong DuAvailable online: 16 October 2025More LessA defining characteristic of tumor cells is their preferential reliance on aerobic glycolysis for lactate production, even under oxygen-sufficient conditions - the well-known Warburg effect. Recent advances have revealed lactate to be far more than a metabolic waste product, establishing its role as a versatile signaling molecule with multiple functions in cancer progression. Acting simultaneously as a pro-inflammatory mediator, hypoxia surrogate, tumor burden indicator, and metastasis predictor, lactate exerts profound and wide-ranging effects on immune cell function within the tumor microenvironment (TME).
The immunomodulatory properties of lactate create a profoundly immunosuppressive milieu that facilitates tumor immune evasion. It achieves this through coordinated suppression of antitumor immune effectors, including natural killer cells, dendritic cells, and cytotoxic T lymphocytes, while simultaneously enhancing the immunosuppressive functions of regulatory T cells, tumor-associated macrophages, and endothelial cells. This dual mechanism of action promotes tumor progression and metastasis through multiple pathways.
The groundbreaking discovery of lysine lactylation (Kla) has further expanded our understanding of lactate's biological roles, revealing a direct molecular connection between tumor metabolism and epigenetic regulation. This review provides a comprehensive synthesis of current knowledge regarding lactate-mediated immune modulation in the TME, examines recent advances in our understanding of lactate-dependent tumor biology, and evaluates emerging therapeutic strategies that target lactate metabolism. By integrating these perspectives, we aim to offer both fundamental insights and practical guidance for the development of novel anticancer therapies that target metabolic-epigenetic crosstalk.
-
-
-
Exploring Niacinamide as a Multifunctional Agent for Skin Health and Rejuvenation
Authors: Khushi Kapoor, Sowmiya Shankar, Rukaiah Fatma Begum, Ankul Singh Suresh and Afreen NayeemAvailable online: 09 October 2025More LessNiacinamide, a water-soluble derivative of vitamin B3, has emerged as a versatile compound with wide-ranging therapeutic potential in dermatology. This review critically examines its formulation strategies, mechanisms of action, clinical benefits, safety profile, and advancements in delivery technologies. Niacinamide exhibits anti-inflammatory, antioxidant, and barrier-strengthening properties, making it valuable in the treatment of acne, rosacea, hyperpigmentation, and skin aging. It regulates sebum secretion, diminishes inflammatory lesions, supports collagen production, and protects against photoaging. Clinical studies affirm its effectiveness in enhancing skin tone, texture, and barrier integrity, with minimal adverse effects, even with prolonged use. Innovations in drug delivery, such as microencapsulation, liposomal carriers, and nanoparticle-based systems, have enhanced its dermal absorption and stability. Looking ahead, the integration of niacinamide into combination therapies and tailored skincare regimens offers promising opportunities to maximize its clinical utility. Overall, niacinamide stands out as a multifunctional dermatological agent with significant potential for promoting skin health and rejuvenation.
-
-
-
Discoidin Domain Receptor 1 in Colonic Epithelial Cells: A Paracrine Driver of Colonic Fibrosis
Authors: Hang Gong, Xiao-Li Li, Yao-Hui Ma and De-Kui ZhangAvailable online: 08 October 2025More LessIntroductionThis study investigated the role and potential mechanisms of discoidin domain receptor 1 (DDR1) in colon fibrogenesis.
MethodsWe employed the DSS-induced chronic colitis and fibrosis model to evaluate the therapeutic potential of DDR1 knockout on colonic fibrosis. In vitro experiments involved generating human normal colonic epithelial cells (HIEC line) with DDR1 overexpression by lentivirus transfection. Human colonic fibroblasts were exposed to conditioned medium (CM) from the stably transfected cells that had been treated with transforming growth factor-beta 1 (TGF-β1). The cells were collected for molecular and biochemical analyses.
ResultsOur proteomics analysis of DDR1 indicated significant enrichment of proteins involved in the extracellular matrix and fibrosis. In DSS-treated DDR1-KO mice, attenuation of colonic fibrosis and reduced activation of colonic fibroblasts were observed, contrasting significantly with their counterparts in DSS-treated WT mice. Colonic fibroblasts exhibited a marked increase in α-smooth muscle actin and type I collagen expression when exposed to CM from HIEC cells with DDR1 overexpression. Finally, overexpression of DDR1 markedly elevated the levels of p-PI3K, p-Akt, p-mTOR, p62, and LC3B in HIEC cells, resulting in enhanced secretion of TGF-β1.
DiscussionDDR1 in HIEC cells attenuates autophagy primarily by activating the PI3K/AKT/ mTOR signaling axis and concurrently increasing the autophagic markers LC3B and p62, thereby inducing paracrine secretion of TGF-β1, which drives the activation and proliferation of colonic fibroblasts and elicits a robust profibrotic response.
ConclusionOur study suggests that DDR1 may be a potential therapeutic target for colonic fibrosis.
-
-
-
Exploring the Interplay of PI3K/AKT/mTOR and JNK Signaling Pathways in Psoriasis: Insights from Systematic Review and Network Pharmacology Approach
Available online: 02 October 2025More LessIntroductionPsoriasis is a chronic inflammatory skin disease characterized by excessive keratinocyte proliferation, abnormal differentiation, and infiltration of inflammatory cells. Central to its pathogenesis are the PI3K/AKT/mTOR and JNK signaling pathways, which regulate inflammation and keratinocyte behavior.
MethodsThis study reviewed experimental data reported in the scientific literature and utilized network pharmacology to investigate the interplay between the PI3K/AKT/mTOR and JNK pathways, aiming to elucidate the underlying mechanisms of psoriasis. 709 records from Scopus, Web of Sciences, Cochrane Library and PubMed were reviewed without limitations until October 3, 2023. 85 articles were included in the systematic review.
ResultsKey molecules, including EGFR, Sortilin, and Cyr61, were identified as important links between these pathways, influencing cell survival and apoptosis. Flavonoids such as Rhododendrin, Erianin, and Fisetin were found to effectively target both of these pathways, potentially modifying cellular behavior and offering therapeutic benefits. The network analysis revealed that EGFR and AKT serve as critical connectors between hub genes CDC42 and GAPDH, with these flavonoids impacting downstream signaling molecules, including PI3K, AKT, mTOR, Grb2, JAK, STAT, Cyclooxygenase, HIF-1α, and MAPKs.
DiscussionThe findings highlight the pivotal role of the PI3K/AKT/mTOR pathway in promoting inflammation and cellular proliferation by activating NF-κB and HIF-1α.
ConclusionThis comprehensive review underscores the importance of the PI3K/AKT/mTOR and JNK pathways in understanding psoriasis mechanisms. Targeting these pathways with flavonoids may offer promising therapeutic strategies by modulating key molecular hubs involved in disease progression.
-
-
-
Mechanistic Insights into the Therapeutic Role of Curcumin in Leukemia: Molecular Targets and Clinical Implications
Available online: 01 October 2025More LessLeukemia is one of the most widespread and life-threatening malignancies that originates in the blood and bone marrow. Despite advances in treatment, there remains a need for safer and more effective therapeutic agents with fewer side effects. This review investigates the therapeutic potential of curcumin (CUR), a naturally derived polyphenol, in leukemia management, with a focus on its molecular mechanisms and regulatory effects on various signaling pathways. Peer-reviewed publications were considered till March 2025. Various scientific databases, including PubMed, Scopus, Science Direct, SciFinder, Medline, and Google Scholar, were used to collect the literature knowledge. The review focuses on the role of curcumin in modulating key cellular processes, such as apoptosis, cell cycle arrest, and gene regulation, along with its interaction with several oncogenic and protective signaling cascades. Accordingly, CUR demonstrates potent antileukemic effects by promoting apoptosis and cell cycle arrest. It downregulates oncogenes, such as FLT3, Akt, ROS, and NF-κB, while protecting normal cells through upregulation of NRF-2, which enhances antioxidant production. Additionally, CUR modulates multiple signaling pathways, including NF-κB, JAK/STAT, PI3K/AKT, JNK/ERK, MAPK, Ras/Raf, and MMP, thereby affecting leukemia initiation, progression, and metastasis. CUR exhibits strong potential as a therapeutic agent for leukemia by targeting multiple molecular signaling pathways and promoting selective cytotoxicity against cancer cells. Further preclinical and clinical studies are necessary to validate its efficacy and overcome the limitations of the bioavailability parameters.
-
-
-
The Contribution of Wearable Devices and Artificial Intelligence to Promoting Healthy Aging
Available online: 30 September 2025More LessIntroductionHealthy aging involves consistently maximizing opportunities to maintain and enhance physical and mental well-being, fostering independence, and sustaining a high quality of life. This review examines recent technological innovations aimed at promoting the well-being of older adults. The scope encompasses wearable devices and telemedicine, showcasing their potential to enhance the health and overall well-being of older individuals. The review highlights the crucial role of assistive technologies, including mobility aids, hearing aids, and adaptive home devices, in addressing the specific challenges associated with aging.
MethodsThe relevant literature was collected and selected based on the objective of the study and reviewed.
ResultsDigital technologies, including brain-computer interfaces (BCIs), are explored as potential solutions to enhance communication between healthcare providers and aging patients, considering engagement levels and active interaction. Sophisticated BCIs, such as electroencephalograms, electrocorticography, and signal modeling for real-time identification, play a crucial role in event detection, with machine learning algorithms enhancing signal processing for accurate decoding. The exploration of smart wearable systems for health monitoring emerges as a dynamic and promising field in the context of aging.
DiscussionFitbit® showcases accurate step counting, making it suitable for monitoring physical activity in older adults engaged in slow walking. ActiGraphÔ is evaluated for accuracy in monitoring physical activity in older adults, with results indicating reliable concurrence with Fitbit® devices. The study identifies several limitations, including sample size constraints, challenges in keeping pace with technological advancements, and the need for further investigation into the suitability of fitness trackers for individuals with significant mobility impairments.
ConclusionThe evolving landscape of wearable technologies, exemplified by Fitbit®, ActiGraphÔ, and other interventions, holds substantial promise for reshaping healthcare approaches for the aging population. Addressing the limitations will be crucial as research progresses to ensure the effective and ethical integration of wearables into geriatric care, maximizing their potential benefits.
-
-
-
Evaluating the Protective Immunity of 5’-Cap Altered Rabies mRNA Vaccines in a Mouse Model
Authors: Teng Zhang and Wen ZhangAvailable online: 30 September 2025More LessIntroductionRabies Virus (RV or RABV) is a neurophilic pathogen predominantly transmitted to humans through bites, scratches, or wounds. Upon entering the central nervous system, the virus can cause severe symptoms, including acute encephalitis and paralysis, ultimately leading to death with an almost 100% mortality rate. Hence, it is essential to develop an effective oral rabies vaccine.
MethodsWe designed and synthesized three modified 5'-cap mRNA vaccines (RV-01(CAP-01), RV-01(CAP-02) and RV-01(CAP-03)) encoding rabies virus glycoproteins in vitro and evaluated their immunogenicity and protective effect in mice.
ResultsThe modified 5'-cap vaccine was successfully constructed and could be effectively expressed in HEK293 cells. The antibody detection results revealed the abundance of RABV-G in RV-01(CAP-01), RV-01(CAP-02) and RV-01(CAP-03). ELISPOT assays indicated that these variants promoted the production of immune-related cytokines. Furthermore, the modified 5'-cap vaccines could reduce the rabies viral load of mice and effectively prolong their survival.
DiscussionThe rabies mRNA vaccine had high efficacy and safety in preventing rabies, suggesting the great potential of mRNA as a promising candidate for RABV vaccines. However, the potential causes of the differences in the performance of the three modified 5'-cap rabies mRNA vaccines and the clinical application of 5’-Cap altered rabies mRNA vaccines need to be explored.
ConclusionHence, these results demonstrated that the modified 5’-cap mRNA vaccine was effective in inducing immune responses, which might be considered a promising prophylactic strategy for rabies.
-
-
-
Pubescine as a Novel Antibacterial Agent Against Vancomycin-Resistant Enterococcus: Growth Inhibition, Antibiotic Synergy, and Anti-Biofilm Activity
By Raya SoltaneAvailable online: 26 September 2025More LessIntroductionThe rise of Vancomycin-Resistant Enterococcus (VRE) has become a major public health concern due to its resistance to conventional antibiotics and ability to form biofilms. The urgent need for novel therapeutic strategies has led to increased interest in natural compounds with antimicrobial potential. Pubescine (PBN), a steroidal alkaloid isolated from Holarrhena pubescens, has demonstrated antimicrobial properties, but its efficacy against VRE remains unexplored.
MethodsPBN was isolated and purified from Holarrhena pubescens using chromatographic techniques and identified through spectroscopic analysis. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were determined via broth microdilution assays. Time-kill assays assessed the bacteriostatic or bactericidal nature of PBN. Resistance development was evaluated through prolonged bacterial exposure to subinhibitory concentrations. Synergistic interactions with vancomycin and cefoxitin were analyzed using checkerboard microdilution assays. Biofilm formation and eradication were assessed via crystal violet staining and fluorescence imaging. Metabolic activity and oxidative stress induction were measured using the Alamar Blue assay and Reactive Oxygen Species (ROS) quantification, respectively.
ResultsPBN exhibited concentration-dependent inhibition of VRE growth, primarily exerting a bacteriostatic effect without promoting the development of resistance. Checkerboard assays revealed strong synergy between PBN and vancomycin (FICI = 0.1875) and cefoxitin (FICI = 0.3125), suggesting that PBN enhances the efficacy of these antibiotics.
DiscussionPBN significantly reduced biofilm formation and facilitated biofilm disruption at concentrations as low as 4 µg/mL. Metabolic assays demonstrated that PBN suppresses bacterial metabolic activity, while ROS quantification indicated a substantial increase in oxidative stress, suggesting a multi-targeted mechanism of action.
ConclusionThese findings establish PBN as a promising antimicrobial agent with potent activity against vancomycin-resistant Enterococcus faecalis. Its ability to enhance antibiotic efficacy, inhibit biofilm formation, and induce oxidative stress underscores its potential as a novel therapeutic strategy against multidrug-resistant infections. Further in vivo studies and pharmacokinetic evaluations are warranted to assess its clinical applicability.
-
-
-
PhytoCAT: A Comprehensive Data Repository of PhytoChemicals for Affordable Breast Cancer Therapeutics
Available online: 26 September 2025More LessIntroductionBreast cancer is a global health challenge with a high mortality rate of 30% of total cases in a year. Breast cancer presents in 4 main types, namely, TNBC, HER2+, luminal A, and Luminal B. Current treatments, though not without side effects, incur substantial cost, and are rendered ineffective by rising drug resistance. Phytochemicals are being investigated for their beneficial effects on breast cancer. Systematically collecting, organizing, and analyzing this data from available literature could benefit the development of more potent chemopreventive and chemotherapeutic approaches with reduced side effects.
MethodsTo overcome the challenges posed by diverse naming practices, we adopted a sentiment (subjective) based text-mining approach to systematically extract and analyze data on anti-breast cancer phytochemicals from biomedical literature. This method is based on anchor and associated terms to capture authors’ sentiments regarding the therapeutic potential of these compounds. Subsequently, comprehensive and objective information was extracted and curated for each phytochemical, including target genes, pathways, study type, IC50 values, PMIDs, plant sources, and geographical availability.
ResultsPhytoCAT (PhytoChemical Affordable Therapeutics for Breast Cancer) is a comprehensive database of phytochemicals, plant extracts, and essential oils, enriched with links to phytogeographic data and chemical structures. PhytoCAT includes data on 28 essential oils, 470 plant extracts, and 1,649 phytochemical compounds. These compounds were classified into several chemical groups, including alkaloids (167), coumarins (43), flavonoids (290), lignans (47), quinones (43), saponins (27), sesquiterpenoid lactones (40), terpenoids (282), triterpenoid saponins (28), and xanthones (22) groups. Additionally, 505 phytochemicals belong to other subclasses such as esters, glucosides, phenanthrenes, and phenylpropanoids. Further, information on their mechanisms of action is also provided.
DiscussionPhytochemicals have gained significant attention in recent years because of their potential health benefits, particularly in the prevention and treatment of various diseases, including cancer. Compounds such as curcumin, resveratrol, and epigallocatechin gallate (EGCG) are examples of phytochemicals that have shown promise in preclinical studies. PhytoCAT offers a centralized and searchable database enriched with biological, chemical, and pharmacological details. Its structured presentation allows researchers to identify promising compounds and study patterns in chemical class-specific activity.
ConclusionPhytoCAT provides an evidence-based platform for researchers and clinicians to explore the potential of phytochemicals in breast cancer management. Although PhytoCAT has an advanced search engine, it lacks analytical tools, which we envisage integrating in the future. future. (https://phytocat.igib.res.in/)
-
-
-
Understanding Antimicrobial Resistance: From Mechanisms to Public Health Implications
Available online: 12 September 2025More LessAntimicrobial resistance (AMR) is a global public health crisis driven by the overuse and misuse of antibiotics, inadequate infection control practices, and the evolution of microbes. It compromises the effective treatment of infections, posing severe implications for morbidity, mortality, and healthcare costs. Pathogens such as extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) exemplify the growing threat of drug-resistant organisms. This review provides an in-depth analysis of the mechanisms underlying AMR, including enzymatic drug inactivation, efflux pump overexpression, target site modification, and biofilm formation. Additionally, it examines the clinical and economic implications of AMR and assesses emerging strategies for mitigation. Innovative solutions, such as bacteriophage therapy, CRISPR-based genome editing, and the One Health approach, offer promising avenues to address resistance across the human, animal, and environmental health sectors. Coordinated global efforts in surveillance, stewardship, and research are essential to curbing the spread and impact of AMR.
-
-
-
The Role of Pioglitazone as a Ferroptosis Inhibitor in Mitigating Radiation-induced Damage in Testicular Tissue of Mice
Available online: 29 August 2025More LessIntroductionRadiation targets cancer but risks causing infertility by damaging sensitive testes, especially spermatogonia. This study investigates IR-induced testicular damage and assesses PGZ's potential protective role as a ferroptosis inhibitor.
Material & MethodsIn this study, Seventy-two BALB/c mice were randomly divided into eight groups: a control, PGZ (10, 20, and 30 mg/kg), IR (8 Gy), and IR+ PGZ (in three doses). PGZ was administered for 10 consecutive days, and mice were exposed to IR on the 11th day of the study. 24 h after RT, the mice's testis tissue was subjected to a series of evaluations to assess oxidative stress and antioxidant parameters, with histopathological analyses conducted one week after IR.
ResultsBiochemical analyses revealed that exposure to IR significantly increased ferroptosis markers, while concurrently decreasing intracellular antioxidants GSH. Histological examinations confirmed damage to spermatogenic cells, leading to detachment from the basement membrane and reduced sperm counts. Pre-treatment with PGZ at 30 mg/kg effectively reduced the levels of oxidative stress markers and improved antioxidant levels, demonstrating its potential protective effects against ferroptosis.
DiscussionThe results suggest PGZ can protect against radiation-induced testicular damage by inhibiting ferroptosis and promoting spermatogenesis recovery.
ConclusionThese results indicate that PGZ may act as a protective agent against radiation-induced testicular damage and support the recovery of spermatogenesis following IR exposure. Further research is warranted to explore the molecular mechanisms of PGZ's protective effects.
-
-
-
Research Progress on the Effects of Anthocyanins on Cognitive Function and Their Underlying Mechanisms
Authors: Wen-huan Dong, Ting Wang, Zi-ping Wang, Xin Wen, Qi-qi Huang and Zhang-e XiongAvailable online: 28 August 2025More LessintroductionThis review aims to systematically investigate the existing research on the effects of anthocyanins on cognitive functions and their underlying mechanisms involved. It provides detailed insights into their development and potential applications.
MethodAn extensive review and analysis of various animal experiments and human studies were performed using databases, such as Web of Science, Sci-Hub, EI, ScienceDirect, and PubMed. The keywords, titles, or abstracts searched included, but were not limited to, 'Anthocyanin', 'Cognition', 'Anti-inflammatory', 'Antioxidation', 'Autophagy', and 'Insulin resistance'. The search was conducted covering the period from January 2017 to November 2025. Our aim was to summarize the evidence concerning the impact of anthocyanins on cognitive functions and to explore their underlying mechanisms. We analyzed these mechanisms in terms of antioxidant activity, reduction of neuroinflammation, regulation of autophagy-related pathways, and central insulin sensitivity.
ResultA substantial body of research has indicated that anthocyanins exert beneficial effects on cognitive function. In models exhibiting cognitive impairment, supplementation with anthocyanins has been shown to significantly improve cognitive capabilities. The underlying mechanisms of action are primarily attributed to the following factors: the strong antioxidant properties of anthocyanins, which effectively neutralize free radicals in the brain, thereby diminishing oxidative stress and protecting neuronal integrity and functionality; the inhibition of neuroinflammatory responses, which alleviates the detrimental impact of inflammatory agents on neural tissues and contributes to the maintenance of the brain's homeostatic environment; and the regulation of autophagy-related pathways and central insulin sensitivity, which collectively reduce damage to proteins linked to cognitive function and enhance learning and memory processes.
DiscussionAs the global population ages rapidly and the prevalence of cognitive decline-related diseases, like Alzheimer's, increases, there is a pressing need to create medications that can improve cognitive abilities. Researchers are paying close attention to anthocyanins, natural substances found in plants such as blueberries and purple grapes, due to their significant potential to influence cognitive functions. Nonetheless, further clinical trials are necessary to validate the appropriate dosage and bioavailability of anthocyanins, and certain limitations must be acknowledged.
ConclusionIn the present study, it was found that anthocyanins can improve cognitive impairment in both humans and animals. Their mechanisms of action primarily involve anti-inflammatory effects, antioxidant activity, modulation of autophagy, and the reduction of central insulin resistance. This research lays the groundwork for future studies on the role of anthocyanins in cognitive function.
-
-
-
Taxifolin: Approaches to Increase Water Solubility and Bioavailability
Authors: Mark B. Plotnikov and Anna M. AnishchenkoAvailable online: 08 August 2025More LessTaxifolin (TAX) (5,7,3',4'-tetrahydroxyflavanol, dihydroquercetin) belongs to the flavonoid family. TAX elicits a wide range of pharmacological effects, and for this reason, it is of high commercial interest as a flavonoid. The widespread use of TAX in medical practice is limited by the physicochemical properties of the compound and, in part, the related features of its pharmacokinetics: absorption, distribution, metabolism, and excretion. The purpose of this review is to provide an overview of technological methods that can be utilized to enhance the solubility of TAX, potentially increasing its bioavailability. The review describes various technological approaches: micronization, crystal engineering, self-microemulsifying systems, liposomes and their modifications, microemulsifying systems, phospholipid nanoparticles, inclusion complexes (clathrate generation), and chemical modification. Most of the approaches described in the review for improving the solubility and bioavailability of TAX have proven to be successful. Nanotechnologies are the most efficient means for improving the solubility and bioavailability of TAX. Developing new TAX substances with improved solubility and bioavailability holds promise as a basis for the development of innovative drugs.
-
-
-
Critical Processes for Stability Enhancement of Phyto-ingredients: A Comprehensive Review
Authors: Evren Algin Yapar, Merve Nur Özdemir and Thanchanok SirirakAvailable online: 08 August 2025More LessPlants contain valuable phytochemicals with biological activity. However, factors such as instability, poor solubility, and bioavailability limit their use in the food, cosmetics, and pharmaceutical industries. In this context, a wide variety of strategies have been developed with the objective of improving the stability of herbal sources and bioactive compounds under processing, storage, or gastrointestinal digestion conditions. Moreover, these strategies seek to enhance solubility, mask undesirable flavors, and facilitate targeted delivery to specific tissues, thereby enabling the bioactive compounds to exert their biological activity and contribute to improved human health. It is of great importance to conduct studies on the stability of herbal medicines to identify the various factors, physical, chemical, and environmental, which may affect their stability. Also, such studies are essential for determining the shelf life of the products and always ensuring their quality during storage and use. This review presents the strategies and latest advances utilized to improve the stability of pure plant bioactive compounds, extracts, and essential oils to overcome the previously mentioned challenges. The information presented will assist in the production of safe, stable, and effective substances and products. Furthermore, a comprehensive overview of the various applications of these compounds is provided, along with an analysis of emerging trends.
-
-
-
Application of Mathematical Model in Basic Research and Product Manufacturing of Traditional Chinese Medicine
Authors: Nenghua Zhang, Xingying Chen, Simeng Li, Yaru Wang, Chuchu Shan, Jingmei Song and Yuyan ZhangAvailable online: 08 August 2025More LessIntroductionThe research on traditional Chinese medicine (TCM) has experienced the transition from qualitative research to quantitative study. The application of mathematical modeling for data processing and analysis offers a more efficient and precise approach compared to conventional methods, enabling the timely acquisition of key efficacy indicators for preliminary evaluation. Therefore, the concept of mathematical modeling has been proposed to form a systematic theoretical system of TCM and diseases.
MethodsThe article reviews the application of mathematical models in the research of traditional Chinese medicine in terms of compounding, extraction, optimization, quality evaluation, production, new drug development, pharmacokinetics, pharmacodynamics, and clinical symptom analysis. Relevant Chinese and English literature was obtained from PubMed, Cochrane Library, China Science and Technology Journal Database (VIP), Wanfang Data, CNKI and China Biomedical Literature Database (CBM).
ResultsWe have found that integrating the concept of mathematical modeling with TCM theory has shortened the cycle of extracting active ingredients in traditional Chinese medicine and the development of new drugs, while also accelerating the realization of maximum clinical efficacy.
DiscussionHowever, the comprehensiveness and precision of existing databases remain areas for improvement. In the future, further integration of multi-disciplinary technologies will be essential to advance the convergence of traditional medicine and modern science.
ConclusionThis review explores the application of mathematical models in the study of traditional Chinese medicine. It is evident that mathematical modeling has played a pivotal role in promoting fundamental research and the modernization of TCM.
-
-
-
Integrating IoMT and Federated Learning for Advanced Healthcare Monitoring in Healthcare 5.0
Authors: Bassam Almogadwy and Abdulrahman AlqarafiAvailable online: 08 August 2025More LessIntroductionThe Internet of Medical Things (IoMT) has made it possible to create advanced health monitoring systems. It allows the system to detect problems early, thereby mitigating long-term effects. This development will likely enhance the quality of healthcare professionals by reducing their workload and healthcare costs. The IoT in medical technology offers a wide range of information technology capabilities, including intelligent and collaborative healthcare solutions. Aggregating health data in a single repository raises security, copyright, and compliance issues when building a complex machine-learning model.
MethodFederated learning overcomes the above challenges by dispersing a global learning model through a central aggregate server. It retains mastery of patient data in a local participant who ensures data privacy and integrity. This research aims to develop an advanced healthcare monitoring system utilizing federated learning techniques. The system is designed to enable healthcare providers to effectively track patient health through medical sensors and respond promptly when necessary.
ResultsThe federated learning-based XGBoost model achieved a predictive accuracy of 97.2% in diagnosing Parkinson’s disease. Additionally, the system demonstrated improved privacy preservation, significantly reducing sensitive data exposure with minimal computational overhead, confirming its practical effectiveness in clinical scenarios.
DiscussionBy leveraging federated learning, the proposed approach seeks to enhance the efficiency and effectiveness of health monitoring in clinical settings. To achieve accurate classification and early detection of Parkinson's disease, the study employs two key machine learning algorithms: Support Vector Machine (SVM) and Extreme Gradient Boosting (XGBoost). These methods were selected for their statistical robustness and suitability for the task at hand.
ConclusionThe combination of federated learning, SVM, and XGBoost enhances healthcare monitoring and ensures patient data privacy and integrity.
-
-
-
The Effects of Rukangyin on the Biological Behavior and Hippo Signaling Pathway in MDA-MB-231 Breast Cancer Cells
Authors: Shi Qiu, Qinyu Han, Xian Zhao, Wenjing Li and Xiangqi LiAvailable online: 06 August 2025More LessIntroductionThis study aims to examine the impact of Rukangyin (RKY) and its components, LSQR and QTSS, on various cellular processes and signaling mechanisms in MDA-MB-231 triple-negative breast cancer (TNBC) cells.
MethodsTwenty-five Sprague-Dawley (SD) rats were randomly assigned to five groups according to the administered drugs, including the RKY group, LSQR group, QTSS group, fluorouracil group, and blank control group (n=5 in each group). The serum samples from each group were then used as a medicated medium for the culture of the TNBC cell line MDA-MB-231. Cell viability tests, apoptosis detection tests, and migration and invasion tests were used to evaluate the cytotoxicity of treated serum. YAP, TAZ, MST1, and LATS1 protein expression and phosphorylation were examined using conventional western blotting methods.
ResultsRKY and its QTSS and LSQR components significantly inhibited cell growth and promoted apoptosis in MDA-MB-231 cells. RKY also significantly blocked cell motility with a comparable effect to that of fluorouracil. All serum groups suppressed YAP and TAZ expressions while increasing p-YAP, p-TAZ, MST1, and LATS1 levels, with RKY showing superior efficacy.
DiscussionIn TNBC cells, RKY appears to enhance the tumor-suppressing signals of the Hippo signaling pathway via MST1, LATS1 activation, while restricting its pro-oncogenic action via YAP and TAZ blockade. However, in vivo and animal model experiments are required to confirm these findings.
ConclusionRKY-medicated serum effectively inhibits growth, induces apoptosis, and reduces motility in the MDA-MB-231 cell line of breast cancer. This therapeutic potential of RKY on TNBC cells draws attention to the need for more investigations.
-
-
-
A Comprehensive Mini-Review on the Understanding of Electrotherapy for Pain Management: An Introduction to ABMMA-BMT
Authors: Praveen Mallari, Tracy Taulier and Mohammad Amjad KamalAvailable online: 04 August 2025More LessABMMA-BMT is a modality that combines innovative complementary and alternative medicine techniques with low-voltage electrical energy, applying it to acupuncture points and meridians to bridge traditional Chinese medicine with modern bioelectric science. This involves the application of microcurrents (10–1000 µA) at acupoints to assess and correct for disrupted energy flow, as determined by electrical resistance measurements. Treatment involves the delivery of weak direct currents, which remove blockages in meridian channels, thereby promoting local blood circulation and tissue repair. Recent research suggests that pulsed electromagnetic fields (PEMFs) and microcurrent stimulation can influence neural signaling, gene expression, and redox balance, thereby benefiting conditions such as chronic pain, soft tissue injury, and functional dysregulation of the immune and endocrine systems. These results suggest that integrating bioelectric principles with traditional acupuncture concepts will support the hypothesis that ABMMA-BMT has the potential to regulate cellular processes and accelerate healing while avoiding invasive procedures. The mechanisms are still not well understood, but preliminary clinical data and experimental studies are good indicators of its therapeutic effect. Future research is needed to standardize treatment parameters and to clinically verify the efficacy of this modality, so that it can be incorporated as a conventional component of healthcare practice.
-
-
-
Proteolytic Profiles of Aspergillus caespitosus, A. jensenii and A. neotritici, and a Novel Peptidase with Plasmin-like Activity for Biomedicine and Pharmacology
Available online: 04 August 2025More LessIntroductionCardiovascular diseases (CVDs) are the leading cause of death globally, often complicated by thromboembolic events. Plasmin, a key enzyme in fibrinolysis, is crucial for managing these conditions. Elevated or reduced plasmin levels can indicate thrombotic risks, making it a valuable diagnostic marker. Recent biotechnological advances have developed diagnostic kits to measure plasmin activity, aiding early detection and intervention. Fungal proteases, particularly from micromycetes, are emerging as promising agents in anticoagulant therapy. This study investigates three Aspergillus species — A. caespitosus, A. jensenii and A. neotritici for their potential to produce novel biomedical components.
MethodsThe fungi were cultured, and their proteolytic profiles were analyzed. Key findings include the identification of specific proteases with plasmin-like and protein C-activating activities. These enzymes were purified using isoelectric focusing and characterized through SDS-PAGE and zymography.
ResultsThe study confirmed that A. jensenii, and A. neotritici produce proteases with plasmin-like activity, with A. neotritici showing a single 35 kDa non-specific protease, and A. jensenii exhibiting two proteases (33 kDa and 100 kDa) in the acidic zone and one (110 kDa) in the neutral zone, the latter exhibiting specific chymotrypsin and plasmin-like activity.
DiscussionAmong the studied strains, A. neotritici exhibited the fastest secretion of proteases with plasmin-like activity, making it a promising source of enzymes with potential clinical applications. In contrast, A. caespitosus and A. jensenii displayed more complex protease compositions, featuring multiple active enzymes. Notably, one of the A. jensenii proteases showed pronounced specificity toward chymotrypsin and fibrinolytic substrates, indicating its suitability for the development of targeted therapeutic agents.
ConclusionThese findings suggest the potential of these fungal proteases for developing novel anticoagulant therapies and diagnostic tools.
-