Skip to content
2000
image of Construction and Validation of T‐cell Exhaustion‐related Gene Signature for Predicting Prognosis in Diffuse Large B-cell Lymphoma

Abstract

Background

T-cell exhaustion (TEX) is one reason for immunotherapy resistance among cancers, but the specific mechanism and influencing factors of TEX in diffuse large B-cell lymphoma (DLBCL) are not fully understood. This study aimed to establish a TEX signature for predicting the prognosis of DLBCL and investigate the immune characteristics related to the TEX signature.

Methods

The gene expression data of DLBCL were obtained from The Cancer Genome Atlas and Gene Expression Omnibus databases. Prognostic TEX related genes were selected by Cox regression analysis for prognostic signature (TEX score) construction. The correlation of risk grouping with immune cell infiltration was analyzed by CIBERSORT and ssGSEA. Molecular mechanisms between high and low TEX score groups were explored by gene set enrichment analysis (GSEA).

Results

A total of 115 differentially expressed TEX-related genes were selected, and 12 were prognosis-related after Cox regression. Following Ninesignature genes, including TRIM6, BIRC3, CTSC, GBP3, IRF3, TRIM22, IFI30, TRIM25 and BAG4 were identified to construct a TEX score. The receiver operator characteristic curve curves suggested that the model presented high predictive precision. A nomogram was established, which also had good prediction performance in survival prognosis. The composition of immune cells in the two risk groups was significantly different. GSEA identified 33 hallmarks between two risk groups, which were associated with immune cells infiltration and inflammation.

Conclusion

The TEX score has prognosis-predicting value for DLBCL and might be a valuable biomarker to guide clinical decision‐making for patients with DLBCL.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010355990250310064916
2025-03-18
2025-10-07
Loading full text...

Full text loading...

References

  1. Zhang L. Chen Z. Zuo W. Zhu X. Li Y. Liu X. Wei X. Omacetaxine mepesuccinate induces apoptosis and cell cycle arrest, promotes cell differentiation, and reduces telomerase activity in diffuse large B-cell lymphoma cells. Mol. Med. Rep. 2016 13 4 3092 3100 10.3892/mmr.2016.4899 26935769
    [Google Scholar]
  2. Li S. Young K.H. Medeiros L.J. Diffuse large B-cell lymphoma. Pathology 2018 50 1 74 87 10.1016/j.pathol.2017.09.006 29167021
    [Google Scholar]
  3. Shao Y. Lv X. Ying S. Guo Q. Artificial intelligence-driven precision medicine: multi-omics and spatial multi-omics approaches in diffuse large B-cell lymphoma (DLBCL). Front. Biosci. (Landmark Ed.) 2024 29 12 404 10.31083/j.fbl2912404 39735973
    [Google Scholar]
  4. Carpio C. Bouabdallah R. Ysebaert L. Sancho J.M. Salles G. Cordoba R. Pinto A. Gharibo M. Rasco D. Panizo C. Lopez-Martin J.A. Santoro A. Salar A. Damian S. Martin A. Verhoef G. Van den Neste E. Wang M. Couto S. Carrancio S. Weng A. Wang X. Schmitz F. Wei X. Hege K. Trotter M.W.B. Risueño A. Buchholz T.J. Hagner P.R. Gandhi A.K. Pourdehnad M. Ribrag V. Avadomide monotherapy in relapsed/refractory DLBCL: safety, efficacy, and a predictive gene classifier. Blood 2020 135 13 996 1007 10.1182/blood.2019002395 31977002
    [Google Scholar]
  5. Zhou Y. Li G. Kaempferol protects cell damage in in vitro ischemia reperfusion model in rat neuronal PC12 cells. BioMed Res. Int. 2020 2020 1 2461079 10.1155/2020/2461079 32382538
    [Google Scholar]
  6. Susanibar-Adaniya S. Barta S.K. 2021 Update on Diffuse large B cell lymphoma: A review of current data and potential applications on risk stratification and management. Am. J. Hematol. 2021 96 5 617 629 10.1002/ajh.26151 33661537
    [Google Scholar]
  7. Höpken U.E. Rehm A. Targeting the tumor microenvironment of leukemia and lymphoma. Trends Canc. 2019 5 6 351 364 10.1016/j.trecan.2019.05.001 31208697
    [Google Scholar]
  8. Pasqualucci L. The genetic basis of diffuse large B-cell lymphoma. Curr. Opin. Hematol. 2013 20 4 336 344 10.1097/MOH.0b013e3283623d7f 23673341
    [Google Scholar]
  9. Jennifer K.L. Grzegorz S.N. Diffuse large B-Cell lymphoma: from novel molecular classifications to tailored targeted therapies. J. Canc. Metast. Treat. 2022 8 11
    [Google Scholar]
  10. Wallin J.J. Bendell J.C. Funke R. Sznol M. Korski K. Jones S. Hernandez G. Mier J. He X. Hodi F.S. Denker M. Leveque V. Cañamero M. Babitski G. Koeppen H. Ziai J. Sharma N. Gaire F. Chen D.S. Waterkamp D. Hegde P.S. McDermott D.F. Atezolizumab in combination with bevacizumab enhances antigen-specific T-cell migration in metastatic renal cell carcinoma. Nat. Commun. 2016 7 1 12624 10.1038/ncomms12624 27571927
    [Google Scholar]
  11. Lin Z. Chen X. Li Z. Luo Y. Fang Z. Xu B. Han M. PD-1 antibody monotherapy for malignant melanoma: a systematic review and meta-analysis. PLoS One 2016 11 8 e0160485 10.1371/journal.pone.0160485 27483468
    [Google Scholar]
  12. Hu X. Chen Z. Wang Z. Xiao Q. Cancer evolution: Special focus on the immune aspect of cancer. Semin. Cancer Biol. 2022 86 Pt 2 420 435 10.1016/j.semcancer.2022.05.006 35589072
    [Google Scholar]
  13. Menares E. Gálvez-Cancino F. Cáceres-Morgado P. Ghorani E. López E. Díaz X. Saavedra-Almarza J. Figueroa D.A. Roa E. Quezada S.A. Lladser A. Tissue-resident memory CD8+ T cells amplify anti-tumor immunity by triggering antigen spreading through dendritic cells. Nat. Commun. 2019 10 1 4401 10.1038/s41467‑019‑12319‑x 31562311
    [Google Scholar]
  14. Hanahan D. Coussens L.M. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 2012 21 3 309 322 10.1016/j.ccr.2012.02.022 22439926
    [Google Scholar]
  15. Sarnaik A.A. Hwu P. Mulé J.J. Pilon-Thomas S. Tumor-infiltrating lymphocytes: A new hope. Cancer Cell 2024 42 8 1315 1318 10.1016/j.ccell.2024.06.015 39029463
    [Google Scholar]
  16. Thommen D.S. Schumacher T.N. T cell dysfunction in cancer. Cancer Cell 2018 33 4 547 562 10.1016/j.ccell.2018.03.012 29634943
    [Google Scholar]
  17. Jiang Y. Li Y. Zhu B. T-cell exhaustion in the tumor microenvironment. Cell Dea. Dis. 2015 6 6 e1792 10.1038/cddis.2015.162 26086965
    [Google Scholar]
  18. Kumar S. Singh S.K. Rana B. Rana A. Tumor-infiltrating CD8+ T cell antitumor efficacy and exhaustion: molecular insights. Drug Discov. Today 2021 26 4 951 967 10.1016/j.drudis.2021.01.002 33450394
    [Google Scholar]
  19. Franco F. Jaccard A. Romero P. Yu Y.R. Ho P.C. Metabolic and epigenetic regulation of T-cell exhaustion. Nat. Metab. 2020 2 10 1001 1012 10.1038/s42255‑020‑00280‑9 32958939
    [Google Scholar]
  20. McLane L.M. Abdel-Hakeem M.S. Wherry E.J. CD8 T cell exhaustion during chronic viral infection and cancer. Annu. Rev. Immunol. 2019 37 1 457 495 10.1146/annurev‑immunol‑041015‑055318 30676822
    [Google Scholar]
  21. Boyero L. Sánchez-Gastaldo A. Alonso M. Noguera-Uclés J.F. Molina-Pinelo S. Bernabé-Caro R. Primary and acquired resistance to immunotherapy in lung cancer: unveiling the mechanisms underlying of immune checkpoint blockade therapy. Cancers (Basel) 2020 12 12 3729 10.3390/cancers12123729 33322522
    [Google Scholar]
  22. Gao Z. Feng Y. Xu J. Liang J. T-cell exhaustion in immune-mediated inflammatory diseases: New implications for immunotherapy. Front. Immunol. 2022 13 977394 10.3389/fimmu.2022.977394 36211414
    [Google Scholar]
  23. Zheng S. Ma J. Li J. Pang X. Ma M. Ma Z. Cui W. Lower PTEN may be associated with CD8+ T cell exhaustion in diffuse large B-cell lymphoma. Hum. Immunol. 2023 84 10 551 560 10.1016/j.humimm.2023.07.007 37481380
    [Google Scholar]
  24. Dubois S. Viailly P.J. Bohers E. Bertrand P. Ruminy P. Marchand V. Maingonnat C. Mareschal S. Picquenot J.M. Penther D. Jais J.P. Tesson B. Peyrouze P. Figeac M. Desmots F. Fest T. Haioun C. Lamy T. Copie-Bergman C. Fabiani B. Delarue R. Peyrade F. André M. Ketterer N. Leroy K. Salles G. Molina T.J. Tilly H. Jardin F. Biological and clinical relevance of associated genomic alterations in MYD88 L265P and non-L265P–mutated diffuse large B-cell lymphoma: analysis of 361 cases. Clin. Cancer Res. 2017 23 9 2232 2244 10.1158/1078‑0432.CCR‑16‑1922 27923841
    [Google Scholar]
  25. Dubois S. Tesson B. Mareschal S. Viailly P.J. Bohers E. Ruminy P. Etancelin P. Peyrouze P. Copie-Bergman C. Fabiani B. Petrella T. Jais J.P. Haioun C. Salles G. Molina T.J. Leroy K. Tilly H. Jardin F. Refining diffuse large B-cell lymphoma subgroups using integrated analysis of molecular profiles. EBioMedicine 2019 48 58 69 10.1016/j.ebiom.2019.09.034 31648986
    [Google Scholar]
  26. Nørgaard C.H. Jakobsen L.H. Gentles A.J. Dybkær K. El-Galaly T.C. Bødker J.S. Schmitz A. Johansen P. Herold T. Spiekermann K. Brown J.R. Klitgaard J.L. Johnsen H.E. Bøgsted M. Subtype assignment of CLL based on B-cell subset associated gene signatures from normal bone marrow – A proof of concept study. PLoS One 2018 13 3 e0193249 10.1371/journal.pone.0193249 29513759
    [Google Scholar]
  27. Dybkær K. Bøgsted M. Falgreen S. Bødker J.S. Kjeldsen M.K. Schmitz A. Bilgrau A.E. Xu-Monette Z.Y. Li L. Bergkvist K.S. Laursen M.B. Rodrigo-Domingo M. Marques S.C. Rasmussen S.B. Nyegaard M. Gaihede M. Møller M.B. Samworth R.J. Shah R.D. Johansen P. El-Galaly T.C. Young K.H. Johnsen H.E. Diffuse large B-cell lymphoma classification system that associates normal B-cell subset phenotypes with prognosis. J. Clin. Oncol. 2015 33 12 1379 1388 10.1200/JCO.2014.57.7080 25800755
    [Google Scholar]
  28. Sha C. Barrans S. Care M.A. Cunningham D. Tooze R.M. Jack A. Westhead D.R. Transferring genomics to the clinic: distinguishing Burkitt and diffuse large B cell lymphomas. Genome Med. 2015 7 1 64 10.1186/s13073‑015‑0187‑6 26207141
    [Google Scholar]
  29. Zhang Z. Chen L. Chen H. Zhao J. Li K. Sun J. Zhou M. Pan-cancer landscape of T-cell exhaustion heterogeneity within the tumor microenvironment revealed a progressive roadmap of hierarchical dysfunction associated with prognosis and therapeutic efficacy. EBioMedicine 2022 83 104207 10.1016/j.ebiom.2022.104207 35961204
    [Google Scholar]
  30. Liberzon A. Birger C. Thorvaldsdóttir H. Ghandi M. Mesirov J.P. Tamayo P. The molecular signatures database (MSigDB) hallmark gene set collection. Cell Syst. 2015 1 6 417 425 10.1016/j.cels.2015.12.004 26771021
    [Google Scholar]
  31. Ritchie M.E. Phipson B. Wu D. Hu Y. Law C.W. Shi W. Smyth G.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl. Aci. Res. 2015 43 7 e47 10.1093/nar/gkv007
    [Google Scholar]
  32. Haynes W. Benjamini–Hochberg Method. Encyclopedia of Systems Biology. Dubitzky W. Wolkenhauer O. Cho K-H. Yokota H. New York, NY Springer New York 2013 78 10.1007/978‑1‑4419‑9863‑7_1215
    [Google Scholar]
  33. Mayakonda A. Lin D.C. Assenov Y. Plass C. Koeffler H.P. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018 28 11 1747 1756 10.1101/gr.239244.118 30341162
    [Google Scholar]
  34. Wang P. Wang Y. Hang B. Zou X. Mao J.H. A novel gene expression-based prognostic scoring system to predict survival in gastric cancer. Oncotarget 2016 7 34 55343 55351 10.18632/oncotarget.10533 27419373
    [Google Scholar]
  35. Friedman J. Hastie T. Tibshirani R. Narasimhan B. Tay K. Simon N. Qian J. glmnet: Lasso and elastic-net regularized generalized linear models. CRAN R Reposit. 2021 39 5 595 10.18637/jss.v039.i05
    [Google Scholar]
  36. Harrell F.E. Jr Harrell M.F.E. Jr Hmisc D. Package ‘rms’. Vanderbilt University. CRAN R Reposit. 2017 8 229
    [Google Scholar]
  37. Hu D. Zhou M. Zhu X. Deciphering immune-associated genes to predict survival in clear cell renal cell cancer. Biomed. Res. Int. 2019 2019 2506843 10.1155/2019/2506843 31886185
    [Google Scholar]
  38. Chen B. Khodadoust M.S. Liu C.L. Newman A.M. Alizadeh A.A. Profiling tumor infiltrating immune cells with cibersort. Methods Mol. Biol. 2018 1711 243 259 10.1007/978‑1‑4939‑7493‑1_12 29344893
    [Google Scholar]
  39. Yi M. Nissley D.V. McCormick F. Stephens R.M. ssGSEA score-based Ras dependency indexes derived from gene expression data reveal potential Ras addiction mechanisms with possible clinical implications. Sci. Rep. 2020 10 1 10258 10.1038/s41598‑020‑66986‑8 32581224
    [Google Scholar]
  40. Zhao C. Zhang Z. Jing T. A novel signature of combing cuproptosis- with ferroptosis-related genes for prediction of prognosis, immunologic therapy responses and drug sensitivity in hepatocellular carcinoma. Front. Oncol. 2022 12 1000993 10.3389/fonc.2022.1000993 36249031
    [Google Scholar]
  41. Zhang X. Zhang S. Yan X. Shan Y. Liu L. Zhou J. m6A regulator-mediated RNA methylation modification patterns are involved in immune microenvironment regulation of periodontitis. J. Cell. Mol. Med. 2021 25 7 3634 3645 10.1111/jcmm.16469 33724691
    [Google Scholar]
  42. Geeleher P. Cox N. Huang R.S. pRRophetic: an R package for prediction of clinical chemotherapeutic response from tumor gene expression levels. PLoS One 2014 9 9 e107468 10.1371/journal.pone.0107468 25229481
    [Google Scholar]
  43. Yu G. Wang L.G. Han Y. He Q.Y. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012 16 5 284 287 10.1089/omi.2011.0118 22455463
    [Google Scholar]
  44. Aizaz M. Khan A.S. Khan M. Musazade E. Yang G. Advancements in tumor-infiltrating lymphocytes: Historical insights, contemporary milestones, and future directions in oncology therapy. Crit. Rev. Oncol. Hematol. 2024 202 104471 10.1016/j.critrevonc.2024.104471 39117163
    [Google Scholar]
  45. Wang Z. Wu X. Study and analysis of antitumor resistance mechanism of PD1/PD‐L1 immune checkpoint blocker. Cancer Med. 2020 9 21 8086 8121 10.1002/cam4.3410 32875727
    [Google Scholar]
  46. Chow A. Perica K. Klebanoff C.A. Wolchok J.D. Clinical implications of T cell exhaustion for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2022 19 12 775 790 10.1038/s41571‑022‑00689‑z 36216928
    [Google Scholar]
  47. Ng K.T.P. Lo C.M. Guo D.Y. Qi X. Li C.X. Geng W. Liu X.B. Ling C.C. Ma Y.Y. Yeung W.H. Shao Y. Poon R.T.P. Fan S.T. Man K. Identification of transmembrane protein 98 as a novel chemoresistance-conferring gene in hepatocellular carcinoma. Mol. Cancer Ther. 2014 13 5 1285 1297 10.1158/1535‑7163.MCT‑13‑0806 24608572
    [Google Scholar]
  48. Tan Z. Song L. Wu W. Zhou Y. Zhu J. Wu G. Cao L. Song J. Li J. Zhang W. TRIM14 promotes chemoresistance in gliomas by activating Wnt/β-catenin signaling via stabilizing Dvl2. Oncogene 2018 37 40 5403 5415 10.1038/s41388‑018‑0344‑7 29867201
    [Google Scholar]
  49. Mandell M.A. Saha B. Thompson T.A. The tripartite nexus: autophagy, cancer, and tripartite motif-containing protein family members. Front. Pharmacol. 2020 11 308 10.3389/fphar.2020.00308 32226386
    [Google Scholar]
  50. Weng C. Jin R. Jin X. Yang Z. He C. Zhang Q. Xu J. Lv B. Exploring the mechanisms, biomarkers, and therapeutic targets of TRIM family in gastrointestinal cancer. Drug Des. Devel. Ther. 2024 18 5615 5639 10.2147/DDDT.S482340 39654601
    [Google Scholar]
  51. Wang J. Ye J. Liu R. Chen C. Wang W. TRIM47 drives gastric cancer cell proliferation and invasion by regulating CYLD protein stability. Biol. Direct 2024 19 1 106 10.1186/s13062‑024‑00555‑1 39516831
    [Google Scholar]
  52. Chiang D.C. Yap B.K. TRIM25, TRIM28 and TRIM59 and their protein partners in cancer signaling crosstalk: Potential novel therapeutic targets for cancer. Curr. Issues Mol. Biol. 2024 46 10 10745 10761 10.3390/cimb46100638 39451518
    [Google Scholar]
  53. Yao Y. Zhou S. Yan Y. Fu K. Xiao S. The tripartite motif-containing 24 is a multifunctional player in human cancer. Cell Biosci. 2024 14 1 103 10.1186/s13578‑024‑01289‑3 39160596
    [Google Scholar]
  54. Côrte-Real J.V. Baldauf H.M. Abrantes J. Esteves P.J. Evolution of the guanylate binding protein (GBP) genes: Emergence of GBP7 genes in primates and further acquisition of a unique GBP3 gene in simians. Mol. Immunol. 2021 132 79 81 10.1016/j.molimm.2021.01.025 33550067
    [Google Scholar]
  55. Praefcke G.J.K. Regulation of innate immune functions by guanylate-binding proteins. Int. J. Med. Microbiol. 2018 308 1 237 245 10.1016/j.ijmm.2017.10.013 29174633
    [Google Scholar]
  56. Jiang T. Jin P. Huang G. Li S.C. The function of guanylate binding protein 3 (GBP3) in human cancers by pan-cancer bioinformatics. Math. Biosci. Eng. 2023 20 5 9511 9529 10.3934/mbe.2023418 37161254
    [Google Scholar]
  57. Jefferies C.A. Regulating IRFs in IFN driven disease. Front. Immunol. 2019 10 325 10.3389/fimmu.2019.00325 30984161
    [Google Scholar]
  58. Tamura T. Yanai H. Savitsky D. Taniguchi T. The IRF family transcription factors in immunity and oncogenesis. Annu. Rev. Immunol. 2008 26 1 535 584 10.1146/annurev.immunol.26.021607.090400 18303999
    [Google Scholar]
  59. Xu H.G. Chen C. Chen L.Y. Pan S. Pan‐cancer analysis identifies the IRF family as a biomarker for survival prognosis and immunotherapy. J. Cell. Mol. Med. 2024 28 3 e18084 10.1111/jcmm.18084 38130025
    [Google Scholar]
  60. Wang W. Chapman N.M. Zhang B. Li M. Fan M. Laribee R.N. Zaidi M.R. Pfeffer L.M. Chi H. Wu Z.H. Upregulation of PD-L1 via HMGB1-activated IRF3 and NF-κB contributes to UV radiation-induced immune suppression. Cancer Res. 2019 79 11 2909 2922 10.1158/0008‑5472.CAN‑18‑3134 30737234
    [Google Scholar]
  61. Wang L. Zhu Y. Zhang N. Xian Y. Tang Y. Ye J. Reza F. He G. Wen X. Jiang X. The multiple roles of interferon regulatory factor family in health and disease. Signal Transduct. Target. Ther. 2024 9 1 282 10.1038/s41392‑024‑01980‑4 39384770
    [Google Scholar]
  62. Kuang T. Zhang L. Chai D. Chen C. Wang W. Construction of a T-cell exhaustion-related gene signature for predicting prognosis and immune response in hepatocellular carcinoma. Aging (Albany NY) 2023 15 12 5751 5774 10.18632/aging.204830 37354485
    [Google Scholar]
  63. Wu Y. Du B. Lin M. Ji X. Lv C. Lai J. The identification of genes associated T-cell exhaustion and construction of prognostic signature to predict immunotherapy response in lung adenocarcinoma. Sci. Rep. 2023 13 1 13415 10.1038/s41598‑023‑40662‑z 37592010
    [Google Scholar]
  64. Bejarano L. Jordāo M.J.C. Joyce J.A. Therapeutic targeting of the tumor microenvironment. Cancer Discov. 2021 11 4 933 959 10.1158/2159‑8290.CD‑20‑1808 33811125
    [Google Scholar]
  65. Desai S.A. Patel V.P. Bhosle K.P. Nagare S.D. Thombare K.C. The tumor microenvironment: Shaping cancer progression and treatment response. J. Chemother. 2024 37 1 15 44 10.1080/1120009X.2023.2300224 38179655
    [Google Scholar]
  66. Zhou J. Ding T. Pan W. Zhu L. Li L. Zheng L. Increased intratumoral regulatory T cells are related to intratumoral macrophages and poor prognosis in hepatocellular carcinoma patients. Int. J. Canc. 2009 125 7 1640 1648 10.1002/ijc.24556 19569243
    [Google Scholar]
  67. Bingle L. Brown N.J. Lewis C.E. The role of tumour‐associated macrophages in tumour progression: implications for new anticancer therapies. J. Pathol. 2002 196 3 254 265 10.1002/path.1027 11857487
    [Google Scholar]
  68. Ladányi A. Kiss J. Mohos A. Somlai B. Liszkay G. Gilde K. Fejős Z. Gaudi I. Dobos J. Tímár J. Prognostic impact of B-cell density in cutaneous melanoma. Cancer Immunol. Immunother. 2011 60 12 1729 1738 10.1007/s00262‑011‑1071‑x 21779876
    [Google Scholar]
  69. Schalper K.A. Brown J. Carvajal-Hausdorf D. McLaughlin J. Velcheti V. Syrigos K.N. Herbst R.S. Rimm D.L. Objective measurement and clinical significance of TILs in non-small cell lung cancer. J. Natl. Cancer Inst. 2015 107 3 dju435 10.1093/jnci/dju435 25650315
    [Google Scholar]
  70. Ju X. Zhang H. Zhou Z. Chen M. Wang Q. Tumor-associated macrophages induce PD-L1 expression in gastric cancer cells through IL-6 and TNF-ɑ signaling. Exp. Cell Res. 2020 396 2 112315 10.1016/j.yexcr.2020.112315 33031808
    [Google Scholar]
  71. Ma Q. Hao S. Hong W. Tergaonkar V. Sethi G. Tian Y. Duan C. Versatile function of NF-ĸB in inflammation and cancer. Exp. Hematol. Oncol. 2024 13 1 68 10.1186/s40164‑024‑00529‑z 39014491
    [Google Scholar]
  72. Khan A. Zhang Y. Ma N. Shi J. Hou Y. NF-κB role on tumor proliferation, migration, invasion and immune escape. Cancer Gene Ther. 2024 31 11 1599 1610 10.1038/s41417‑024‑00811‑6 39033218
    [Google Scholar]
  73. Qian J. Wang C. Wang B. Yang J. Wang Y. Luo F. Xu J. Zhao C. Liu R. Chu Y. The IFN-γ/PD-L1 axis between T cells and tumor microenvironment: Hints for glioma anti-PD-1/PD-L1 therapy. J. Neuroinflammat. 2018 15 1 290 10.1186/s12974‑018‑1330‑2 30333036
    [Google Scholar]
  74. Xiang Z. Zhou Z. Song S. Li J. Ji J. Yan R. Wang J. Cai W. Hu W. Zang L. Zhu Z. Zhang Z. Li M. Yu Y. Dexamethasone suppresses immune evasion by inducing GR/STAT3 mediated downregulation of PD-L1 and IDO1 pathways. Oncogene 2021 40 31 5002 5012 10.1038/s41388‑021‑01897‑0 34175886
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010355990250310064916
Loading
/content/journals/cpb/10.2174/0113892010355990250310064916
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test